
RC23853 (W0601-126) January 27, 2006
Computer Science

IBM Research Report

Shared Memory Programming for Large Scale Machines

Christopher Barton1, Calin Cascaval2, George Almási2, Yili Zheng3,
Montse Farreras4, José Nelson Amaral1

1Department of Compting Science
University of Alberta
Edmonton, Canada

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

3Department of Electrical and Computer Engineering
Purdue University
West Lafayette, IN

4Department of Computer Architecture
Universitat Politecnica de Catalunya

Barcelona, Spain

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Shared Memory Programming for Large Scale Machines

Christopher Barton†, Călin Caşcaval‡, George Alḿasi‡, Yili Zheng††, Montse Farreras‡‡and
Jośe Nelson Amaral†

† Department of Computing Science, ‡ IBM T.J. Watson Research Center
University of Alberta, Edmonton, Canada Yorktown, NY
{cbarton,amaral}@cs.ualberta.ca {cascaval, gheorghe}@us.ibm.com

††Department of Electrical and Computer Engineering ‡‡Department of Computer Architecture
Purdue University, West Lafayette IN Universitat Politecnica de Catalunya, Barcelona Spain

yzheng@purdue.edu mfarrera@ac.upc.es

Abstract
In this paper we evaluate the use of a shared memory programming
language, Unified Parallel C (UPC) on BlueGene/L, a distributed
memory machine. We demonstrate not only that shared memory
programming for hundreds of thousands of processors is possible,
but also that with the right support from the compiler and run-time
system, the performance of the resulting codes is comparable to
MPI implementations.

We describe the compiler infrastructure, the design of the UPC
run-time system and communication software. We also discuss
several compiler transformations that were used to optimize the
UPC implementation of three well-known benchmarks (HPC Ran-
domAccess, HPC STREAMS and NAS CG). We present scaling
and absolute performance numbers for these benchmarks on up to
131072 processors, the full BlueGene/L machine.

1. Introduction
With the advent of Petascale computing, programming for large
scale machines is becoming evermore challenging. Traditional lan-
guages designed for uniprocessors, such as C or Fortran, only allow
the simplest kernels to scale to millions of threads of computation.
When building solutions for real-life applications, understanding
the problem and designing an algorithm that scales to a large num-
ber of processors is a challenge in itself. Thus, adequate program-
ming tools are essential to increase the programming productivity
for scientific applications. Several initiatives, such as the DARPA
High Productivity Computer Systems (HPCS) program, are encour-
aging industry and academia to take a fresh look at the issue of
programming large scale machines.

This paper explores the use of Unified Parallel C (UPC) [7, 18]
on the BlueGene/LR© machine. UPC is a shared memory program-
ming extension of C that provides a few simple primitives to allow
for parallelism. The programming model is Single Program Multi-
ple Data (SPMD). In the UPC execution model all the threads are
started before the user code begins. Threads are synchronized us-
ing barriers and locks. The memory model is that of a Partitioned
Global Address Space (PGAS) with each thread having access to

a private, a shared local, and a shared global section of memory.
Threads have exclusive, low latency, access to the private section
of memory. Typically the latency to access the shared local section
is lower than the latency to access the shared global section.

UPC provides two memory consistency models: a strict model
and a relaxed model. Strict consistency can be used to guarantee
memory references ordering at thread level. Relaxed consistency
can be used for performance. The consistency model can be speci-
fied globally or on a per access basis. The UPC memory and thread-
ing model can be mapped to either distributed memory machines,
shared memory machines or hybrid (clusters of shared memory ma-
chines). Our own implementation supports both the shared memory
mapping and the distributed memory mapping.

BlueGene/L [19] is a distributed memory machine that features
as many as 65,536 dual-processor compute nodes, each operating
at a very low power, and hence at a relatively low frequency of
700 MHz. Designed for 360 Teraflops peak performance, the ma-
chine sustains 280 Teraflops when running the (optimized) HPL
Linpack performance application [33]. In addition to the origi-
nal BlueGene/L installation at Lawrence Livermore National Labs
(LLNL), there are now a number of smaller installations scattered
across the globe.

The strong point of BlueGene/L is its network - a64 × 32 ×
32 3D torus that spans all compute nodes. The default software
installation includes a port of the MPI library, which augments
the standard Fortran, C and C++ compiler. It has been shown that
careful programming and judicious use of the MPI primitives (and
in some cases re-engineering of applications) allow scaling to the
full extent of the machine.

A long standing issue in high-performance computing is the
productivity of efficient software development for high-end parallel
machines. The expected increased dissemination of machines built
on a hybrid memory-access model compounds this problem. A hy-
brid memory-access model that consists of a collection of multi-
processor shared address processing nodes connected through a
message-passing fast network is likely to be dominant for high-
performance computing in the near future. A programming lan-
guage that is designed under a PGAS programming model, such
as UPC, facilitates the encoding of data partitioning information
in the program. Closing the gap between the programming and the
machine models should increase software productivity and result in
the generation of more efficient code.

This paper makes the following main contributions:

• describes the XL UPC compiler and the UPC Run-Time System
(RTS);

• shows that, with the right kind of support from the compiler
and run-time environment, scaling to hundreds of thousands of
threads in a PGAS programming model is possible;

• presents a set of compiler optimizations that are essential for
achieving high-performance on large-scale machines;

• discusses and illustrates design decisions in the run-time envi-
ronment that allowed us to obtain the performance results pre-
sented in Section 4.

The rest of the paper is organized as follows. Section 2 describes
the XL UPC compiler and UPC RTS. Section 3 describes the
compiler optimizations implemented in the XL UPC compiler.
Section 4 outlines the experiments and the results obtained from
running the benchmarks on a BG/L system. The related work is
presented in Section 5 and finally conclusions and future work are
discussed in Section 6.

2. Environment
We implemented a UPC compiler based on a development version
of the IBM R©XL Compiler framework. Utilizing this framework
offers the advantage that the language semantics can be carried on
from parsing through different levels of optimization and all the
way to the code generator. By contrast, source-to-source translators
have to rely on the native compiler and the runtime environment for
many low level optimizations.

2.1 XL Compiler Framework

The XL Compiler framework has three main components: a front-
end (FE) that parses different languages into a common interme-
diate representation (W-Code), the Toronto Portable Optimizer
(TPO) – a high-level optimizer that does machine-independent
compile-time and link-time optimizations, and a code generator
(TOBEY) that performs machine-dependent optimizations and
generates code appropriate for the target machine. The XL UPC
compiler uses all these components, of which only TOBEY is un-
modified.

Figure 1 shows the role of each component in compiling UPC
programs for a variety of platforms. The FE translates the UPC
source to W-Code. To deliver a functional system early in the
project, the FE translated UPC directly to calls to the UPC RTS.
This path is still available in the XL UPC compiler and is shown
as the left-path through TPO in Figure 1. Because of the direct
translation, the compilation can bypass the TPO component and
go directly to the code generation as shown with a dashed arrow.
While this version of the compiler allowed for rapid prototyping,
the performance of the generated code is not optimal. Specifically,
when unmodified W-Code is used, each individual access to a
shared variable has to be converted to an appropriate RTS call.
This has two implications for the optimizations that are performed.
First, unless it can prove otherwise, the compiler must assume that
the function calls have side-effects and therefore are treated as
kill-sites. This reduces the scope of many data-flow optimizations
such as copy propagation and common sub-expression elimination.
Second, while the compiler can inline many of these function calls,
the inlining occurs late – after many of the optimization passes
have run. Thus, the inlined code is not exposed to several data-flow
optimizations which could successfully optimize it.

As a result of these performance limitations, the translating of
the UPC code to calls to the RTS is delayed until later in the com-
pilation process. To facilitate this, the XL UPC compiler enhances
the intermediate language W-Code with several primitives to sup-
port UPC. The extensions to W-Code include the representation
of shared variables, strict and relaxed attributes for memory ac-
cesses, and theupc forall construct. Without these extensions

to the intermediate language a compiler has to translate the source-
level parallel and data distribution annotations of UPC directly to
calls to the UPC RTS.

When the XL UPC compiler uses the extended W-Code, the FE
annotates all the shared variables and other constructs with their
UPC semantics. TPO processes the W-Code and performs opti-
mization and translation, shown in the right path through the UPC
TPO in Figure 1. The advantage is that now all the optimization
passes in TPO see the shared array references as memory accesses
and can apply all the classical optimizations. In addition we have
implemented a set of optimizations specific to UPC that we discuss
in Section 3.

Source
UPC

Source
UPC

Source
UPC

TPO UPC TPO

SMP Clusters Blue Gene/L

pthreads LAPI BGLML

UPC Runtime System

XL UPC Front End

Figure 1. XL UPC Compiler and Runtime System

The UPC RTS provides a platform-independent interface that
allows compiler optimizations to be applied independent of the ma-
chine code generation. This interface can be implemented on a va-
riety of platforms. A similar approach was followed in [4]. We have
implemented the UPC RTS interface on three different platforms:
(1) shared-memory multiprocessors (SMP); (2) clusters of worksta-
tions connected either through Ethernet or through specialized net-
works for which a Low-level Application Programming Interface
(LAPI) [31] implementation was available; and (3) BlueGene/L. In
this paper we will discuss results only on the BlueGene/L machine.
Most of the optimizations presented here are applicable to the other
implementations.

The UPC execution environment includes a threading and com-
munication library. On an SMP platform our RTS implementation
uses the Pthreads library [5]. The distributed memory version has
two implementations, one using LAPI as the communication layer
and one using the BlueGene/Lmessage layer [1].

2.2 Runtime System

The UPC RTS exposes a few simple abstractions to the compiler.
This makes the translation of UPC programs relatively easy. In
addition, to optimize for performance, we can rely on the exiting
link time optimizations of TPO, because the entire UPC RTS code
is available as a library to the compiler. These optimizations, while
used in the reported results, are outside of the scope of this paper.

Shared objects are an important abstraction in UPC programs.
The UPC RTS recognizes five kinds of shared objects: shared

scalars, shared structures/unions/enumerations, shared arrays, shared
pointers with shared targets, and shared pointers with private tar-
gets. A transparent handle is used to refer to a shared object. These
handles are kept internally, by the RTS, in a Shared Variable Di-
rectory (SVD). The UPC RTS provides routines to initialize and
manipulate these handles. It is the responsibility of the compiler to
manage the SVD entries when variables are created or go out of
scope.

UPC shared objects also haveaffinity to a thread, i.e., they re-
side in the shared local memory of the thread. Affinity is important
because shared data is typically accessed through what we callfat
pointers. A fat pointer is a structure representation of a shared ad-
dress that allows the program to reference shared object anywhere
in the partitioned global address space. The cost of accessing shared
data through these fat pointers is significantly higher than a simple
dereference of a traditional C pointer. Therefore, if the compiler
can determine statically the affinity of shared objects, it can con-
vert these accesses from fat pointer to C pointer dereferences, and
thus improve performance. A detailed discussion on the analysis
required to determine thread affinity is presented in Section 3.

We designed the UPC RTS with scalability in mind. The SVD is
a partitioned data structure used by the RTS to manage allocation,
deallocation, and access to shared variables. It is designed to scale
to a large number of threads while allowing efficient manipulation
of shared data. As opposed to other UPC implementations, we do
not require that local sections of arrays be mapped to the same
memory location in all the threads. Rather, like Titanium [34], we
allow the local sections of a shared array to be of arbitrary length
and rely on the RTS to do the bookkeeping. The SVD has the
following design principles:

1. threads must be able to create shared variables independent of
each other and keep the SVD consistent with a minimum of
communication;

2. for collective operations, such asupc all alloc, when all
the threads execute the same operation, no locking should be
required;

3. no structure should keep pointers or references based on the
number of processors; rather, if remote information about a
variable is required, the requester should get the information
through message exchange.

As far as we know, no other PGAS language implementation is
able to scale to more than one or two thousand processors, in part
because of limitations on their fat-pointer implementations.

The SVD implementation is presented in Figure 2. In this fig-
ure we assume a Partition Global Address Space in a distributed
memory machine. Each thread owns a section of the memory (the
shared local portion) and also has a private section of the memory.
Logically, the SVD consists of a two-level data structure: at the first
level there is an array withTHREADS+1 entries, whereTHREADS is
the number of threads in an UPC program. Each entry points to a
partition that stores handles to shared variables that have affinity to
the thread withMYTHREAD equal to the partition number. The par-
tition with numberTHREADS, we call it theALL partition, is used
for all statically declared non-scalar variables. The reason for this
separation is that theALL partition has a fixed size, while the other
partitions are resized when threads allocate shared data dynami-
cally.

Each thread uses a mutually exclusive partition of the SVD.
Each partition is an independent, resizable, array of pointers to
control structures. If a thread declares a large number of shared
variables, only its partition will grow.

Physically, in shared-memory machines the SVD is kept in
shared memory. The partitions are stored with affinity to the own-

ing thread. Since the SVD is not exposed to the compiler/user, the
“atomic” access rules (see below) apply. For distributed-memory
machines, the SVD is kept in the private memory of each thread
and it is replicated across all threads. Because we expect most of
the operations on the SVD to be global operations in which all
threads participate, each thread’s copy of the SVD can be updated
without communication in a consistent manner (atomically). Com-
munication is required in the case of non-global operations such
asupc global alloc or upc local alloc. Even in these cases,
the communication is non-blocking because our design of the SVD
guarantees that only one thread has “write” access rights to its SVD
partition.

Shared variable are accessed using handles, as shown byAh in
Figure 2. The handles address a variable by its partition number
and the index in the partition. Depending on the type of the shared
variable, we obtain the address of the variable or we need through
another indirection level. When a thread in a distributed memory
system request data from a remote thread it passes only the shared
variable handle, and the remote thread will determine the local ad-
dress. Optimizations, such as caching the values of shared variables
and the addresses of shared objects, are outside the scope of this pa-
per.

A major limiting factor of scalability for some implementations
of the UPC RTS is the fact that threads are mapped to processes.
Moreover, each thread has to map the entire memory space, at the
same virtual address, such that static data are implicitly shared by
virtue of being located at the same address on all the threads. We
overcome this limitation by using the SVD.

Beside the statically declared shared arrays, UPC provides rou-
tines for dynamically allocate data, such asupc global alloc,
upc all alloc, andupc local alloc. Some of these routines
require synchronization/communication between threads. These in-
teractions are non-trivial in distributed memory systems where
messages are not guaranteed to arrive in order. Our implementa-
tion resolves this issue by partitioning the SVD. Essentially, there
is no requirement on the message ordering because operations are
“atomic”. Each thread is responsible for managing its own parti-
tion, and a remote thread will not see the shared variables owned
by another thread until its copy of the SVD is updated by the own-
ing thread. All the variables stored in the all partition are allocated
through collective operations, therefore guaranteed to be consis-
tent.

2.3 Messaging Library

As mentioned before, the UPC runtime is written to leverage multi-
ple types of hardware, e.g. shared-memory machines as well as the
LAPI library; however, all measurements presented in this paper
were made on BlueGene/L, using the BlueGene/L communication
library.

The BlueGene/L communication library is designed to sup-
port both MPI as well as other, more light-weight, communication
paradigms, such as UPC, Global Arrays [28] and Hierarchically
Tiled Arrays [2].

The design decisions to support both communication paradigms
are:

• The relatively low ratio of CPU speed versus network speed
makes it imperative to send and process messages in as few
CPU cycles as possible.

Naive (un-optimized) UPC code typically performs individual
remote variable dereferences. These result in very short (and
hence, latency bound) network communication.

Implementing the UPC runtime on top of the standard Blue-
Gene/L MPI library would have caused unacceptably high la-
tency because of the software overhead of starting, monitoring,

Partitioned
Global
Address
Space

Thread 0 Thread 1 Thread THREADS−1

. . .

. . .

2

1

0

ALL

THREADS−1

. . .

. . .

2

1

0

ALL

THREADS−1

. . .

. . .

2

1

0

ALL

THREADS−1

Private
Memory

. . .
Shared variable A

A A A

Variable
Directory

Partition Table

shared variable handle A_h

Figure 2. Shared Variable Directory in a PGAS distributed memory machine.

and receiving an MPI message. Many of our communication
library optimizations address this problem.

• The BlueGene/L network is packet based, with packets from
32 to 256 bytes long. Due to the way packets are routed in the
BlueGene/L network, ordinary data packets can arrive out of
order. Packets can be forced to arrive in order, but doing so
with a large number of packets tends to create hot-spots in the
network, decreasing overall throughput.

In practical terms this means that any data transfers in UPC
that require more than one packet of data have to be accom-
plished by handshake, resulting in long latencies. We use or-
dered packets for very short data communications, e.g., sin-
gle value get/put operations to avoiding the need to hand-shake
with the receiver for the transfer of a 4-byte value.

• The CPU-network interface is accessible only in 16 byte
chunks, with each access being 16-byte aligned. This causes
a problem when UPC buffers are arbitrarily aligned, forcing
the messaging library to copy data to and from aligned buffers
during send/receive. This, in turn, causes CPU overhead (mem-
ory copies are inordinately expensive on BlueGene/L), which
translates into higher latencies for short transfers as well as
decreased bandwidth when a node has to transmit and receive
simultaneously.

The method of dealing with this problem for medium and long
messages has been documented in the context of implementing

the MPI library [1]. For short data transfers we employed pre-
allocated message objects that have alignment guarantees.

• The BlueGene/L network hardware does not directly support
one-sided communication. All network packets have to be ex-
tracted from the network by the processor(s). The communi-
cation library is designed to be operated by polling, restricting
the overlap of communication and computation. Moreover, the
same set of double-wide floating point registers are used by the
machine to perform computation and to talk to the network de-
vice, further restricting overlap.

Each BlueGene/L node features two processors. The original
design point of BlueGene/L called for one of the processors
to act as a communication processor, while the other performs
computation. However, co-operation between the processors is
limited by the fact that they do not have a coherent view of
the memory. This makes low-latency communication using a
dedicated communication processor virtually impossible.

Another way to achieve the effect of overlapping computation
and communication would have been to interrupt the computa-
tion processor when a network packet arrives. However, switch-
ing to a network handler for every packet involves at least a
context switch, with the added burden (compared to other ma-
chines) of saving and restoring a relatively larger number of
registers, again causing performance loss.

Ultimately, while running programs on BlueGene/L we noticed
that most applications that were written to scale to a high num-
ber of processors tend to perform synchronized (and most often,

collective) communication anyway. In hindsight, the problem
of overlapping computation and communication seems not to
be as important as it seemed.

• Because the network hardware does not support one-sided com-
munication, the remote get operation has to be implemented by
sending a request to the processor that owns the data. This pro-
cessor then has to send a reply to the processor that originally
requested it.

Thus, a remote get operation involves the allocation of re-
sources at the passive target. This causes two problems: first,
memory allocation on the passive target constitutes overhead.
We mitigate this by allocating and maintaining a pool of pre-
allocated requests. The second problem occurs when a proces-
sor is the target of too many remote get requests. Applications
written for scalability typically do not exhibit such patterns, and
we thus we followed the decision made in the BlueGene/L MPI
implementation of shifting the burden on the programmer.

3. Compiler Optimizations
In this section we discuss several compiler transformations that are
essential to optimize the performance of UPC codes. These opti-
mizations are: reducing the overhead of the parallel loop construct,
transforming shared variable accesses that have affinity to the ac-
cessing thread into local accesses, and identifying and exploiting
the update primitives of the communication library.

3.1 upc forall Loop Simplification

Theupc forall statement is used in UPC programs to distribute
iterations of a loop among all processors. Instead of each processor
executing all iterations of the loop, an iteration is conditionally
executed by a processor based on anaffinity test. The affinity test
is specified by the programmer using a fourth parameter in the
upc forall loop declaration. This parameter must contain either
a pointer-to-shared type, an integer type or thecontinue keyword.
When a pointer-to-shared type is used, an iterationi of the loop
will be executed by threadj if and only if j owns the shared data
specified in the affinity test. Thus, it is common to use the induction
variable in the affinity parameter in order to ensure iterations are
distributed among the processors. When the affinity parameter is
an integer type, an iterationi will be executed by a threadj if and
only if the integer value of the affinity parameter modulo by the
number of threads is equal toj. When thecontinue keyword is
used, or no statement is specified, the loop body is executed by all
threads.

All upc forall loops that use the (unmodified) induction vari-
able of the loop as the affinity parameter are optimized to remove
the branch condition from the loop body. The lower bound of the
loop is modified to start at the valueMYTHREAD and the incre-
ment of the loop is modified to increment iterations of the loop
by the number of threads. This guarantees that each thread will
only execute the iterations of the loop as specified by the affinity
parameter without requiring a branch inside the loop body. The re-
moval of the branch statement can benefit many code reordering
optimizations. We are currently improving the way we optimize
upc forall loops to include integer affinity parameters that use
a modified induction variable as well as pointer-to-shared affinity
parameters. However, even this simple optimization captures most
of the loops in the existing UPC benchmarks.

3.2 Local Memory Optimizations

Accesses of shared arrays are optimized using the OPTIMIZE-
SHAREDARRAYINDEX algorithm seen in Figure 3. The optimiza-
tion consists of convertingfat pointers intothin pointers when the
location of the reference allows. A fat pointer is an aggregated data

OPTIMIZESHAREDARRAYINDEX(Procedurep)
1. for each loopLi in p
2. if Li is not aupc forall loop
3. continue
4. endif
5. for eachshared memory referenceRs is Li do
6. if DIST MEM ARCH and Rs is non-local
7. continue
8. endif
9. Rhandle ← SVD handle forRs

10. LPreheader
i .Add(Raddress ← BaseAddress(Rhandle))

11. index← COMPUTE INDEX
12. if Rs is adef
13. symdata ← data to store toRs

14. if Rs.DataType is intrinsic
15. LBody

i .Add(storeind(Raddress, index, data))
16. else
17. LBody

i .Add(memcpy(Raddress,data,Rs.Size))
18. endif
19. else
20. symdst ← location to store data fromRs

21. if Rs.DataType is intrinsic
22. LBody

i .Add(dst ← loadind(Raddress, index))
23. else
24. LBody

i .Add(memcpy(dst,Raddress+index,Rs.Size))
25. endif
26. endif
27. LBody

i .Remove(Rs)
28. endfor
29.endfor

Figure 3. Optimizing Shared Array Indexes (Local Memory)

structure, used by the UPC RTS, that identifies a shared variable,
while its thin counterpart is a standard C pointer. Dereferencing
a fat pointer requires several levels of indirection in the SVD and
the shared variable control block. Thus thin pointer dereferences
are much less costly. In a distributed memory architecture, pointers
that are known to be non-local must remain a fat pointer because
it is necessary to use functions defined in the UPC RTS to perform
the memory access. Thus, when the algorithm is examining each
shared reference in each loop in a given procedure, by traversing the
loop table, non-local memory references in distributed memory ar-
chitectures are not candidates for this optimization (step 6 of the al-
gorithm). DISTMEM ARCH is an option passed to TPO through
Wcode indicating that the target architecture has distributed mem-
ory. The detection of remote accesses in this algorithm relies on the
affinity clause of theupc forall loop.

In general, for an affine array index expressionf(i1, i2, . . . , in),
and aupc forall affinity expressiong, the necessary condition
to ensure the array element is local is:

(f(i1, i2, . . . , in)/blk sz)%THREADS = g.

Note thatblk sz (the block size of the shared array or the shared
pointer) is known statically.

For any array reference that satisfies this condition, which in
many cases can be statically determined, we can transform the
shared array access using fat pointers into a split operation: first,
we calculate the base address of the array, which is common for
all the array element accesses to the same array and can be hoisted
out of the innermost loop; and second, the offset computation and
the actual memory operation using traditional C pointers. Array
references for which the affinity can not be determined statically
will remain fat pointer accesses.

Step 9 obtains the handle used by the UPC Runtime System
(UPC RTS) to identifyRs. Step 10 inserts a call to a function in
the UPC RTS to obtain the base address ofRs in the UPC Shared
Variable Directory (SVD). The loop preheader contains statements
that should only be executed if the loop body executes but do not
need to be executed in every iteration of the loop. It is typically
used to initialize loop invariant variables used in the loop.

The offset from the base address ofRs is computed using the
following equation:

elt sz ∗ ((blk sz ∗ course) + phase)

Theelt sz is the size of each shared array element. The course is is
used to identify the affinity block a given array element is located
in. The phase indicates the element offset within the affinity block.

The algorithm then determines the type of referenceRs repre-
sents. IfRs is a definition of (store to) shared data, the symbol rep-
resenting the data stored toRs is obtained (Step 13). Thesymdata

symbol is obtained through the expression tree containingRs (in
TPO each reference can locate the expression tree that contains it).
If the data type of the reference (i.e. the type of the shared array)
is an intrinsic, an indirect store is generated to store the data to the
memory locationRaddress + index (Step 15). If the data type is
not intrinsic, a call tomemcpy is used to copy the value in data to
Raddress + index (Step 17). These instructions are inserted im-
mediately after the statement containingRs in the statement list (in
TPO each reference can also identify the statement that contains it).

If Rs is auseof (load from) shared data, the symbol represent-
ing the location to store the data is obtained. If the type of the shared
data represented byRs is an intrinsic, an indirect load is used to ob-
tain the data, which is stored to the destination (Step 22). If the type
is not an intrinsic, a call tomemcpy is inserted to copy the shared
data fromRaddress + index to the destination (Step 24).

Note that the data types used to test for intrinsics (Steps 14 and
21) must be obtained fromRs. Thesymdata andsymdst symbols
could represent addresses (i.e.pointers to shared data) and thus they
would not contain information about the underlying type. However,
the algorithm can safely assume that the address represented by the
pointer will point to memory large enough to contain the shared
data because the front end would have generated an error in the
event of a type mismatch.

Step 27 removes the statement containingRs. Because the new
statement that replacesRs was inserted immediately after the state-
ment containingRs the original data flow is maintained and no data
dependencies are violated. Even if Step 27 was not performed, the
original program semantics would have been maintained because
the Write-After-Write data dependence introduced by inserting the
new statement uses the same value for the write.

3.3 Update Optimizations

The RandomAccess benchmark performs binary updates on ran-
dom locations in a shared array. The UPC RTS has support for
remote updating operations. TPO identifies updates of memory lo-
cations that use a binary logical operator (logicaland, or andxor).
The updates detected consist of instances of logical binary oper-
ators that both define and use the same shared reference,Rs (i.e.
Rs = RsOPB, whereOP is a binary logical operator andB can be
either shared or private). The statement containingRs is replaced
with a call to the appropriate runtime function passing in the fat
pointer used to identifyRs and the data used in the logical opera-
tion. The runtime function sends a message to the processor owning
Rs specifying the logical operation to perform and the data to use.

Given a processorP and a variablev, if P ownsv then no com-
munication takes place since the operation is performed locally.
Otherwise, an asynchronous message is sent fromP to the proces-
sor that ownsv.

The message contains the necessary information to locate the
variable in the SVD (partition, index, and offset), and the infor-
mation to perform the operation: the data type, the binary logical
operation that needs to be performed, and finally the data used in
the operation.

When this message is first received, a handler is triggered, per-
forming the operation locally and atomically (i.e.Rs = RsOPB).

4. Experimental Results
In this section we present the environment we ran our experiments
in, the benchmarks we used to evaluate the UPC compiler and the
actual performance results we obtained.

4.1 Hardware

The benchmark runs for this paper were done on a number of
BlueGene/L installations. Most of the development work was done
on free-standing “node cards” (64 processors) each, and on a single
rack of BlueGene/L(2048 processors). All other runs had to be
scheduled in advance, either on theBG/W machine at IBM TJ
Watson (20 racks, 40960 processors), or at the LLNL installation
(64 racks, 131072 processors).

In all the runs we scheduled one UPC thread for each Blue-
Gene/L processor. Therefore we will use threads and processors
interchangably in the following discussion.

4.2 Random Access Benchmark

RandomAccess is one of the four benchmarks that constitute the
HPC Challenge Competition [22]. We implemented the UPC ver-
sion of the benchmark from first principles, following instructions
laid out on the HPC Challenge web site. We used the simplest pos-
sible algorithm, to keep source code simple; the UPC code has 111
lines.

The main loop in RandomAccess resolves to a number of read-
modify-write (RMW) operations to remote locations across the
machine. Each remote RMW operation translates to a network
packet; hence, in the current form of the UPC RandomAccess
code performance is bounded by communication latency. Good
runtime and communication library performance are crucial for this
benchmark, as is the compiler’s ability to generate remote update
calls from a read-modify-write sequence in the source code.

The RandomAccess benchmark is designed to scale weakly (the
memory required by the program is directly proportional to the
number of processors). We arranged for 50% of the memory to be
used. With perfect scaling, a RandomAccess run should take about
300 seconds regardless of the number of processors it is running
on. Since performance does not scale linearly (see the efficiency
column in Table 2), the total runtime increases on larger runs.

Verification : the RandomAccess benchmark can be easily ver-
ified by running it twice. All updates areexclusive oroperations,
and restore the original content of the array when executed for the
second time. Verification is part of our benchmark implementation.

4.3 EP STREAM Triad Benchmark

EP STREAM Triad is another of the HPC Challenge benchmarks.
As with RandomAccess, we implemented this code from first prin-
ciples, ending up with 105 lines of code.

In the EP version of the STREAM triad, all the computation is
done locally. We obtained this effect in UPC by using the affinity
clause of theupc forall loop.

The memory requirements of STREAM are dictated by 3 shared
arrays: the HPC Challenge requirement is that the size of these
arrays has to be more than a quarter of the main memory and may
not fit in the cache. Thus, STREAM scales weakly. We chose to be
conservative and selected the arrays to fill half the memory of the
machine for every machine size that we ran STREAM on.

Benchmark Measure FE trans TPO trans
no opt indexing update forall pwr2 all opts - pwr2 all opts

GUPS 0.00311 0.00270 0.00272 0.00561 0.00438 0.00270 0.01815 0.01918
Random Access Time (sec) 172.681 198.492 197.033 95.729 122.673 198.661 29.580 27.987

Speedup 1.15 1.00 1.01 2.07 1.62 .999 6.71 7.09
GB/s 0.2028 0.1343 0.1769 0.1343 0.2831 0.1343 0.5978 32.3609

Stream Time (sec) 23.665 35.730 27.129 35.730 16.952 35.730 8.029 0.148
Speedup 1.51 1.00 1.32 1.00 2.11 1.00 4.45 240.77

Table 1. Compiler optimizations effects on Random Access and Stream Benchmarks, running on 64 threads. Speedups are measured relative
to the TPO no opt case.

Verification : doing the verification on a single processor for an
array of more than 366 billion elements is expensive and would
consume all our machine allocation quota. Therefore we chose
to do verification by sampling. Each thread randomly selects a
set of indices (the set size being the number of threads running
the program) and verifies that the array element at that location
has the correct value. Note that as opposed to the embarassingly
parallel triad operation, in which each node operates on local data
exclusively, the verification step involves communication across the
machine.

4.4 NAS Conjugate Gradient Benchmark

For this benchmark we used the NAS CG code as implemented
by [17], with a few changes – we eliminated multi-dimensional
arrays because the XL UPC compiler does not support them yet;
we also privatized a number of shared variables in the benchmark
implementation that need not be shared, for purposes of code clarity
and performance.

The resulting code looks similar to the MPI version of the
benchmark. A butterfly pattern is set up by the code to aid in the ex-
ecution of what are reallyAllreduce operations, but are executed
by MPI point-to-point primitives. In the UPC version of the code
these primitives are replaced by calls toupc memget, upc memput
andupc barrier. We ended up using barrier calls because point-
to-point synchronization primitives are not yet available in the run-
time and in the communication library. NAS CG has built-in verifi-
cation.

4.5 Performance Evaluation

First we discuss the effect of the compiler optimizations presented
in Section 3. Table 1 shows the performance obtained by enabling
each optimization in isolation. The optimizations presented are as
follows: FE trans– the translation is done in the FE,no opt– TPO
translation without any optimization,indexing– the indexing opti-
mization discussed in Section 3.2,update– the update optimization
presented in Section 3.3,forall the forall loop optimization shown
in Section 3.1,pwr2 specifies to the compiler that the number of
threads is a power of 2,all opts - pwr2are all optimizations except
pwr2, and finallyall opts– all optimizations combined.

There are few observations that we make:

• the baseline code generated by the FE translator already does
optimizations, especially inlining and array access splitting.
Therefore, the baseline TPO generated code is slower on both
benchmarks, by as much as 50% on STREAM;

• the indexingoptimization affects mainly the STREAM bench-
mark, because all accesses are local, as opposed to Random Ac-
cess where most accesses are remote;

• theupdateoptimization improves Random Access by as much
as 200%, because we are essentially replacing two messages (a
get and a put) with one message (the update);

• the forall optimization benefits both benchmarks, slighly more
STREAM because of the tighter loop;

• thepwr2 optimization (which essentially enables the compiler
to replace an integer division with a shift operation) has no ef-
fect on its own – there is far too much overhead in dereferencing
shared structures for its effect to show up;

The most interesting observation is that while each of these op-
timizations show modest (up to 210% gains), by combining all of
them together, we obtain speedups of 7 for Random Access and
240 for STREAM. As we hinted before, the compiler is able to
transform most of the fat pointers into standard C pointers (local
references), enabling the code generation step to optimize the code
as for a sequential program. This is illustrated by the effect that the
pwr2 optimization has on STREAM after all the other optimiza-
tions were performed.

Tables 2 and 3 show the absolute and scaling performance of
our benchmarks as measured on up to 64 racks of BlueGene/L. To
measure scaling performance we define efficiency forN processors
as

Tsingle

Tparallel ×N
.

Going from 1 processor to 2 processors in RandomAccess there
is a 28% drop in efficiency, due to the non-locality of the updates on
multiple processors. For large numbers of processors the efficiency
drops steadily, with larger drops on machine topologies that are
farther away from cubic. The network cross-section bandwidth
of a booted BlueGene/L partition is gated by its longest torus
dimension; hence, cubic partitions have the highest cross-section
bandwidth. For example, note the drop in performance between
4096 and 8192 processors.

Threads Performance Memory TBytes efficiency
(GUPS) used total (%)

1 5.4E-4 0.000128 0.000512 100
2 7.8E-4 0.000256 0.000512 72
4 1.3E-3 0.000512 0.001 61

64 0.02 0.008192 0.016 61
2048 0.56 0.250000 0.500 51
4096 1.11 0.500000 1.000 50
8912 1.70 1.000000 2.000 38

16384 3.36 2.000000 4.000 38
32768 6.10 4.000000 8.000 34
65536 11.54 8.000000 16.000 33

131072 16.72 8.000000 16.000 23

Table 2. Random Access performance results.

In terms of absolute performance, the UPC implementation of
RandomAccess outperforms the best published MPI implementa-
tion results (0.454 GUPS for 2048 processors). Even on the full

Figure 4. UPC vs MPI scaling on CG class C.

size machine (131072 processors), the simple UPC implementa-
tion achieves about 50% of the performance of a hand-coded best
known implementation.

STREAM (Table 3) is embarrassingly parallel, and there is
no scaling drop. In the table we left out the intermediate results
because they contribute no information.

Threads Performance Memory efficiency
(GB/s) TBytes (%)

1 0.73 0.000128 100
2 1.46 0.000256 100
4 2.92 0.000512 100

64 46.72 0.008192 100
65536 47827.00 8.000000 100

131072 95660.77 8.000000 100

Table 3. STREAM Triad performance results.

Figure 4 compares the scaling of the UPC version of the CG
benchmark with the NAS NPB MPI version, on input size class C.
Up to about 512 processors the performance of both UPC and MPI
is equivalent. However, for more than 512, since the problem size
remains constant (strong scaling), message sizes become too small
to hide MPI overheads for two-sided communication. In the UPC
implementation, due to the use of one-sided communication, the
overheads are smaller and the benefits appear at 1024 processors
and up. The scaling trend in the Figure suggests that CG will not
scale much beyond 2048 processors.

5. Related Work
In addition to UPC, there are a number of partitioned global address
space (PGAS) language extensions available. Co-array Fortran [29]
and Titanium [35] are the representatives for Fortran and Java, re-
spectively. The big family of UPC implementations include Berke-
ley UPC [10], Cray UPC [14], HP UPC [23], GCC-based Intrepid
UPC [20] and MTU UPC [30].

The Berkeley UPC compiler is a source-to-source (UPC-to-C)
translator. Its companion runtime system is built on top of GASNet.

While source-to-source translation scheme improves portability,
it incurs optimization limitations for accommodating the impact
to different back-end compilers. The shared address space in the
Berkeley UPC runtime system is limited by the machine address
space of a single node [16]. This is a serious limitation when
scaling to large scale machines with 32 bit architectures, because
the amount of memory on the machine is much larger than what
a single node can address. The SVD design discussed in this paper
allows us to overcome this limitation by addressing remote memory
through indirection.

Chenet al. implemented redundancy elimination, split-phase
communication and message coalescing in the Berkeley UPC Com-
piler [12]. When tested with GUPS they observed speedups of 29.3
22.8 and 39.1 on Alpha, Itanium2, and Opteron systems containing
32 processors. They were able to perform split-phase communi-
cation by unrolling the read/modify/write loops in GUPS. Further
analysis revealed that message coalescing could not be performed
for GUPS because of the presence of indirect memory accesses.
Their approach did not distinguish between local and remote ac-
cesses and attempt to remove unnecessary communication for local
shared pointer accesses however they did identify this as a potential
optimization as future work. In the XL UPC compiler, this tech-
nique has been implemented and hence the optimization is done
automatically.

For communication analysis and optimization, Zhu and Hen-
dren [36] use compiler analysis to select the “best” place for in-
serting communication, reduce redundant remote access and mes-
sage aggregation. Other significant amount of prior research effort
has been focused on communication optimizations for data parallel
programs [9, 21, 32].

Iancu et al. optimize communication by demand driven syn-
chronization [25]. Their runtime system uses virtual memory sup-
port to determine the dynamic program point before which the
communication should complete. Cantonnetet al. propose a tech-
nique that resembles the Translation Look Aside Buffers (TLBs)
to reduce address translation overhead[6]. The BlueGene/L UPC
runtime runs on top of a polling-based light-weight message layer.
Therefore, we save the software overhead caused by interrupt han-
dling.

There is a considerable amount of work evaluating the perfor-
mance of UPC programs[17, 24, 3, 13]. However, in all these stud-
ies, scalability has been studied up to a few hundred processors. As
far as we know, this is the first study evaluating the scalability of
UPC to hundreds of thousandse of processors.

6. Conclusions
In this paper we have shown that shared memory programming for
large scale distributed memory machines is not a myth. Scaling
non-trivial shared-memory programs to hundreds of thousands of
threads is possible with the right support from the compiler and
from the run-time system. We have described our XL UPC com-
piler infrastructure and the UPC Run-Time System; we have pre-
sented the essential compiler optimizations and the runtime fea-
tures that contributed to high performance. We have illustrated our
work with three benchmarks, two of which we scaled to more than
a hundred thousand processors on the BlueGene/L machine.

In the course of this evaluation, we encountered several chal-
lenging problems, which we will continue to address. One of these
challenges was the lack of benchmarks and algorithms written in
UPC that can scale to the size of a BlueGene/L computer. Existing
efforts, such as the DARPA HPCS program, to provide scalable al-
gorithms and applications for Petaflops computing are the right ap-
proach. Using PGAS languages to develop these applications will
enable programmers to be more productive, while not sacrificing
performance. We have shown this is possible.

Trademarks
IBM and BlueGene/L are registered trademarks of International
Business Machines Corporation in the United States, other coun-
tries, or both. Other company, product, or service names may be
trademarks or service marks of others.

Acknowledgments
This work was supported in part by DARPA Contract NBCH30390004.
We are grateful to a number of people who offered support and ad-
vice. In particular, we would like to thank Roch Archambault, An-
thony Bolmarcich, Jose Castanos, Sid Chatterjee, John Gunnels,
Manish Gupta, Roland Koo, Raymond Mak, Philip Luk, Larry
Lindsay, Fred Mintzer and Tom Spelce (LLNL) for helping at dif-
ferent stages of this project and with preparing and running our
programs on BlueGene/L.

References
[1] G. Almasi et al. Design and implementation of message-passing

service for the BlueGene/L supercomputer.IBM Journal of Research
and Development, 49(2/3):393–406, 2005.

[2] G. Almsi, L. D. Rose, B. B. Fraguela, J. Moreira, and D. A. Padua.
Programming for locality and parallelism with hierarchically tiled
arrays. In16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), volume 2958 ofLecture Notes in
Computer Science, pages 162–176, College Station, TX, October
2003. Springer.

[3] C. Bell, W.-Y. Chen, D. Bonachea, and K. Yelick. Evaluating
support for global address space languages on the cray x1. InICS
’04: Proceedings of the 18th annual international conference on
Supercomputing, pages 184–195, New York, NY, USA, 2004. ACM
Press.

[4] D. Bonachea. Gasnet specification, v1.1. Technical Report CSD-02-
1207, U.C. Berkeley, November 2002.

[5] D. R. Butenhof.Programming with POSIX threads. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[6] F. Cantonnet, T. El-Ghazawi, P. Lorenz, and J. Gaber. Fast address
translation techniques for distributed shared memory compilers. In
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium. IEEE Computer Society Press, 2005.

[7] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren.
Introduction to upc and language specification. Technical Report
CCS-TR-99-157, IDA Center for Computing Sciences, 1999.

[8] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks,
and K. Warren. Introduction to upc and language specification.
Technical Report CCS-TR-99-157, George Washington University,
1999. ftp://ftp.seas.gwu.edu/pub/upc/downloads/upctr.pdf.

[9] S. Chakrabarti, M. Gupta, and J.-D. Choi. Global communication
analysis and optimization. InPLDI ’96: Proceedings of the ACM
SIGPLAN 1996 conference on Programming language design and
implementation, pages 68–78, New York, NY, USA, 1996. ACM
Press.

[10] W. Chen. Building a source-to-source upc-to-c translator. InMasters
Report, 2005.

[11] W. Chen, A. Krishnamurthy, and K. Yelick. Polynomial-time
algorithms for enforcing sequential consistency in spmd programs
with arrays. In16th International Workshop on Languages and
Compilers for Para llel Computing (LCPC), 2003.

[12] W.-Y. Chen, C. Iancu, and K. Yelick. Communication optimizations
for fine-grained upc applications. InPACT ’05: Proceedings of
the 14th International Conference on Parallel Architectures and
Compilation Techniques (PACT’05), pages 267–278, Washington,
DC, USA, 2005. IEEE Computer Society.

[13] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-
Ghazawi, A. Mohanti, and Y. Yao. An evaluation of global address

space languages: co-array fortran and unified parallel c. InPPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 36–47, New York, NY, USA,
2005. ACM Press.

[14] Cray UPC home page. http://docs.cray.com/books/S-2179-50/html-S-
2179-50/z1035483822pvl.html.

[15] D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, T. von Eicken, and K. A. Yelick. Parallel pro-
gramming in split-c. InSupercomputing, pages 262–273, 1993.

[16] J. Duell. Memory management in the upc runtime (version 1.1).
http://upc.lbl.gov/docs/system/runtimenotes/memorymgmt.html.

[17] T. El-Ghazawi and F. Cantonnet. Upc performance and potential: a
npb experimental study. InSupercomputing ’02: Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–26, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[18] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper.UPC Language
Specifications, v1.1.1 edition, October 2003.

[19] A. Gara et al. Overview of the Bluegene/L system architecture.IBM
Journal of Research and Development, 49(2/3):195, 2005.

[20] GCC UPC home page. http://www.intrepid.com/upc/.

[21] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.-Y.
Wang, W.-M. Ching, and T. Ngo. An hpf compiler for the ibm sp2. In
Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference
on Supercomputing (CDROM), page 71, New York, NY, USA, 1995.
ACM Press.

[22] Hpc challenge award competition.http://www.hpcchallenge.org.

[23] HP/Compaq UPC. http://h30097.www3.hp.com/upc/index.htm.

[24] P. Husbands, C. Iancu, and K. Yelick. A performance analysis of the
berkeley upc compiler. InICS ’03: Proceedings of the 17th annual
international conference on Supercomputing, pages 63–73, New York,
NY, USA, 2003. ACM Press.

[25] C. Iancu, P. Husbands, and P. Hargrove. Hunting the overlap. InPACT
’05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques (PACT’05), pages 279–
290, Washington, DC, USA, 2005. IEEE Computer Society.

[26] IBM. The PowerPC Architecture: A specification for a new family of
RISC processors. Morgan Kaufmann, second edition, 1994.

[27] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs.IEEE Transactions on Computers,
C-28(9):690–691, 1979.

[28] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays:
A nonuniform memory access programming model for high-
performance computers.The Journal of Supercomputing, 10(2):169–
189, ???? 1996.

[29] R. Numrich and J. Reid. Co-array Fortran for parallel programming,
1998.

[30] J. Savant and S. Seidel. Mupc: A run time system for unified parallel
c. Technical Report CS-TR-02-03, Department of Computer Science,
Michigan Technological University, 2002.

[31] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R. K.
Govindaraju, K. Gildea, P. DiNicola, and C. Bender. Performance
and experience with lapi - a new high-performance communication
library for the ibm rs/6000 sp. InProceedings of IPPS ’98.

[32] E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, I. Eugene W. Hodges,
and P. Banerjee. Advanced compilation techniques in the paradigm
compiler for distributed-memory multicomputers. InICS ’95:
Proceedings of the 9th international conference on Supercomputing,
pages 424–433, New York, NY, USA, 1995. ACM Press.

[33] Top500 supercomputer sites. www.top500.org.

[34] K. Yelick. Partitioned Global Address Space Languages: Titanium
and UPCexperience. Presentation at IBM TJ Watson Research Center,
Nov. 2005.

[35] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-

namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance Java dialect. In ACM, editor,ACM
1998 Workshop on Java for High-Performance Network Computing,
New York, NY 10036, USA, 1998. ACM Press.

[36] Y. Zhu and L. J. Hendren. Communication optimizations for parallel
c programs. InPLDI ’98: Proceedings of the ACM SIGPLAN 1998
conference on Programming language design and implementation,
pages 199–211, New York, NY, USA, 1998. ACM Press.

