
RC23856 (W0601-136) January 27, 2006
Computer Science

IBM Research Report

On Dependency Changes in Collaborative Software
Development

Cleidson de Souza1,2, Gloria Mark2, David Redmiles2, Li-Te Cheng3,
John Patterson3, David Millen3

1Departamento de Informática
Universidade Federal do Pará

Belém - PA - Brasil

2School of Information and Computer Science
University of California, Irvine

Irvine, CA, USA

3IBM Research Division
One Rogers Street

Cambridge, MA 02142, USA

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On Dependency Changes in Collaborative Software Development

Cleidson de Souza1,2 Gloria Mark2 David Redmiles2
Li-Te Cheng3 John Patterson3 David Millen3

1Departamento de Informática
Universidade Federal do Pará

Belém – PA – Brasil
cbrs@ufpa.br

2School of Information and
Computer Science

University of California, Irvine
Irvine – CA - USA

{gmark,redmiles}@ics.uci.edu

3Collaborative User Experience
Group

IBM Watson Research Center
Cambridge – MA - USA

{lite_cheng,john_patterson,david_r_
millen}@us.ibm.com

Abstract

In this paper we investigate the phenomena of depend-
ency changes - changes to software systems caused by
other changes. Dependency changes are one measure of
the level of interdependency in a software module, there-
fore a good approximation to the study of dependency
management in software development. Survey responses
from 148 software developers indicate that the frequency
of occurrence of dependency changes is negatively cor-
related with project duration, configuration management
tool usage, and software developers’ experience with the
programming language and with the role they play. The
data also shows that those who communicate more often
are less likely to consider dependency changes to differ-
ent files as a problematic situation. Nevertheless, this
does not hold for changes to the same file, what suggests
that this situation is more difficult to coordinate. This
fact indicates the need for software development tools to
address this aspect. Additional implications for software
development tools are discussed.

Keywords: Dependency changes, software changes, em-
pirical studies, software maintenance.

1. Introduction
Any software system undergoes change at all stages of

its life cycle. That is, changes are a natural part of any
software. There are several reasons for making these
changes, including, new and evolving requirements, bug
fixes, changes in the environment, refactoring, etc. How-
ever, Whitgift points out that “(…) change is hard to
manage because items depend upon each other. An ap-
parently minor change to one element may propagate to
items which depend upon it, directly or indirectly, so that
consequential changes are needed throughout the sys-
tem” [22]. For example, changes to requirements often
lead to changes in the source-code to be written, changes
in the source-code lead to changes in the test cases to be

performed, and so forth.
Software engineering has already identified the need

to manage and use software changes. Indeed, one can
find several approaches dealing with and using software
changes, such as visualization [5], prediction of risk [13],
extra-time needed in distributed settings [8, 9], and so
on. However, to the best of our knowledge, there is no
empirical work studying the propagation of changes in a
software development project. By propagation we mean
how often changes cause additional changes in the soft-
ware. That is, we are interested in studying changes in
the software (hereafter called dependency changes)
caused by other different changes. As Whitgift [22]
points out, the reason for those dependency changes is
the interdependencies that exist among the software
components.

Despite the several design techniques (such as infor-
mation hiding [16]), informal approaches [6] [4], and
software development tools (like configuration manage-
ment systems) proposed to minimize problems with de-
pendencies, this is still an open problem in software en-
gineering. To fill this gap, we conducted a thirty-four
item survey in a large software development company
during the summer of 2003. Professional software engi-
neers were asked questions about their teams, projects,
and individual characteristics, as well as demographics.
We wanted to find information about factors that influ-
ence the occurrence of dependency changes in the every-
day work of software engineers. More importantly, we
wanted to understand the consequences of dependency
changes (such as the amount of extra-time and effort
necessary do handle them), and how problematic they
perceived these changes. Empirical evidence about this
phenomena is important since recent research prototypes
(e.g., Night Watch [15], and Palantír [20]) are based on
the assumption that situations involving dependency
changes are not infrequent and therefore do not need
computational support. With this study, we plan to col-

lect empirical data about the phenomena of dependency
changes, and therefore present empirical evidence either
supporting or opposing this assumption.

Our results suggest that the following factors correlate
negatively with the frequency of dependency changes:
project duration, configuration management usage, soft-
ware engineer’s experience in his current role, and soft-
ware engineer’s experience in the programming lan-
guage used. On the other hand, we found out that the
frequency of communication among software developers
correlate negatively with the level of problem they see in
these changes. That is, software developers who commu-
nicate more often with their colleagues are more likely to
perceive dependency changes as non-problematic.

The rest of the paper is organized as follows. The next
section defines concepts that will be used throughout the
rest of the paper. Then, section 3 presents the research
questions that we tried to answer in this paper. The fol-
lowing section discusses the methods that we used in this
paper. After that, Section 5 describes the study results.
Section 6 presents our discussion about the data that we
collected. Finally, conclusions and ideas for future work
are presented.

2. Background
The purpose of our web-based survey is to investigate

possible factors that influence the occurrence of depend-
ency changes in the software development process as well
as the consequences of these changes. This section de-
scribes in details the concept of dependency changes and
the hypotheses that we developed, with their rationale, to
study the dependency changes phenomena.

2.1. Dependency Changes: Naming Convention

As explained before, because of the several interde-
pendencies in any software system, changes in one part
of the source-code may propagate to other parts of the
source-code that depend upon it, so that additional
changes in the source code are necessary [22]. The first
type of changes, hereafter called “original changes”, de-
scribe changes performed by a software engineer neces-
sary for a variety of purposes, such as bug-fixing, en-
hancements, etc. Meanwhile, the changes required be-
cause of these original changes are called “dependency
changes” or “impact changes”. It is important to mention
that we are exclusively interested in program dependen-
cies [19], i.e., in dependencies among parts of the source-
code.

Note that both the original and the dependency
changes occur in files containing the source-code. If both
changes occur in the same file, this means that original
changes in one file required that dependency changes

were performed in the same file. This situation from now
on will be called same file situation (condensed SF). Dif-
ferently, if original changes occur in one file and the de-
pendency changes are necessary in one more different
files, then the situation is called different file situation
and abbreviated DF.

2.2. Hypotheses

One of the first factors that we wanted to find out
about its influence on the occurrence of dependency
changes was project duration, i.e., how long the project
has been going on. Duration is important because it is
long-recognized that the architecture of the software
erodes as times passes [18], and when this happens, it is
more difficult to enforce the architectural constraints of
the software. This is problematic because often architec-
tural styles lead to well-organized and manageable inter-
dependencies. Therefore, when software erodes, depend-
ency changes are more likely to occur. This suggests that:

H1 - The duration of the project does influence the

occurrence of conflicting changes such that software
engineers working in older projects will encounter more
dependency changes.

Whenever one talks about changes in software devel-

opment, it is impossible not to mention configuration
management systems (CM). Indeed, CM is a discipline
about “controlling change: assessing the impact of a
change before it is made, identifying and managing the
multiple versions of items which a change generates,
rebuilding derived elements after source elements are
changed, and keeping track of all changes that are made
to a system” [22]. Furthermore, CM tools are one of the
most mature and adopted technologies for software de-
velopment being used for several years in software devel-
opment projects. However, the full potential of CM tools
is not immediately leveraged because of the several ad-
vanced features such as triggers, “winking in” techniques
to reduce compilation time, labeling and branching
strategies. Learning these features is a long and time-
consuming process requiring dedicated software engi-
neers. In other words, despite the fact that CM tools are a
successful example of software development technology,
some time is required to leverage their full potential.
Therefore, our next hypothesis is:

H2 - Experience using the CM tool does influence the

occurrence of dependency changes, so that, projects that
adopt CM tools for a longer time are expected to face
less dependency changes.

Distribution of the development team has been proved

to be a factor that delays the software development proc-
ess because of the fewer opportunities for informal com-
munication that distributed software developers have
compared to collocated ones [10]. Previous research [12]
has also shown that these spontaneous conversations are
essential for the coordination of software development
teams as well as other forms of group work. This sug-
gests that:

H3 - The frequency of informal communication be-

tween the original changes’ authors and the dependency
changes’ authors influence how dependency changes are
perceived. Dependency changes are perceived as less
problematic when there is more frequent communication
among the software engineers.

Furthermore, other studies have shown that informa-

tion in distributed groups is not shared equally among
remote team members and that remote sites are often
excluded from important decisions [7]. Taking this re-
sult, we expect distributed software developers to per-
ceive dependency changes as more problematic when
compared to collocated developers. In other words:

H4 - The distribution of the software development

team does influence how dependency changes are per-
ceived. More distributed teams perceive dependency
changes as more problematic than collocated teams.

Furthermore, Grinter and colleagues [7] suggest that

software development organizations might choose differ-
ent models to divide work across distributed sites to
minimize coordination needs. The same idea is suggested
by Olson and Teasley [14], who found out that over time,
the nature of the work being performed by the members
of the team changed so that, work at each site became
less dependent from work performed at other locations.
This means that:

H5 - The distribution of the software development

team does influence the occurrence of dependency
changes. Distributed teams are more likely to face de-
pendency changes than collocated teams.

As important as the distribution of the software devel-

opers involved in the project is the number of developers.
In this case, we expect to find more dependency changes
in larger teams, since the coordination of a larger number
of software developers is more difficult. That said, the
next hypothesis is:

H6 - The number of developers in the project does in-

crease the frequency of dependency changes, so that

larger teams are more likely to face them.

In addition to the number of software developers in-

volved, we argue that a software developer’s experience
might influence the occurrence of dependency changes.
Developers’ experience with software development
should increase their familiarity with dependency
changes and with the problems they bring. Consequently,
these software developers are more likely to adopt formal
and informal work practices to avoid them. This means
that, the next hypothesis is:

H7 - The experience that one software engineer has

playing a particular role does influence the occurrence
of dependency changes. More experienced software en-
gineers will face less dependency changes.

As mentioned before, software engineering research

has been trying to minimize dependency problems. One
of the most important principles learned in the 70’s to
facilitate that is called information hiding [16]. Indeed,
several programming languages implement technical
constructs to support information hiding. For example,
private methods in classes are one way of hiding infor-
mation from other classes, so that they can not use them.
So, one might argue that software engineers with more
experience in a particular programming language are
more likely to be aware of and use particular constructs
that support information hiding, therefore they are less
likely to face dependency changes. In other words:

H8 - The experience that one software engineer has

using the programming language used in the project
does influence the occurrence of dependency changes.
More experienced software engineers will face less de-
pendency changes.

The next section describes the methods and the setting

where information was collected to test these hypotheses.
The results of testing the above set of hypothesis are de-
scribed in the section 4.

3. Methods
3.1. Target Population and Sampling Methods

Our results draw on survey data collected in a large
software development company named HAL (a pseudo-
nym). HAL is one of the largest software development
companies with products ranging from operating sys-
tems, to software development tools, including e-business
and tailored applications. In August 2003, 148 employees
located all around the world were invited to complete a
web-based questionnaire. Respondents were asked at the

beginning of the survey to answer the questionnaire only
if they contribute with source-code to a project by either
using code-generation tools or by manually writing
source code. Therefore, our target population was defined
by excluding software engineers who do not fit this crite-
rion.

Invitations to fill the survey were sent through broad-
cast messages using a community-IM toolset described in
[11] that enable instant access to communities of interest
on a number of levels of engagement. This toolset, which
has a large user base in the HAL development organiza-
tion, allows the creation of open and closed communities
about different subjects ranging from software develop-
ment to British soccer. A user might choose to be a mem-
ber of different communities at the same time, and, in-
deed, this is a very typical situation. The communities
were the surveys were broadcasted focus on software de-
velopment. Examples include communities about pro-
gramming languages, users of specific technologies for
software development, software development methods
and specific software development projects. Invitations
were sent for a total of 41 different communities either
once or three times in an interval of fourteen days.

Invitation messages were broadcasted in a community
appearing on users’ screens for about 10 seconds. Due to
limitations of the toolset we were using there is no way of
knowing how many users received each invitation. As a
consequence, the answer rate of the survey is unknown.
Respondents were free to fill the survey, therefore imply-
ing a self-selection bias. Based on these factors, we make
no claim about the representativeness of our results.

3.2. Questionnaire Design

In order to understand the phenomena of dependency
changes, we created a web-based survey that consisted of
a total of 34 items covering demographics (gender, age,
education, employment status, etc), project information
(such as duration, phase in the software development
process, and configuration management tool usage), team
information (e.g., number of members and their loca-
tions); and software engineer’s individual characteristics
regarding their role in the project, how long they have
been playing this role, and their overall experience in
software development. These questions aimed to identify
factors that might influence the occurrence of depend-
ency changes.

The second part of our research questions concerns
the consequences of the dependency changes in the eve-
ryday work of software engineers. To achieve this goal,
we included questions in the survey that asked how often
they experience this situation, how much time and effort
they spend performing these dependency changes, and
finally, how problematic they think this situation is.

Those questions were only answered by respondents who
previously had answered that they had faced dependency
changes in the project.

The questionnaire was designed in such a way that the
questions about the frequency and the consequences of
dependency changes were asked twice: in the first time,
we asked about dependency changes in the same file
situation, while in the second time, the same set of ques-
tions was asked regarding dependency changes in a dif-
ferent files situation. The rationale for adopting this ap-
proach is described in the following section.

3.3. Questionnaire Rationale

We divided our questionnaire in two conditions: the
same file and different files conditions. Furthermore,
because we wanted to collect independent information
about each situation. The reason for that is our long-term
goal of improving Jazz, a collaborative application de-
velopment environment being constructed at IBM Re-
search [1, 2]. Among other features, Jazz provides re-
source-centered awareness, i.e. the ability to indicate
what other developers are doing with their local copies of
the files (e.g. indicating that a file is currently in focus
and being edited at this very moment, or that a file has
been locally saved but not checked back into the code
repository) [1]. The idea is to provide the developer with
the same kind of peripheral awareness of the activities of
others on the team as would be available if the team was
all working in close proximity.

During the design of Jazz, we conducted 14 interviews
with professional software developers at HAL using sto-
ryboards with mock screenshots (which we had used to
plan our design earlier) to assess potential problems. As a
result, interviewees commented that one possible use of
resource-centered awareness was to support parallel de-
velopment (i.e., more than one developer changing the
same file) and to monitor files that one developer is de-
pendent on. Therefore, we decided to conduct a survey to
collect empirical data about the dependency changes. By
dividing the questionnaire between same file and differ-
ent files conditions, we hoped to be able to identify the
most common and problematic situation, and therefore,
the one which would drive our efforts in future versions
of Jazz. It is important to mention that the phenomena of
parallel development has recently received attention by
the research community (see [15, 20]), but again empiri-
cal data about this phenomena is limited to case studies
therefore not adequate to be generalized [17].

4. Empirical Study Results
In this section, we describe the overall results of this

survey. Overall, one hundred forty-eight software engi-

neers completed the questionnaire. Of those, 73 software
engineers have experienced dependency changes because
of changes in the same file, while 80 have experience
dependency changes in this project caused by changes in
different files. Note that, respondents were not forced to
answer the questions; therefore, some of the descriptive
statistics presented below might not contain the total an-
swers for each category.

We have organized our results in three major sections.
Initially, we describe overall descriptive statistics of the
data. After that, we look at factors that influence the oc-
currence of dependency changes, such as project dura-
tion, team size, team distribution, CM usage, etc. Finally,
the last section describes information that we collected
about the respondents who have already faced depend-
ency changes in the project.

4.1. Descriptive Statistics

Of the respondents, 53 were software architects, 73
were programmers, and 7 were members of the quality
assurance team. These developers’ experience within the
project would vary as follow: 49 developers have been
working in this project for more than 2 years, 27 for less
than two years but over a year, 31 engineers reported that
have been working in this project between 1 year and 6
months, while 21 reported to be working anytime be-
tween 6 and months, and finally, 19 software engineers
have been working for less than 3 months in the project.
Regarding the duration of the project itself, 77 developers
reported that the project has been going on for more than
2 years, 25 for less than two years but over a year, 20
reported that the project duration is between 1 year and 6
months, while 19 reported the duration as being anytime
between 6 and months, and finally, 7 projects have been
going for less than 3 months.

Furthermore, most projects were in the implementa-
tion (74) or maintenance (34) phases. Other phases in-
clude planning (2), requirements (4) and design (9). A
total of 23 software engineers reported that their projects
were in a different phase (“Other”). Size of the projects
varied a lot across respondents: there were 9 projects
with more than 200 software engineers; 5 projects with
less than 200 and 100 or more software engineers; 8 pro-
jects with less than 100 and 50 or more software engi-
neers; 16 projects with less than 50 and 25 or more soft-
ware engineers; 34 projects with less than 25 and 10 or
more software engineers; 22 projects with less than 10
and 5 or more software engineers; and finally, 54 projects
with less than 5 software engineers. Regarding the distri-
bution, 57 projects were classified as highly distributed
(members of the team are spread across 3 or more differ-
ent office locations), 45 projects as partially collo-
cated/distributed (members of the team are spread across

2 different office locations), and a total of 40 projects as
completely collocated (members of the team are located
in the same office location).

Finally, it is important to collect information about the
CM usage. In this case, we found out that 36 projects do
not use CM tools while 105 projects use it. Of those 105,
63 have been using it for more than 2 years, 13 for more
than 1 year but less than 2 years, 14 for more than 6
months but less than 1 year, 10 for more than 3 but less
than 6 months, and, 5 projects use CM tools for less than
3 months.

4.2. Consequences of Dependency Changes

In this section, we describe the descriptive statistics
about the second part of the survey, which collected in-
formation about the consequences of dependency
changes.

Table 1 summarizes our results. One might notice that
according to the respondents, dependency changes do not
seem to happen very often. Similarly, time and effort
spent dealing with the dependency changes did not seem
to be very large. Effort was defined as the amount of
physical and mental energy and the level of concentra-
tion that goes into doing the work for the dependency
change.

 Same File Different

Files
Rarely 91.8 % 83.8 %
Often 8.2 % 16.2 %

Frequency

N 73 80
Reasonable 76.7% 73.1 %
Huge 23.3 % 26.9 %

Time

N 73 78
Reasonable 81.1 % 81.3 %
Huge 18.9 % 18.8 %

Effort

N 74 80
Non-
Problematic

74.3 % 81.3 %

Problematic 25.7 % 18.8 %

Problem

N 74 80
Collocated 69 % 67.1 %
Distributed 31 % 32.9 %

Location

N 71 76
Rarely 6.8 % 7.4 %
Often 93.2 % 92.6 %

Communication
Frequency

N 74 76

Table 1: Descriptive Statistics

A total of 73 (50.3% out of the 148) software engi-
neers have experienced dependency changes because of
the changes in the same file, while 80 developers (55.4%
out of the 148) have experienced dependency changes
because of changes in different files. Combining the data

from these two questions, we found out that about
66.21% of all 148 respondents have already experienced
a situation involving dependency changes in their current
project. About 22.29% of the respondents have not faced
this situation, and finally, 11.48% was not sure about it.
Furthermore, we identified that an average of 3.30 (stan-
dard deviation of 5.54) other software engineers might be
modify the same file over the duration of the project.
When this comes to different files, the average number of
software engineers involved is 4.92 (standard deviation
of 10.48).

In addition to the information about how software en-
gineers deal with dependency changes, we collected in-
formation about the location of the original changes’
authors and the frequency of informal communication
that these software engineers have with the dependency
changes’ authors. This information was especially useful
to test hypothesis H3, H4 and H5.

4.3. Dependency Changes and Factors

In order to identify possible factors that influence the
occurrence of dependency changes, we collected three
different types of information, loosely classified as fol-
lows:
• Project information: duration and configuration

management tool usage.
• Team information, including number of software

engineers involved, frequency of communication
among them, and their locations (distribution); and;

• Individual information, regarding the experience
that the software engineer has playing a role, and his
/ her programming language experience.

The results of our test will be presented below according
to these categories.

4.3.1. Project Information

H1: Project Duration
Regarding the project duration, we found statistically

significant evidence that project duration was positively
correlated with frequency of dependency changes (same
file, r=.21, p<0.05, N=73; different files, r=.22, p<0.05,
N=80). This means that older projects usually face less
dependency changes than younger projects in both same
file and different files conditions. In other words, we
found evidence supporting H1.

H2: Usage of CM tool
In addition to project duration, our survey included a

question about the project usage of configuration man-
agement tools. The idea is that experience using configu-
ration management tools would correlate with a reduced
occurrence of dependency changes (H2). We tested that

and indeed, we found statistically significant evidence
that CM usage experience was positively correlated with
frequency of dependency changes (same file, r=.44,
p<0.01, N=55; different files, r=.394, p<0.01, N=63).
This means that projects that use CM for longer time are
more likely to face less dependency changes.

4.3.2. Team Information

We collected one type of information about the teams
working in the project, which is the total number of team
members. This information was collected for all respon-
dents. In addition to that, we collected more specific in-
formation from software engineers who had faced de-
pendency changes in either the same file or different files
situations. This information consists of the location of
and frequency of informal communication with the other
software engineers who caused these dependency
changes, i.e., the authors of the original changes in the
software.

H3: Frequency of communication and H4: Distribution

of software developers
As described in section 2, frequency of communica-

tion and distribution of team members might affect the
opportunities for interaction and the flow of information,
which makes coordination more difficult. Therefore H3
and H4 suggest that the dependency changes will be per-
ceived as less problematic for developers who communi-
cate often among themselves and are collocated, respec-
tively. After performing correlation tests with the appro-
priate variables, we found out that, for different files
only, there is a positive correlation between how a soft-
ware developer rates the situation and the frequency of
informal communication with the other software devel-
oper involved: (same file, r=.14, p<.11, N=74; different
files, r=.25, p<.01, N=79). We also found that there is a
positive correlation between the rating of the dependency
change situation and the location of the developer in-
volved. In this case, there is a trend in the results in the
different files situation (r=.16, p<.07, N=78), but no em-
pirical evidence for the same file situation (r=.05, p<.30,
N=74).

H5: Distribution of software developers
Regarding the distribution of the software developers

and the frequency of dependency changes (hypothesis
H5), our results (same file, r=.00, p<.49, N=73; different
files, r=.01, p<.44, N=78) suggest that there is no corre-
lation between these variables, i.e., distributed software
engineers do not face more dependency changes than
collocated ones. Thus, our data does not support H5.

H6: The number of developers in the project

H6 was tested by calculating the Spearman’s rho corre-
lation coefficient between the total number of software
engineers in the project and the frequency of dependency
changes, providing the following results: (same file,
r=.00, p<.49, N=73; different files, r=-.14, p<.10, N=80).
Furthermore, we also calculated the same coefficient be-
tween the number of software engineers likely to be
modifying the same file or different files, therefore caus-
ing dependency changes. The results are the following:
(same file, r=.00, p<.47, N=73; different files, r=.13,
p<.12, N=80). Surprisingly, the results of both correla-
tion tests provide no evidence supporting H6.

4.3.3. Individual Information

H7: Role Experience
Finally, we collected individual information about

each respondent regarding its experience in the project
playing a particular role. This lead to the hypothesis H7

that argues that more experienced software engineers will
face less dependency changes. In order to test the signifi-
cance of the correlation between software developers’
experience and the frequency of dependency changes, we
performed a Spearman’s rho correlation test, which pro-
vided the following results: (same file, r=.20, p<0.05,
N=72; different files, r=.19, p<0.05, N=80). In both
cases, the correlation coefficient is positive and there is
some evidence (p<0.05) supporting H7, which means that
more experienced software engineers face dependency
changes less often.

H8: Programming Language Experience
We also collected information about software develop-

ers’ experience with the programming language used in
the project in order to test H8. We tested the significance
of the correlation between this experience and the fre-
quency of dependency changes and found out that there
is a trend (p<.07) suggesting that more experienced soft-
ware engineers face dependency changes less often. Our
results are the following: (same file, r=.17, p<.07, N=72;
different files, r=.20, p<.05, N=80). Thus, our data sup-
ports our last hypothesis.

5. Model
In this section, we summarize in a qualitative model

the factors that we identified which correlate with the
frequency of dependency changes, namely: project dura-
tion, experience using the CM tool, software developer’s
experience in the role, and software developers’ experi-
ence with the programming language. This model also
includes the factor that correlate with the how problem-
atic dependency changes, which is the frequency of
communication among software developers. In this case,

these factors correlate only in the different files condi-
tion.

5.1. Post-hoc Analysis

As a post-hoc analysis, we tested for multicollinearity
among the factors described above. Results are presented
below:

Correlation tested Significance

Project duration and Ex-
perience using the CM tool

R=.64,p<.01, N = 105

Project duration and Soft-
ware developers’ experience

playing his current role

R=.59,p<.01, N = 147

Project duration and Soft-
ware developers’ experience
with the programming lan-

guage

R=.05,p<.59, N = 141

Frequency of Communica-
tion and Location (different

file)

R=.37,p<.01, N = 79

Table 2: Multicollinearity Tests

Despite the strong evidence of multicollinearity
(p<.01), it is important to note that CM usage is not nec-
essarily linked to project duration, since: (i) project dura-
tion might include other phases, that typically do not use
CM tools (e.g., planning, requirements, and design); and
(ii) even in projects in the implementation and design
phase, CM tools might not be adopted during the whole
project. Note that an analogous rationale can be applied
to project duration and the software developers’ experi-
ence in a role, i.e., one software developer might start
working in a role in a project and change to another one
during the course of the project.

Similarly, there is strong evidence of multicollinearity
(p<.01) between frequency of communication and loca-
tion of software developers in the different files condi-
tion. In this case, it is definitely reasonable to think that
collocated co-workers have a higher frequency of work
communication. Therefore, we will eliminate the factor
distribution from the model. The resulting model is pre-
sented in Figure 1 below.

Figure 1: Dependency Changes Model

5.2. Frequency of Dependency Changes
The model above describes the relationships among

the several factors that are correlated to the frequency of
dependency changes and the problematic rating of these
changes. The strength of the correlations is represented
by their respective p-values in the model. Regarding the
frequency, all factors are negatively correlated with it,
which means that increments in the factor correlate with
decrements with the frequency. So, for example, the
longer the project duration, the lower the frequency of
dependency changes. In this particular case, this result
provides evidence against H1. A possible explanation is
that as time progresses, software development teams or-
ganize their work and the architecture of the software to
minimize these situations.

Similarly, the usage of CM tools and its negative cor-
relation with the frequency of dependency changes sug-
gest that, given time, software development teams will
use the CM tool in such a way that it will help them to
organize their work. Indeed, CM tools are long-known
for providing a good isolation, allowing developers to
work in parallel without being affected by others’
changes [3].

Our model also suggests that one important factor that
minimizes the frequency of dependencies changes is the
software developer’s experience, both with the program-
ming language used and within the role that he plays in
the project. We speculate that, given time, software engi-
neers will learn and adopt work practices to avoid prob-
lems with dependency changes, similarly to other infor-
mal work practices to manage interdependencies [4]. An
interesting possibility for research is to identify, docu-
ment, and encourage these practices.

5.3. Rating Problems with Dependency Changes

Regarding how the situations with dependency chang-
es are rated according to their problematic, our model
suggests that the frequency of communication among
software developers is one important factor because the

more frequencies developers communicate, more they
will share useful information that facilitates their coordi-
nation. We hypothesize that one type of information is
about dependencies changes, therefore it allows develop-
ers to prepare for those changes. Because software engi-
neers are expecting these changes, they see this situation
as less problematic.

Furthermore, while it is not surprising to find out that
the frequency of communication among co-wreks corre-
late with the rating of the level of problem; it is surpris-
ing to find out that this only happens in the situation that
involves different files. There is no significant correlation
among these variables in the same file situation. This
again suggests that dependency changes involving the
same file are more problematic than when they involve
different files. That is, it does not matter how frequent
the communication among the involved developers or
how far they are located, those situations are problematic
by themselves.

6. Discussion and Implications
Our data provide evidence that dependency changes

do not happen very often (maximum of once a month) in
any situation: same file or different files. Furthermore,
when these changes happen, they do not seem to be very
harmful since the time (maximum of a day of work) and
effort (a moderate amount of energy) spent to deal with
them was rated by most software engineers as reasonable.
Therefore, it is not surprising to find out that a most of
them rated this overall situation as non-problematic:
(SF=74.3%, DF=81.3%). On the other hand, it is inter-
esting to note that dependency changes in the same file
happen less often, require less time and effort than de-
pendency changes in different files, but they are still
rated as more problematic (SF = 25.7%, DF=18.8%). We
now speculate that dependency changes in the same file
are seen by software engineers as symptoms of larger
coordination problems in the software development team.
We hypothesize that coordination changes in different
files are somewhat expected by software developers, since
they are aware of the interdependencies among the sev-
eral components of the software system [4]. However,
coordination changes in the same file represent a situa-
tion where not all software changes necessary in a file
were performed, meaning that there was ineffectiveness
in performing the original changes in the file. Further-
more, these results also suggest that tools that facilitate
the coordination of several developers working in the
same file, such as Palantir [20] and Night Watch [15]
seem to be very promising to facilitate software develop-
ers’ work.

Finally, while there are several mechanisms that im-

Frequency of
Dependency

Changes

Project
Duration

CM Usage

Experience
with PL

Experience
in the Role

(p<0.05) negative association

(p<0.01) negative association

(p<0.05) negative association

(p<0.08) negative association

Dependency
Changes

Problematic
Frequency of

communication
(p<0.05) negative association
(different file only)

plement the principle of information hiding (to deal with
dependency management) in programming languages.
These constructs are often more useful in situations in-
volving different files, which means that dependency
change management is more challenging

Based on previous work ([7], [21]) it is not surprising
to find out that distribution does not affect the frequency
of dependency changes. This result suggests that the or-
ganization of distributed software development teams
seems to adopt efficient strategies to avoid the propaga-
tion of changes from one site to another, i.e., these strate-
gies seem to be able to insulate software developers at
each site so that they are not impacted by their co-
workers. The same ides seems to hold for project size,
i.e., software development projects seems to do a good
design that insulates changes minimizing the number of
people affected by changes. Even considering the number
of developers likely to be able to change files that cause
dependency changes, it is surprising to find out that there
is no correlation between frequency of changes and num-
ber of software developers involved in the project. One
possible explanation is that dependency changes are
more or less located in parts of the code

Some limitations of our study are that we only sam-
pled teams from one large software development multi-
national corporation. It is possible, but unlike, that dif-
ferent software teams in the corporation adopt similar
approaches and therefore their data might have skewed
our results. We would nevertheless expect our results of
the difference between same file and different files condi-
tions to generalize, since those are technical constructs
that can not be avoided in any software system. Further-
more, we can not make any major inferences about the
data that we collected because we administered the sur-
vey over the web. Therefore, this means that a selection
bias might have arisen. Similarly, the communities se-
lected for the broadcasting of survey invitations were not
randomly selected.

7. Conclusions and Future Work
This paper presented the concept of dependency

change as a technical construct that can be used to study
interdependencies in software development. This paper
also described the 34 questions of the web-based survey
used. Professional software engineers were asked ques-
tions about their teams, projects, and individual charac-
teristics, as well as demographics. We wanted to find
information about factors that influence the occurrence
of dependency changes in the everyday work of software
engineers. We also wanted to understand the conse-
quences of dependency changes (such as the amount of
extra-time and effort necessary do handle them), and how

problematic they perceived these changes. Our results
suggest that the following factors correlate negatively
with the frequency of dependency changes: project dura-
tion, configuration management usage, software engi-
neer’s experience in his current role, and software engi-
neer’s experience in the programming language used. On
the other hand, we found out that the frequency of com-
munication among software developers correlate nega-
tively with the level of problem they see in these changes.
That is, software developers who communicate more of-
ten with their colleagues are more likely to perceive these
dependency changes as non-problematic because the
software developer will already know about the depend-
ency changes and its implication before it formally be
notified about it.

8. References
[1] Cheng, L.-T., De Souza, C. R. B., et al., "Building Col-

laboration into IDEs. Edit -> Compile -> Run -> Debug -
>Collaborate?," in ACM Queue, vol. 1, 2003, pp. 40-50.

[2] Cheng, L.-T., Huppfer, S., et al., "Jazz: a collaborative
application development environment," ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, pp. 102-103, Anaheim, CA,
USA, 2003.

[3] Conradi, R. and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[4] de Souza, C. R. B., Redmiles, D., et al., "Management of
Interdependencies in Collaborative Software Develop-
ment: A Field Study (to appear)," International Sympo-
sium on Empirical Software Engineering (ISESE'2003),
Rome, Italy, 2003.

[5] Eick, S. G., Graves, T. L., et al., "Visualizing Software
Changes," Software Engineering, vol. 28, pp. 396-412,
2002.

[6] Grinter, R., "Supporting Articulation Work Using Con-
figuration Management Systems," Computer Supported
Cooperative Work, vol. 5, pp. 447-465, 1996.

[7] Grinter, R., Herbsleb, J., et al., "The Geography of Coor-
dination: Dealing with Distance in R&D Work," ACM
Conference on Supporting Group Work (GROUP '99),
Phoenix, AZ, 1999.

[8] Herbsleb, J. D., Mockus, A., et al., "Distance, Dependen-
cies, and Delay in a Global Collaboration," ACM Confer-
ence on Computer-Supported Cooperative Work, pp. 319-
328, Philadelphia, PA, 2000.

[9] Herbsleb, J. D., Mockus, A., et al., "An Empirical Study
of Global Software Development: Distance and Speed," In-
ternational Conference on Software Engineering, pp. 81-
90, Toronto, Canada, 2001.

[10] Herbsleb, J. D. and Moitra, D., "Global software devel-
opment," IEEE Software, vol. V18, pp. 16-20, 2001.

[11] Jania, F., "Broadcast Messaging: Messaging to the
Masses," in ACM Queue, vol. 1, 2003.

[12] Kraut, R., Egido, C., et al., "Patterns of Contact and

Communication in Scientific Research Collaborations," in
Intellectual Teamwork: Social and Technological Founda-
tions of Cooperative Work, J. Galegher, C. Egido, and R.
Kraut, Eds.: Lawrence Erlbaum, 1990, pp. 149-172.

[13] Mockus, A. and Weiss, D. M., "Predicting Risk of Soft-
ware Changes," Bell Labs Technical Journal, vol. 5, pp.
169-180, 2000.

[14] Olson, J. and Teasley, S., "Groupware in the Wild: Les-
sons Learned from a Year of Virtual Collocation," Com-
puter Supported Cooperative Work, pp. 419-427, Boston,
Massachusetts, USA, 1996.

[15] O'Reilly, C., Morrow, P., et al., "Improving Conflict De-
tection in Optimistic Concurrency Control Models," 11th
International Workshop on Software Configuration Man-
agement (SCM-11), Portland, Oregon, 2003.

[16] Parnas, D. L., "On the Criteria to be Used in Decomposing
Systems into Modules," Communications of the ACM, vol.
15, pp. 1053-1058, 1972.

[17] Perry, D. E., and, H. P. S., et al., "Parallel Changes in
Large Scale Software Development: An Observational
Case Study," International Conference on Software Engi-
neering, pp. 251-260, Kyoto, Japan, 1998.

[18] Perry, D. E. and Wolf, A. L., "Foundations for the Study of

Software Architecture," ACM SIGSOFT Software Engi-
neering Notes, vol. 17, pp. 40-52, 1992.

[19] Podgurski, A. and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[20] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Aware-
ness among Configuration Management Workspaces,"
Twenty-fifth International Conference on Software Engi-
neering, pp. 444-453, Portland, Oregon, 2003.

[21] Teasley, S., Covi, L., et al., "How Does Radical Colloca-
tion Help a Team Succeed?," Conference on Computer
Supported Cooperative Work, pp. 339-346, Philadelphia,
PA, USA, 2000.

[22] Whitgift, D., Methods and Tools for Software Configura-
tion Management. Chichester, UK: Wiley & Sons, 1991.

A. Appendix
Tables A and B below describe how the data presented

in Tables 1 and 2 was collapsed.

Frequency of Dependency Changes Time spent dealing with Dependency

Changes
Effort spent dealing with Dependency
Changes

Rarely A few times a year
Once a month
More than once a month

Reasonable
amount of

time

Less than one hour
About an hour
Several hours
Less than a day

Reasonable
Effort

A limited amount of energy
A moderate amount of
energy

Often Once per week
More than once per week
Once a day
More than once a day

Huge
amount of

time

About a day
Less than a week
About a week
Less than a month
About a month

Huge Effort Quite a bit of energy
A great amount of energy
An extraordinary amount of
energy

Table A: Description of the data collapsing

How problematic it is to deal with
dependency changes?

Location of Software Developers Frequency of Informal Communication

Non-
Problematic

Not problematic at all
Slightly problematic

Distributed Different country
Different city
Different building

Rarely Never
A few times a year
Once a month
More than once a month

Problematic Somewhat problematic
Considerably prob-
lematic

Collocated Same floor
Immediately next to me

Often Once per week
More than once per week
Once a day
More than once a day

Table B: Description of the data collapsing

