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Abstract 
We investigate a novel technology to improve the performance of a distributed application by configuring 
its components in an optimal way using the information about the operation environment discovered 
during the deployment of the application. To enable such capabilities we have developed a general 
architecture for deployment time optimization, called Blue Pencil. In this paper, we present how Blue 
Pencil can improve the performance of distributed applications by selecting the most appropriate binding 
between a client and a server using only static information such as the service interface definition, the 
location of the service, and information about the application server. Based on the performance study 
using real world Web services and internal benchmarks, we report that: (1) modern SOAP 
implementations are highly efficient and can perform even better than RMI under certain workloads and 
operation environment, and (2) the proposed binding selection algorithm is effective, and can improve the 
response time performance by 32% – 80 % on average even for highly optimized SOAP implementations.  
 
Keywords: Deployment time optimization, Web service performance, SOAP, RMI, J2EE 

1. Introduction 
In enterprise computing, distributed applications require interoperation among multiple components that 
may be based on different platforms. For seamless integration of heterogeneous modules, the distributed 
computing community has developed layers of middleware abstractions. They include standardized 
network socket interfaces, remote procedure call (RPC) and remote method invocation (RMI) models, 
common object request broker architecture (CORBA), and more recently service-oriented architecture 
(SOA) enabled by Web services. In particular, CORBA and Web services aim to provide communication 
among distributed objects regardless of their platform and language differences. Such middleware layers 
provide good abstractions to software developers so that they can focus on core algorithms and minimize 
the effort in communication and data exchange. However, naïve adoption of such technologies can 
adversely impact the performance of distributed applications.  
 
In particular, communicating over SOAP (Simple Object Access Protocol) has been reported to be slower 
than that over RMI by orders of magnitude [1][2][3][4]. However, programmers may still choose to write 
an application on top of SOAP abstraction even when lighter bindings are sufficient for several reasons. 
First, SOAP is general and widely applicable since it is platform and language independent. Moreover, 
since it uses HTTP as its transport protocol, it can travel through firewalls. In contrast, Java RMI based on 
JRMP (Java Remote Method Protocol) is language-specific since both client and service modules should 
speak Java. Although RMI over IIOP (Internet Inter-ORB Protocol) is a viable alternative to SOAP-based 
Web service to achieve language and platform independence, it is often considered as expensive as Web 
services. Finally, when the application is developed, the programmers usually do not know how the 
application will be used and where it will be deployed. Thus they may decide to be on the safe side and 
assume SOAP binding, which is more general.  
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In [5], we have proposed a generic architecture for deployment time optimization called Blue Pencil. In a 
departure from conventional techniques employed at the development time or the run time of an 
application, Blue Pencil tries to optimize the composition of a distributed application and the bindings 
between its constituents based on the configuration of a target environment where the application will be 
executed. This paper investigates the effectiveness of deployment time optimization in the context of 
J2EE distributed applications. 
 
In particular, the objective of this paper is to propose a novel framework to enable optimally deploying 
applications by selecting the best bindings. To this aim, we conduct detailed performance study of SOAP 
and RMI using various Web service applications. We then propose a binding selection algorithm based on 
the insights obtained from the performance analysis. We also present the structure of the Blue Pencil 
components relevant to binding selection and configuration discovery. More specifically, the main 
contributions of this paper are as follows: 
 

1. Performance analysis of SOAP and RMI in the latest J2EE implementations: We examine the 
performance of several Web services in both open source (JBoss Application Server) and 
commercial J2EE implementations (WebSphere® Application Server). 

2. Design of a novel binding selection algorithm for deployment time optimization: We present the 
design of our binding selection algorithm based on the performance analysis of SOAP and RMI 
and present how it is used in Blue Pencil. 

3. Performance evaluation of the proposed algorithm: We validate the efficacy of the proposed 
algorithm by quantifying the benefits using several public Web services and internal Web service 
benchmarks. 

 
While binding selection is only one of many aspects of deployment time optimization, we demonstrate 
that it can still provide significant performance benefits by itself. From our performance evaluation, we 
observe that our algorithm can improve the performance of a Web service application by 32% – 80% in 
response time even in a J2EE environment with a highly optimized SOAP processing layer.  
 
The remainder of the paper is organized as follows: Section 2 provides a background on deployment time 
optimization, and RMI and SOAP. Section 3 presents preliminary performance results to motivate the rest 
of the paper. Section 4 presents a simple model to estimate the relative performance of RMI and SOAP. 
Section 5 presents the modules for deployment-time binding selection in our Blue Pencil framework. 
Section 6 presents performance numbers from several real world Web services, benchmark, and a tiered 
Web service scenario to show the efficacy of the proposed scheme. Section 7 summarizes the related 
work in this area, and finally Section 8 concludes the paper with future research directions.  

2. Background 
 
In this section, we present a brief overview of the deployment time optimization approach. We then 
provide a summary of SOAP and RMI protocols highlighting the features that are relevant to our 
discussion.  
 
2.1 Overview of Deployment Time Optimization 
 
A distributed application comprises multiple components. For example, a single application may consist 
of several modules that span over a client machine, an application server, and a database system. When 
constructing a distributed application there can be several alternatives that provide a similar functionality. 
One example is remote object binding via either Web service, CORBA, or Java RMI, which is the 
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primary focus of this paper. Another example is different types of database drivers with different features 
and performance characteristics. For example, a type 2 JDBC driver may provide better performance than 
a type 1 JDBC driver, since they can exploit native interfaces; but a type 1 driver is more portable since it 
is all Java and is based on open technologies. 
 
The basic idea of deployment-time optimization is to improve the performance of an application by 
selecting the most efficient components and configuring them in an optimal manner, exploiting the 
information about a target operation environment that is available at deployment time. By components, 
we mean libraries, database drivers, network protocols, middleware components, and other modules that 
are needed for applications to run.  
 
While the concept of deployment time optimization is intuitive and simple, the potential benefit of this 
new approach can be great. In most application scenarios that we have examined, however, enabling 
deployment time optimization is not straightforward. First, it is fundamentally difficult to predict the 
impact of selecting one configuration over another without actually trying them. Second, the information 
about the target environment may not be readily available. Third, the granularity of the application may 
be too coarse so there are only limited ways to combine them, and thus it may be difficult to attain 
significant performance gain. To address these issues, we have developed the Blue Pencil architecture. 
We present the design of Blue Pencil and its modules that are related to the binding selection process in 
Section 5. 
 
2.2. Overview of RMI and SOAP 
 
Remote Method Invocation (RMI) is a Java API to enable invoking methods of remote objects. There are 
two flavors of RMI: Java RMI based on JRMP (Java Remote Method Protocol) and RMI-IIOP (Internet 
Inter-ORB Protocol) used in CORBA.1 RMI-IIOP allows Java application can talk to a remote object 
implemented in other languages such as C++.   
 

 
 

Figure 1. Process Diagram for Request Path of RMI-JRMP, RMI-IIOP, and SOAP 
 

                                                 
1 In general, a transport protocol in CORBA is called GIOP (General Inter-ORB Protocol). IIOP is a special instance 
of GIOP, where the underlying network protocol is TCP/IP. 
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Figure 1 (a) illustrates the processing on the request path of RMI-IIOP method invocation of Enterprise 
Java Bean (EJB) in the J2EE framework. To invoke a method of a remote EJB, the client calls the 
corresponding method of its RMI stub. The stub then passes the invocation information to an ORB (object 
request broker). The ORB translates the information into an IIOP message. When the server-side ORB 
receives the IIOP message it processes the message and invokes a corresponding Java method of an RMI 
tie, which is a server-side skeleton. The RMI tie, in turn, invokes a corresponding method of the EJB and 
returns results. The response traverses the same path back to the client. In case of RMI-JRMP (Figure 1 
(b)), the processing steps does not involve ORBs, and instead the messages are marshaled using Java 
serialization. 
 
SOAP (Simple Object Access Protocol) is an XML-based protocol to allow applications to make remote 
method call over HTTP. Using XML to encode messages, SOAP provides a true language and platform 
independence. SOAP is the main communication vehicle for Web services. Figure 1 (c) illustrates the 
processing on the request path of SOAP. Compared to RMI, we notice one difference – the server has a 
Web container, which contains a special servlet. The servlet handles HTTP messages between clients and 
service EJBs. When the servlet receives an HTTP request from the client, it passes the message to the 
SOAP skeleton, which parses the message and creates corresponding Java objects. Then it delivers the 
objects to the Web service servlet, which in turn invokes the method of the back-end EJB. The response 
returns on the same path back to the client. 
 
Although RMI and SOAP incur similar processing at high level, SOAP incurs more processing overhead 
since it needs to encode native objects to and from XML format. We study this issue more closely in the 
next section. 

3. Performance of RMI and SOAP 
 

Related works [1][2][3][4] have reported that RMI is up to a few orders of magnitude faster than SOAP in 
various applications. However, recent advances in SOAP/XML technologies have greatly improved 
SOAP’s performance rendering such presumptions to be not always valid. In this section, we revisit the 
performance issues of SOAP and RMI using two popular J2EE application servers: JBoss and WebSphere. 
  
3.1 Workload and configuration 
 
For the first set of experiments, we have used the latest JBoss Application Server (version 4.0.3) 
developed by an open source community. For workload, we have selected two Web services with 
different characteristics: (1) Google Web service, which is a simple Web service API to invoke the 
Google’s search function, and (2) WSBench, which is an IBM’s internal Web Services performance 
benchmark that models after complicated financial transactions (e.g. money transfer). For testing, we 
setup two Pentium 4 machines running Windows XP as a client and a server, connected via fast Ethernet. 
 
The Google Web service takes keywords and the number of search results to be returned, as input, and 
returns the search results including the URL and the snippets of the page. To measure the binding 
performance of Google Web service, we have created a local testbed consisting of a client and a server, 
and simulated their interactions. For this, we have collected search results for the most frequently used 
keywords at Google.com and populated the server with them. The actual Google service limits the 
number of search results by ten. However, in our experiment, we have varied this parameter from 10 to 
100 to see the impact of message volume changes. 
 
The structure of WSBench messages is more complex. More specifically, the request messages contain 
account information such as account number, amount of money to be transferred, currency information, 
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bank id, person’s name. They also contain security-related parameters such as customer id, password, and 
encryption type. The response messages contain information about the result of money transfer and the 
server side information such as status description, user’s name, and severity. They also contain 
information about the server, transaction date/time, and application information. To simulate different 
types of financial operations, WSBench provides parameters to change the size of request and response 
messages. We have varied the size of each message from 1KB to 100KB.  
 
3.2 Preliminary performance  
 

Response Time (msec) Throughput (reqs/sec) 
  Parameters 

SOAP RMI (IIOP) SOAP/RMI SOAP RMI (IIOP) RMI/SOAP 
10 1232.4 122.6(48.0) 10.0x(25.7x) 1.62 561.8(515.5) 346x(318x)
50 4946.8 486.3(241.9) 10.2x(20.4x) 0.40 216.9(213.7) 542x(534x)Google 

100 9322.7 895.2(454.1) 10.4x(20.5x) 0.21 146.0(116.6) 680x(555x)
10KB 5801.6 286.3 20.3x 0.34 137.0 397x
50KB 27735.4 2539.3 10.9x 0.07 38.4 549xWSBench 
100KB 62953.8 7697.7 8.2x 0.03 16.0 503x

 
Table 1. SOAP and RMI Performance with JBoss 

 
Table 1 summarizes the response time and the throughput performance of the two Web services with 
JBoss.  For Google, we report the numbers with SOAP, RMI-JRMP, and RMI-IIOP (in parenthesis). For 
WSBench, however, we could not obtain the results for RMI-IIOP since the server returns an unknown 
error message.2 Thus we only report the numbers for SOAP and RMI-JRMP in WSBench case. Also in 
JBoss, SOAP’s performance is extremely slow; thus we could only run two threads on the client, whereas 
for RMI we ran 50 threads to fully exercise the server. 
 
From the table, we find that RMI performs much better than SOAP regardless of underlying transport 
protocols. For Google search services, RMI-JRMP is up to 10 times faster in response time and up to 680 
times higher in throughput than SOAP. Similarly, RMI-IIOP is up to 20 times faster in response time and 
up to 555 times higher in throughput compared to SOAP. For WSBench, RMI-JRMP is up to 20 times 
faster in response time and up to 514 times higher in throughput than SOAP. Overall, this experiment 
confirms the previous findings in the literature.  
 
We now perform the same experiment in the latest WebSphere Application Server (WAS) environment 
(version 6.0.2). Before we start performance comparison, it is worth noting a few important differences 
between WebSphere and JBoss. First, WAS only supports IIOP for an RMI client to access an EJB. 
Second, WAS includes cutting-edge optimization technologies that have been developed to accelerate 
SOAP and XML processing; thus its SOAP performance will be much better than that of JBoss.3 Finally, 
we ran 50 threads on the client for both SOAP and RMI experiments. Table 2 presents the performance 
number of the two Web services in the WebSphere environment.  

 

                                                 
2 We believe it has to do with Java Calendar objects since we found that JBoss failed to handle them in other 
applications too. 
3 They include pre-compiled serializers and deserializers, schema-specific XML parsing techniques, and highly 
optimized SOAP processing layers. Detailed description about these technologies is outside the scope of this paper. 
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Table 2: SOAP and RMI Performance with WAS 

 
From the table, we observe that the performance of SOAP is significantly better than in the JBoss case 
despite the increase in the workload. For Google Web services, we find that RMI still performs 2.7 times 
better in terms of average response time and throughput performance. However, in the WSBench case the 
performance of SOAP is actually better in terms of response time and throughput. 
 
The preliminary experiment results in this section provide important lessons. First, the performance 
characteristics of SOAP and RMI bindings are highly dependent on a particular application server 
environment. Therefore, it is important to configure applications using such information. Second, the 
conventional wisdom saying “use RMI bindings over SOAP whenever possible” is no longer valid in all 
cases. With the increasing emphasis on Web services technologies, we expect the performance of SOAP 
will continue to improve further. As a result, we conclude that optimization techniques that consider both 
configuration information and the characteristics of a workload will provide a great benefit. 
 
3.3 Understanding the Performance Inversion 
 
Previous section has shown that under certain circumstances SOAP can perform better than RMI. This is 
counterintuitive since SOAP is based on XML, which is very verbose, and translating native objects into 
and from XML messages is known to be slow. To understand this performance inversion, we analyze how 
data objects are represented in IIOP and XML messages, and find that the inversion results from the 
extensive use of Java String objects and Java Calendar objects.  More specifically, IIOP employs UTF-16, 
which requires two bytes for each character, whereas SOAP uses UTF-8 encoding, which requires only 
one byte for each character. Furthermore, Calendar objects become extremely enlarged in RMI-IIOP – 
adding about 1000 bytes to describe the Calendar type, which consists of more than 100 different 
primitive fields and consuming about 500 bytes to describe their values. On the other hand, SOAP needs 
at most 24 bytes to represent Calendar in XML’s dateTime format, e.g., “2005-09-09T18:18:30.830Z”. In 
other words, the subpar performance of RMI-IIOP with WSBench results from its overblown message 
sizes. 
 
To gain further insight, we look into the correlation between the message size and the response 
performance. For this, we have generated three different types of objects – varying parameters that affect 
the structure and size of messages. The first two types of objects contain only a small number of strings 
and integer types but have a very complex structure. Thus we call them meta-data-oriented (denoted by 
Meta in the graphs). The first type of meta-data-oriented objects is generated with a deep class nesting, up 
to 10 levels in this experiment (denoted by Deep in the graphs). The second type is generated by a large 
array (denoted by Arr in the graphs), whose size varies from 100 to 3,000. In addition, we consider 
objects that are largely populated by data.  We call such objects data-oriented (denoted Data in the 

Response Time (msec) Throughput (reqs/sec) 
  Parameters 

SOAP RMI SOAP/RMI SOAP RMI RMI/SOAP 
10 227.6 84.7 2.69x 219.7 590.3 2.69x
50 599.7 276.5 2.17x 83.4 180.8 2.17xGoogle 

100 1185.0 516.2 2.30x 42.2 96.9 2.30x
10KB 313.5 452.2 0.69x 159.5 110.6 0.69x
50KB 918.2 1768.1 0.52x 54.5 28.3 0.52xWSBench 
100KB 1734.1 3476.9 0.50x 28.8 14.4 0.50x
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graphs). In the experiment, we use an object with 20 integers and 10 strings which contain 100 to 10,000 
characters each.  
 
Figure 2 presents the correlation between the response time and the message size for different types of 
objects with SOAP and RMI. Each data points in the graphs are denoted by 
binding_type/object_type/meta_type. For this experiment, an RMI message and a SOAP message are 
created from the same Java object. The chart provides a few interesting insights. First, in most cases, the 
RMI message size and the SOAP message size for the same object are quite different. For instance, a 
large data-oriented message which is about 120KB in RMI-IIOP is about 230KB in SOAP (the right most 
points marked by squares in RMI/Data and SOAP/Data in Figure 2 (a)). Second, the initial response time, 
which is the y-intercept of each curve in Figure 2 (b), is much higher for SOAP (about 160 ms) than RMI 
(about 20 ms). We find this is due to the heavy initial cost of extra HTTP routing via a Web container to 
deliver requests to a J2EE container as presented Figure 1. Therefore, RMI offers a better response time 
in the range where the size is less than 10KB. Third, the slopes for RMI and SOAP plots are almost the 
same for the same type of objects (Figure 2 (a)). This observation draws an interesting conclusion: if we 
can estimate the message size of RMI and SOAP between the client and the server, we can effectively 
predict the response time performance of those protocols and infer which binding will perform better 
between SOAP and RMI.  
 
4. Message Size Estimation Model 
 
This section presents our model to estimate the average message size for a given service under SOAP and 
RMI-IIOP protocols. We also discuss some practical issues and limitations of the proposed algorithm.  
 
We present a detail model for SOAP and RMI message size estimation in Appendix. For our discussion, 
however, we only need to know that both SOAP-HTTP and RMI-IIOP messages consist of three major 
parts: (1) constant part (e.g. HTTP header, envelope tag in SOAP, and IIOP header, message-specific 
header in RMI); (2) variable part that can be calculated from WSDL (e.g., namespace, payload tags in 
SOAP, and fixed primitive data types, fixed data types in a constructed data types in RMI); and (3) 
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variable part that cannot be calculated from WSDL (i.e., payload data). Thus, in order to estimate average 
message size, we need to have an idea about the actual data values in the message. 
 
From the aforementioned observation, it is a challenge to reliably estimate which binding will incur larger 
messages size on average without the knowledge of actual data patterns. Another related problem is that 
some parameters in the message may actually be null. The ratio of null parameters differently affects the 
message size estimation for SOAP and RMI – the size of RMI messages will be significantly reduced by 
null objects since it only consumes 4 bytes per null object. On the other hand, SOAP still needs to insert 
meta-data information (e.g., tags) even for null values. 
 
We can address this challenge in various different ways depending on the availability of parameter value 
hints. First, consider a scenario when the service side collects history about the requests that it has seen in 
the past and provide this information to a message size estimation module. If the history provides enough 
details on the key parameters, our proposed algorithm will accurately predict the message size. However, 
this approach will incur too much overhead on the server; thus we do not consider this option. Second, 
instead of service-specific history, we use general hint for each service type. For example, when we 
deploy a client for bank application, we can use general parameter space that has been derived from some 
other bank services. The accuracy of this approach may not be as good as the first approach; however, it 
does not require service-side instrumentation. Finally, we can estimate the size without any hint and use 
only type definitions in WSDL and a value range that is large enough to cover most cases. For example, 
the length of a number parameter is clearly bounded by their definitions. The null probability of 
parameters is defined in 0 – 100 % range. For other types of variables, we can define the ranges from 
empirical values. Another factor that bounds the parameter value space is the resulting message size 
estimate. If we place a maximum bound on the message size itself, it will conversely place bounds on 
each parameter values. We explore the second and the third options in this paper. 
 
5. Implementation  
 
In [5], we have presented the Blue Pencil architecture, which has been designed to enable deployment 
time optimization. In this section, we present the components of Blue Pencil, and how they facilitate 
binding selection.  
 
5.1 Smart Stub 
 
To allow a client application to select a binding depending on the configuration, the service implements 
multiple bindings, e.g., SOAP, remote RMI, and local RMI. The service then publishes this information 
in a WSDL file. 4 When developing a client, the software developer refers to the interface definition in the 
WSDL file and design the client based on that interfaces.  
 
Blue Pencil provides a programming environment for creating applications that are componentized and 
flexible. For this problem, we need a module to generate a client side proxy that encapsulates the 
functionality of both SOAP and RMI stubs. For this, we have developed a plug-in, called the smart stub 
generator, which automatically generates a client side proxy called a smart stub. This functionality can be 
realized in an integrated development environment, or as command line tools similar to rmic (RMI 
compiler). 

                                                 
4 We can use an extension to WSDL, such as WSIF (Web Service Invocation Framework) extension [14], to allow 
specifying multiple bindings for a single service. 
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Figure 3. Structure of a Smart Stub 

Figure 3 presents the structure of a smart stub, and its interaction with the application and the 
configuration discovery module. To the application, it exposes simple interfaces through the smart proxy. 
When the application is deployed by an installation module, called the smart deploy, the installation 
module invokes a configuration discovery module inside it to discover the configuration information. 
Then it hands the information to the decision logic in the smart stub. Based on this input, the smart stub 
decides which binding to instantiate. The example in the figure shows the case when an RMI binding has 
been chosen – in this case, only an RMI stub will be created. Thus the processing overhead on the critical 
path is the same as the RMI binding except the thin layer of smart proxy.  

 
Figure 4. Accessing Remote Object Using Smart Stub 

Writing applications using the smart stub interface is similar to the case of writing a standard RMI or 
SOAP application. Figure 4 illustrates an example of creating and accessing a remote object via smart 
stub. In this example, RemoteObjectFooProxy is a proxy that has been auto-generated by the smart 
stub generator using the WSDL file of a RemoteObjectFoo service. Creating a handle for that remote 
object is as simple as just calling the constructor of the proxy. Once the handle is created, then it can be 
used in the same manner as a local instance.  
 
5.2 Configuration Discovery  
 
In our scenario, the configuration discovery module must first identify the types of binding that the 
service supports. Then it needs to determine the characteristics of the operation environment, e.g., the 
type and the version of application server. After that it needs to determine the relative location of the 
service and the client – for example, whether they share the same ORB, on the same subnet, or connected 
via wide area network. Based on this information, the decision logic in the smart stub will select an 
appropriate binding. This selection policy may be represented using a series of if-condition-then-action 
rules. Figure 5 presents a sample C-style pseudo code of the binding selection procedure. 

import RemoteObjectFoo; 
 
// remote object creation 
RemoteObjectFoo foo = new RemoteObjectFooProxy(); 
 
// method call 
foo.bar(); 

Application 
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Figure 5. Pseudo Code for Binding Selection Algorithm 

If the client and the server are deployed to run in the same class loader, they can communicate via EJB 
local interface, which is equivalent to making a native Java call. On the other hand, if both client and 
server share the same ORB instance, they can communicate via local RMI (with remote EJB). In this case, 
we can bypass the IIOP translation steps and therefore, this invocation is more efficient than calling via 
remote RMI. We can check if a client and a server share the same ORB instance by calling 
javax.rmi.CORBA.Util.isLocal method. If they are on different machines, but there is no firewall in 
between, they can potentially use RMI-IIOP using EJB remote interface with remote RMI. If the 
application server in the target environment is JBoss, we know it is always better to use RMI. However, if 
the application server is WAS then we need to run the size estimation algorithm to determine which 
binding will perform better, and then use the binding that is predicted to be more efficient. Finally, if 
there is a firewall between the client and the service, they must communicate through SOAP over HTTP.  

6. Performance Evaluation 
 
For evaluation, we have set up a testbed and instantiated various Web services. We first describe the 
workloads that we have used. We then evaluate the effectiveness of our binding selection algorithm, and 
present the performance improvement by employing the proposed mechanism.  
 
6.1 Workload Characterization 
 
We have selected various Web services with different characteristics; they include Amazon Web Service, 
Google Web APIs, Microsoft MapPoint Web Service, and IBM’s Web service benchmark, called 
WSBench. We have also created a multi-tier Web service emulating the behavior a travel reservation 
system. We have explained Google Web APIs and WSBench in Section 3.1. To summarize, the Google 
service provides keyword-based search, and thus its messages are heavily string-based and relatively 
small. WSBench is an internal benchmark that models after the financial transfer operations between 
banks. Thus its message structure is complex (involving arrays, mixed data types) and the message size 
can grow large (as large as a few hundred KBs). We believe this workload is ideal to represent batch data 
transfer or complex data transfer. 
 
Amazon Web Service provides operation to inquire products, customers, and sellers. Their primary 
operations are search (by keywords) and lookup (by unique IDs). While the semantics of the two 
operations are different, their message formats are almost the same. Thus in this paper, we present the 
results with the search service only. The Microsoft MapPoint Web Service provides geographical services 
such as find address, calculate driving directions, and retrieve maps. The first operation consists of simple 
string-based messages. However, calculating route and map operations involve more heterogeneous data 
types including binary data type.  

BindingSelection (serverInfo, locationInfo, existsFirewall) { 
if (locationInfo == same_classloader) then 
      use EJB_local_interface; 
if (locationInfo == same_ORB) then 
      use EJB_remote_interface_with_local_RMI; 
if (existsFirewall == false) then 
      if (serverInfo == JBoss)  

             use EJB_remote_interface_with_remote_RMI; 
        if (serverInfo == WebSphere)  
             binding = selectBySizeEstimate(); 
             use binding; 
        // code for other server types 

} 
  else use SOAP_binding;  
} 
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Parameter Characteristics Service Name 

(operation) 
Service 
Type 

Message 
Dir 

Message Size 
Depth Strlen Num Binary Null% Array 

Request Small (1KB) 1 22 1.5 - 45% 0 Google 
doGoogleSearch 

Web 
search Response Medium (10KB) 5 76 4.6 - 40% 6.8 

Request Small (2KB) 3 10 - - 87% 1 Amazon 
itemSearch 

Online 
shop Response Medium to Large 

(15 – 116KB) 10 27 - - 84% 7.1 

Request Small (1KB) 2 12 - - 33% 0 MapPoint 
findAddress 

Map 
Response Small (2KB) 9 6 13.7 - 25% 1 
Request Small (3KB) 10 11 17 - 36% 1.5 MapPoint 

calculateRoute 
Map 

Response Large (21KB) 12 27 15 1618 23% 3.5 
Request Small (4.5KB) 8 9 14.6 1618 47% 2 MapPoint 

getMap 
Map 

Response Large (58KB) 7 9 17.5 42575 12% 1 
Request Small (1.6KB) 5 8 1 - 5% 0 WSBench 

handleAddShort1 
Finance 

Response Small (1.4KB) 5 11 1 - 0% 1 
Request Medium (10KB) 7 11 4.3 - 0% 3.6 WSBench 

handAddShort10 
Finance 

Response Medium (10KB) 5 19 1.3 - 0% 25 
Request Large (100KB) 7 11 4.9 - 0% 4 WSBench 

handleAddShort100 
Finance 

Response Large (100KB) 5 19 1.6 - 0% 264 

Table 3. Summary of Workloads 

Table 3 presents a summary of the workload’s characteristics and the key parameters that affect the 
message size and consequently the performance of service invocation. In the table, we show the average 
SOAP message size, and average values for string length, number of digits, and binary object size in the 
messages. We also present null probability, average array size, and depth of nesting. The null probability 
indicates how likely a field may not have a value in messages. This parameter is relevant because certain 
Web services, e.g., Amazon, implement general APIs for multiple purposes; and when it invokes a 
particular service, it leaves all other fields null. The depth indicates the level of nesting when an object 
has other objects as its fields, and those objects again contain other objects. In general, the message 
structure naturally determines the nesting depth. The array size is an average of all array sizes in a 
message. We see, except WSBench, the average array size is relatively small in our workload. The 
parameter values that we observe in these workloads may provide guidance when we run the size 
estimation algorithm. 
 
6.2 Evaluation of the Size Estimation Algorithm 
 
Now, we evaluate the performance of the message size estimation algorithm presented in Section 4. As 
we discussed earlier, we explore two different approaches for message size estimation. The first approach 
does not rely on any hint except that each parameter type will have some reasonable value range and 
message size has a maximum bound. From our experience with different types of Web services, we set 
the maximum message size to 300 KB.5 The other parameters that we use are as follows: 
 

Parameter String length Binary data size Null % Array size 
Value 5, 15,  ... , 75 1.5KB, 4.5 KB, 15KB, 45KB 0% – 90 % 2, 5, 10 

 

                                                 
5 Although some scientific Web service applications exchange large size messages in a Grid environment, such 
messages usually consist of arrays of numbers, which can be efficiently handled with RMI all the time. Thus we do 
not consider such workloads in this paper. 
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The second approach utilizes simple hints about a service. A hint can be a characteristic that can be 
derived from certain types of services such as maximum message size, average string length, or null 
probability. For example, a batch transaction service typically incurs large messages. A search service 
usually returns relatively long strings as results. Generic service APIs may incur messages with high null 
probability. In this paper, we investigate two different levels of hints to see how they affect the 
performance of our algorithm. In the first level, we use the maximum message size as a hint – where 
small messages are less than 10KB, medium messages are less than 50KB, and large messages are less 
than 300KB. In the second level, we use a tighter range of string size and null probability (± 10% of the 
actual) along with the max message size bounds, instead of using the default ranges. 
 

Accuracy (Frequency) 
Service No hint Hint: A Hint: A, B, C Decision 

Google 
- doGoogleSearch 

91.7 %  
(4400) 

91.7 %  
(4400) 

88.9 % 
(960) RMI 

Amazon 
- itemSearch 

62.5 % 
(1000) 

62.5 % 
(1000) 

100 % 
(240) RMI 

MapPoint 
- findAddress 

84.2 % 
(4040) 

100 % 
(1644) 

100 % 
(180) RMI 

MapPoint 
- calculateRoute 

81.6 % 
(3781) 

81.6 % 
(3781) 

100 % 
(720) RMI 

MapPoint 
- getMap 

95.2 % 
(3420) 

95.2 % 
(3420) 

100 % 
(450) RMI 

WSBench 
- handleAddShort1 

97.1 % 
(4660) 

97.1 % 
(4660) 

100 % 
(360) RMI 

WSBench 
- handleAddShort10 

77.1 % 
(3700) 

77.1 % 
(3700) 

100 % 
(360) SOAP 

WSBench 
- handleAddShort100 

55.2 % 
(2220) 

55.2 % 
(2220) 

100 % 
(360) SOAP 

Table 4. Accuracy of Message Size Estimation (hint A: max message size, B: strlen, C: null%) 

Table 4 presents the accuracy of the message size estimation algorithm with or without hints. The 
numbers in parenthesis represent the number of instances when the correct binding has been selected over 
the entire parameter space. The numbers in the “No hint” column present the case when the estimation 
was made without any hint specific to the Web services. The result shows that the message size 
estimation could select the right binding in all cases even without a hint. However, the accuracy for 
Amazon and WSBench (handleAddShort100) are relatively low. For Amazon, the workload exhibits very 
high null probability (> 84%) as shown in Table 3. Thus it becomes difficult to estimate the performance 
without such hints. In the WSBench case, the actual operation involves only large messages; however, the 
parameter space ranges from very small to very large messages. 
 
When we have a simple hint about the max message size (“Hint: A” column), we only see improvement 
in MapPoint (findAddress), and the accuracy of all the other services remains the same. Thus we can 
conclude that having a hint on max message size is not very effective. Finally, when we have hints about 
average string length and null probability as well as message size (“Hint: A, B, C” column), we see the 
message size estimation algorithm selects the correct binding with a very high accuracy. In this case, 
because the regions of these parameters are more specific, the number of data points is less than the 
previous cases; however, they still provide enough reference points for decision. The only exception is 
Google, whose accuracy has decreased by a small margin. We find this is due to the high concentration of 
string data in its messages, which favors SOAP. Nevertheless, we could select the right binding with a 
high confidence in this case also.  
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Overall, the proposed estimation algorithm proves effective even when we do not have much information 
about specific services. In particular, the proposed message size estimation algorithm selected the right 
binding in all cases that we have considered. 

6.3 Performance Benefits of Smart Stub 
 
We evaluate the performance improvement of our smart stub in the local testbed. We used a Pentium 4, 
2.0 GHz machine with 1.5 GB memory, as a server, and used a Pentium 4, 3.0 GHz machine with 3.0 GB 
memory as a client both running Windows XP. In all our experiment, we assume a configuration where 
both SOAP and RMI can be used, e.g., client and server are on the same network. On the client side we 
have created 50 threads, each of which simulates the behavior of an individual client, to keep the server 
busy. Figure 6 shows the average response time results with smart stub along with SOAP and RMI 
bindings.  

0

50

100

150

200

250

300

Q1 Q2 Q3 Q4 Q5
Query

R
es

p 
Ti

m
e 

(m
s)

SOAP

RMI

Smart

   

0

300

600

900

1200

1500

Rest-
aurants

Video Books Music

SearchIndex

R
es

p 
Ti

m
e 

(m
s)

SOAP

RMI

Smart

 
(a) Google - doGoogleSearch   (b) Amazon – itemSearch 

0

100

200

300

400

500

find Address calculate Route getMap
Functions

R
es

p 
Ti

m
e 

(m
s)

SOAP

RMI

Smart

  

0

1000

2000

3000

4000

5000

1kx1k 1kx10k 10kx1k 10kx10k 100k
x100k

Message

R
es

p 
Ti

m
e 

(m
s)

SOAP

RMI

Smart

 
  (c) MapPoint      (d) WSBench - handleAddShort 

Figure 6. Average Response Time with Different Bindings 

From the figure, we observe that smart stub always provides the same level of average response time as 
the better binding between the two in all cases. Compared to the default SOAP binding, the smart stub 
reduces the response time of Google Web service by about 60%. Similarly, the performance of Amazon 
has improved by 34% – 80% and that of MapPoint has improved by 41% – 72%. In the WSBench case, 
sometimes RMI is better and other times SOAP is better. In all cases, the smart stub finds the right 
binding and provides performance improvement by up to 32%. Overall, we observe that the response time 
performance could be improved by 32% – 80% even when the target environment implements a highly 
optimized SOAP processing. We further evaluate the efficacy of the proposed mechanism in a multi-tier 
end-to-end configuration. 
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6.4 Case Study in Multi-tier Configuration 
 
In the next experiment, we evaluate the effectiveness of our smart stub for different deployment 
configurations. To this end, we have developed a multi-tier Web service configuration based upon typical 
travel reservation services. In this scenario, a customer sends a request for possible travel plans to the 
main travel reservation service, which then request information for relevant flight schedules, rental car 
and hotel information from corresponding back-end services. The returned information from the back-end 
services is gathered by the Travel Reservation Service and the most relevant plan is sent back to the 
customer. For simplicity, we focus on the interaction between customer, Travel Reservation Service 
(TRS), and Flight Reservation Services (FRS).   
 
Figure 7 illustrates this multi-tier services scenario with two different hosting configurations.  Figure 7 (a) 
represents a 3-tier configuration where FRS is offered by a 3rd party and hosted on a separate machine 
(Host C). Figure 7 (b) represents a 2-tier case where FRS is hosted on the same server as TRS (Host B) 
where both services are run by the same company. For both cases, we assume that both RMI and SOAP 
are available. In our experiment setup, Hosts A and B are machines with a Pentium 4 3.0 GHz CPU and 3 
GB memory. Host C has a Pentium 4 2.0 GHz CPU and 1.5 GB memory. All the hosts run Windows XP 
and connected via fast Ethernet. For application servers, we use WebSphere Application Server. 

 
Figure 8 presents the results for the our Travel Reservation Services scenario.  Figure 8 (a) shows the 
messages sizes of each service. In this bar chart, for both TRS and FRS, the RMI messages are larger than 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Two services hosted on separate servers (3-tier)                (b) Two services on the same server (2-tier) 
 

Figure 7. Two Different Tiered Hosting Configurations for Travel Reservation Services 
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Figure 8. Performance of Multi-tier Travel Reservation Services 
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the SOAP messages. However, RMI message sizes of TRS are all less than 10KB, where RMI always 
wins over SOAP regardless the size comparison. For the 3-tier configuration, the smart stub for the 
customer on Host A picks an RMI using our binding selection algorithm. On the other hand, the smart 
stub of TRS picks a SOAP binding to connect to FRS. Figure 8 (b) provides the average response times 
when the number of clients are increased. Each selection pair is marked by X-Y, where X is a binding 
between the customer and TRS and Y is a binding between TRS and FRS. Our algorithm selects the 
binding pair ‘R-S’, which offers the best performance (the lowest response time and the highest 
throughput) over other binding pairs. For the 2-tier configuration, the smart stub of the customer picks an 
RMI binding the same way as in the 3-tier configuration. However, the smart stub of TRS picks an RMI 
to bind to FRS since both services are running on the same machine. Thus, the smart stubs select ‘R-R’ 
binding combination, which provides the best performance as shown in Figure 8 (c). This experiment 
demonstrates that our binding selection algorithm performs well even for multi-tier services with various 
hosting configurations. 

7. Related Work 
 
Conventional optimization techniques focus on individual components in an isolated manner. For 
example, techniques have been proposed to improve the performance of communication layers between 
distributed components. Such techniques include high-performance XML parsing, efficient 
implementation of SOAP protocols. Other techniques are data caching at network layer (e.g. SOAP result 
caching, and DB query caching), availing of multiple ways to communicate between the components 
(Web Service Invocation Framework or WSIF), and manual tuning during code inspection time.  
 
However, existing optimization techniques have the following drawbacks. First they do not utilize the 
information available in the target environment where the software or service is deployed. Second, in 
many cases, those optimization techniques are applied independently with each other to improve the 
performance of a specific function or layer. Third, although such techniques may improve the 
performance of individual components, there is inherent overhead from multiple layers of abstraction. 
Finally, manual optimization techniques do not scale and cannot be applied in various domains. 
 
There have been extensive research activities which have studied the performance of SOAP in various 
environments. Govindaraju et al. compared Java RMI and SOAP in scientific computing [1]. Kohlhoff et 
al. evaluated SOAP for business application such as real-time trading systems [2] and Elfwing et al. 
compared SOAP to CORBA in Web service environment [4]. In addition, Davis et al. examined the 
latency performance of several SOAP implementations as well as other protocols such as Java RMI and 
CORBA [3]. They all reported that the performance of SOAP usually is worse than Java RMI or CORBA 
in an order of magnitude, since SOAP uses text-based data representation. 
 
Juric et al. have studied various approaches to tunnel RMI messages through firewalls, such as RMI over 
open ports, HTTP-to-port, HTTP-to-CGI, HTTP-to-servlet, and compared them with the SOAP-based 
approach in terms of functional and performance differences [6]. Although the RMI tunneling approaches 
provide clever mechanisms to reach services behind firewalls, such techniques are neither standardized 
nor recommended. Moreover, these tunneling-based approaches suffer from much poorer performance 
than that of native Java RMI or SOAP. Thus in our paper, we have excluded tunneling-based techniques 
for the binding selection problem.  
 
Several works have looked at optimizing XML processing. Sundaresan et al. have proposed a 
compression technique that considers the structural part and the text of an XML document separately [7]. 
They have also developed a technique to quantify the characteristics of a document based on the schema 
and the document itself and determine the most appropriate compression algorithms for the document. 
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Such compression techniques can reduce the document size significant so that they can be easily stored on 
small devices and easily transferred. 
 
In [18], Löwe et al. have studied the generation of schema-specific parsers for DTDs and restricted 
schemas. They found that the parsers show quite good performances and can be faster than non-validating 
parsers. Engelen et al. also utilized the XML schema information and proposed a compiler-based 
SOAP/XML engine, gSOAP, to improve the performance of SOAP/XML processing [19]. Based on 
XML schemas, schema compilers generate a parser which is specialized to process the valid instances of 
the source schemas. The resulting parser can achieve nice performance improvement while it rejects all 
other XML documents. For optimized generation of the schema-specific parsers, Engelen [21] and Chiu 
et al. [20] have utilized automata as an intermediate representation. 
 
Caching is also used to improve the performance of SOAP processing, especially generating SOAP 
messages. Andresen et al. have proposed client-side and server-side caching in [16][17]. They developed 
three caching mechanisms: complete caching, body caching, and envelope and body caching. In [15], 
Abu-Ghazaleh et al. have proposed differential serialization, which helps in bypassing the serialization 
step for messages similar to previous ones. For certain workloads, these caching mechanisms can achieve 
nice speedups by a factor of two to ten. 
 
In [8], Mukhi et al. presented an extension to the SOA architecture so that the service provider and the 
requestor can negotiate and dynamically change the configuration based on the run-time characteristics of 
the application. Web Service Invocation Framework (WSIF) [14] tries to enable dynamic binding 
selection by providing an XML schema extension and a set of Java libraries to process them. However, 
the intelligence to select the right binding for a certain run time environment is essentially a burden of 
application developers. In contrast, Blue Pencil tries to provide a programming environment where the 
task of the application programmer remains the same and actually selection occurs during the deployment 
time by the smart deployment module.  

8. Summary and Future Work 
 
This paper presented the motivations, the mechanisms, and the effectiveness of the deployment-time 
binding selection for distributed J2EE applications. Using the latest implementations of two popular 
application servers, JBoss and WebSphere, we have examined the performance of RMI and SOAP in the 
modern J2EE environment, and discovered that under certain workloads, SOAP can perform better than 
RMI. This led us to carefully investigate the binding selection problem. In particular, we faced the 
challenge to estimate the performance of SOAP and RMI using only static information such as the service 
interface definition, the location of the service, and the hint about the application server. To address this 
problem, we proposed a simple algorithm to predict the performance based on the message size 
estimation of the different protocols. From extensive performance evaluation using various real world 
workloads and internal performance benchmarks, we showed that our algorithm is simple yet effective. 
Overall, the proposed binding selection algorithm could improve the performance by 32% – 80% even 
with highly optimized SOAP implementations. For other application server environments, such as JBoss, 
the performance benefit of the proposed technique is expected to be even greater. 
 
To extend the applicability of the proposed binding selection mechanism, we need to effectively handle 
legacy applications or third party applications that have been created outside the Blue Pencil framework. 
To handle such cases, we can develop a code transformation technique to generate a smart stub that 
corresponds to the client module by changing the existing stub code. We can investigate various compiler 
technologies in this space, including program slicing using forward and backward chaining, code pattern 
matching, and dead code elimination. Basically, the idea is to identify a code block to be removed (old 



 17

stub) and replace it with a new code block (a smart stub). Transforming a chunk of code to an equivalent 
code is a very difficult problem in general. However, we can leverage the fact that stub codes are typically 
machine generated and thus will likely to follow deterministic patterns.  
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Appendix - Models for Message Size Estimation 
 
To help the discussion about message size estimation, we present a diagram to show the structures of a 
SOAP message and an IIOP message in Figure 9. In the figure, variable size components whose size 
cannot be determined by WSDL are shown in italics.   
 

 
Figure 9. Structure of SOAP and IIOP Messages 

 
A.1 SOAP message size 
 
The structure of a SOAP message consists of three main parts: (a) HTTP header, (b) SOAP metadata, and 
(c) payload. Figure 9 (a) presents the structure of a SOAP message. Our empirical study shows that the 
size of HTTP headers varies in a small range.6 So in our model, we treat them as constant.  
 
The SOAP metadata can be classified into two parts: message information and payload tags. The SOAP 
message information includes envelope tag, header information, body tag, and name space. We find that 
the size of these fields can also be treated as constants,7 and the length of target namespace can be 
obtained from a WSDL file. The size of payload tag is a sum of all payload parameter tags. Thus it can be 
written as: 

∑ ×= ),()(__ iitagpayloadSOAP eNeTS  
where ei is an element of a set, E, which contains all elements that appear in the WSDL of a service, T(ei) 
is the tag size of ei, which is almost fixed for each tag type, and N (ei) is the number of occurrences of ei 
in a message. Thus SSOAP_payload_tag can be determined from a WSDL file. 
 
Finally, the size of payload data is a sum of all data length. 

∑= ),(_ ipayloadSOAP dLS  
where di is an element of a set, D, which contains all payload data that appear in a message, and L(di) is 
the length of a payload data in terms of byte. For example, L(“Paul Smith”) = 10, L(3.1415) = 6, and 

                                                 
6 In all our experiments, the header size range was 352 – 356 bytes for a request message, and 184 – 196 bytes for a 
response message. 
7 In particular, envelope tags consume about 250 bytes, headers consume about 17 bytes, and body tags consume 
about 30 bytes.  
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L(2005-12-25) = 10. This is a variable part in the message estimation model, which cannot be determined 
by the static information in WSDL. 
 
To summarize, the SOAP message size model consists of three parts: (1) constant part (e.g. HTTP header, 
envelope tag, etc.); (2) variable part that can be calculated from WSDL (e.g., namespace, payload tags); 
and (3) variable part that cannot be calculated from WSDL (i.e., payload data). Thus, in order to estimate 
average SOAP message size, we need to have an idea about the actual data values in the message. 
 
A.2 RMI-IIOP message size 
 
The structure of an RMI-IIOP message consists of two main parts: IIOP header and payload. Figure 9 (b) 
presents the structure of an IIOP message. An IIOP header consists of two parts: one that is common to 
all messages and the other that is specific to each message type e.g., request, reply, cancel request, etc. 
The common header contains: (1) identifier, (2) version, (3) byte order flag (which indicates little endian 
or big endian), (4) message type, and (5) message size [12]. The message specific headers are different 
from one message type to another. For example, a request header contains six fields including request id, 
target address, and operation name; whereas a reply header contains only three fields: request id, status, 
and service context. Since they follow well-defined patterns, they can be treated as constants for our 
purpose.8  
 
The size of payload can be broken down into three parts: primitive type data, OMG IDL constructed types, 
and null data. Here the primitive type data are the ones defined in GIOP primitive types, not the primitive 
types of a specific language. GIOP defines thirteen primitive types including wchar (wide character), 
octet, short, long, float, and boolean. The mapping between GIOP primitive types and Java primitive 
types are defined in [13]. The size of primitive type data can be simply computed by counting how many 
data instances occur in an RMI message. Thus, we get: 

])()([_ ∑ ×= iitypeprimitive typeStypeNS , 
where N(typei) is the number of occurrences of typei data and S(typei) is the size of a typei data value. For 
fixed data types, this value can be easily calculated from the interface definitions in WSDL. However, we 
need actual data to calculate the size for variable length data, such as string. 
 
Constructed data defined by the OMG IDL support complex data types such as struct, union, array, string, 
etc. A constructed data object consists of type definition part and the actual value part. When a 
constructed data type object first appears in an IIOP message, several fields about type definition must be 
inserted such as value tag, codebase URL, and type name. A value tag is a four byte flag (0x7fffff00 – 
0x7fffffff) that contains information about the data type (e.g., IDL supported type or user-defined type). A 
codebase URL indicates the location of a codebase that is used for user-defined encoding. Type names 
contain fully qualified name of a data type. When the same type of constructed data objects appear more 
than once in a message, the later occurrence refers to the type definition information occurred in the first 
place. The length of the actual data can be calculated in the same was as in the primitive data case. Finally, 
each null parameter consumes fixed 4 bytes in an IIOP message. 
 
As in the SOAP model, the RMI-IIOP message size model also consists of three parts: (1) constant part 
(e.g., common header, message-specific header), (2) variable part that can be calculated from WSDL (e.g., 
fixed primitive data types, fixed data types in a constructed data types), (3) variable part that cannot be 
calculated from WSDL (e.g., variable length primitive data types, variable length data types in a 
constructed data types).  
 
                                                 
8 Our empirical data shows that request messages are about 180 bytes, and reply messages are about 40 bytes. 


