
RC23865 (W0602-038) February 2, 2006
Computer Science

IBM Research Report

DeuTeRiuM - A System for Distributed Mandatory
Access Control

Jonathan M. McCune1, Stefan Berger2, Ramón Cáceres2,
Trent Jaeger3, Reiner Sailer2

1Currently at Carnegie Mellon University, Pittsburgh, PA 15213

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

3Pennsylvania State University
University Park, PA 16802

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

DeuTeRiuM – A System for Distributed Mandatory Access Control

Jonathan M. McCune∗ Stefan Berger† Raḿon Ćaceres† Trent Jaeger‡ Reiner Sailer†

Abstract

We define and demonstrate an approach to securing distributed computation based on adistributed,
trusted reference monitor(DTRM) that enforces mandatory access control (MAC) policies across
machines. Securing distributed computation is difficult because of the asymmetry of trust in different
computing environments and the complexity of managing MAC policies across machines, when
they are already complex for one machine (e.g., Fedora Core 4SELinux policy). We leverage recent
work in three areas as a basis for our solution: (1) remote attestation as a basis to establish mutual
acceptance of reference monitoring function; (2) virtual machines to simplify reference monitor
design and the MAC policies enforced; and (3) IPsec with MAC labels to ensure the protection
and authorization of commands across machines. We define a distributed computing architecture
based on these mechanisms and show how local reference monitor guarantees can be attained for
a distributed reference monitor. We implement a prototype system on the Xen hypervisor with a
trusted MAC VM built on Linux 2.6 whose reference monitor design requires only 13 authorization
checks, only 5 of which apply to normal processing (others are for policy setup). This prototype
enforces MAC between machines using IPsec extensions that label secure communication channels.
We show that, through our architecture, distributed computations can be protected and controlled
coherently across all the machines involved in the computation.

1 Introduction

Mandatory access control is becoming a common feature in commercial operating systems, such as Linux,
IBM AIX, and FreeBSD, and has been present in Trusted Solaris for several years.Mandatory access con-
trol (MAC) mandates that security policies be defined and managed by the systemrather than the individual
users or their programs. A system enforces mandatory access controlusing areference monitor[4]. Since a
reference monitor must be capable of protecting the system from all programs and of enforcing MAC for the
entire system, reference monitor implementations must be tamperproof and must provide complete media-
tion of all security-sensitive operations. MAC is becoming popular because of its ability to confine processes
(e.g., decomposingroot) and its potential to enforce security guarantees (e.g., secrecy and integrity). For
example, MAC can ensure that no information flows leak secret information tosubjects not authorized for
that information. Also, MAC can ensure that low-integrity data is not input to high-integrity processes.

Naturally, we want such security guarantees to span multiple systems. For example, NetTop separates
computing of different secrecy levels into their own isolated virtual machines(VMs) running on Linux [27].
NetTop uses Linux MAC enforcement of the SELinux [34, 35] reference monitor to provide isolation of the
virtualization function from traditional system services. Further, SELinuxmust control network communi-
cation by NetTop VMs to ensure isolation of VMs of the same level. However, acompromise of SELinux
security state could result in mislabeling of data and communications that would violate the NetTop policy.

∗jonmccune@cmu.edu Carnegie Mellon University, Pittsburgh, PA 15213 USA This work was done during an internship
at IBM Research.

†{stefanb,caceres,sailer}@us.ibm.com IBM T. J. Watson Research Center, Hawthorne, NY 10532 USA
‡tjaeger@cse.psu.edu Pennsylvania State University, University Park, PA 16802 USA

NetTop and the other OS-based MAC approaches enable MAC enforcement across a set of machines,
but they have two limitations that we seek to address: (1) the complexity of the reference monitor, the code
that must be trusted to enforce distributed MAC, is high and (2) trust in the necessary enforcement func-
tion of the reference monitor across each machine in the distributed system is not established. First, these
approaches depend on complete mediation of operating system resources(e.g., files, sockets, IPC) which
involves hundreds of reference monitor calls. For example, the SELinux reference monitor for Linux im-
plements over 150 distinct kernel requests to authorize access. While NetTop is built on a virtual machine
system, it still depends on the host OS and the correctness of its reference monitor. The virtual machine mon-
itor (VMM) provides isolation, but it does not enforce a security policy. Second, while current approaches
enable the transmission of MAC context (e.g., security labels) to referencemonitors on other machines, they
assume trust in each individual machine’s ability to enforce such requirements. There is no guarantee that
each machine is really running a trusted computing base that enforces the intended MAC policy. This limits
MAC enforcement to environments where homogeneous control of systemsis possible, and even then, a
misconfiguration or compromise may go undetected.

Untrusted
network

Coalition

Physical Machine

VM

VM
VM

Physical Machine

Physical MachinePhysical Machine

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VMVM

Untrusted
network

Coalition

Physical Machine

VMVM

VMVM
VMVM

Physical Machine

Physical MachinePhysical Machine

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVM

VMVMVMVM

Figure 1:Example of a distributed coalition. Virtual machine (VM) instances sharing common Mandatory
Access Control (MAC) labels on multiple physical hypervisor systems are all members of the same coalition.

Figure 1 illustrates our high-level goal. A distributed application consists of acoalition of virtual ma-
chines that execute across a distributed system of physical machines. Each of the coalition VMs may reside
on a different physical machine and multiple coalitions may execute on each physical machine. The physical
machines each have a reference monitor capable of enforcing MAC policies over all its VMs. However, to
the individual coalitions, the combination of reference monitors forms a coherent, uniform unit that protects
the coalition from other coalitions and limits the actions of the coalition VMs. As VMs are added or migrate
to new machines, the coherent, uniform reference monitoring unit is verified to ensure its trustworthiness.
We call this combination of reference monitors, whose mutual trust can be verified, adistributed, trusted
reference monitor, or DTRM.

In this paper, we introduce a DTRM approach for MAC enforcement across distributed systems that
requires a very small amount of reference monitoring function on each machine, thus enabling trust in this
function to be verifiable over the entire distributed system. MAC enforcementis simplified by using a

2

small virtual machine monitor as the base code and relying on minimal operating system controls. The Xen
hypervisor system is our VMM, and we only depend on it for inter-VM controls which are available through
only two Xen mechanisms: grant tables (shared memory), and event channels (synchronous channels). Xen
provides system services (such as hardware and guest virtual machine controls) through a single trusted VM
that runs a complete operating system (Linux) at present. However, we find that MAC enforcement only
requires that the trusted VM control network communication. Only the SELinuxcontrols for IPsec and
packet processing (seven hooks) are needed for MAC enforcement. As a result, the enforcement of only 13
total authorizations (combined from Xen and SELinux) are needed from the reference monitors.

Trust in the MAC enforcement capabilities of a remote system is developed using remote attesta-
tion [28, 36]. We use remote attestation to enable each machine to verify the following properties of the
reference monitoring infrastructure: tamperproofing (i.e., code and communication integrity), mediation
(e.g., effective MAC enforcement mechanisms), and the satisfaction of security goals (e.g., isolation from
other workloads) in a distributed environment. We can extend this trust up to the target VM (i.e., the VM
that provides application services) through attestation as well. While this may sound conceptually similar
to previous work on VM attestation in Terra [12], this work differs in that Terra only attests VM code and
static data integrity, does not offer MAC enforcement, and does not attestto any enforcement properties.

The contributions in this work are:

1. a system built from open-source software components that enables enforcement of MAC policies
across a set of machines;

2. complete MAC reference monitoring from two software layers, (1) the Xen hypervisor that controls
inter-VM resource accesses, and (2) SELinux and IPsec network controls; and

3. the use of attestation to build trust in the reference monitoring across all machines in a distributed
system.

We demonstrate this implementation by applying it to a BOINC distributed computing application [2]. The
BOINC infrastructure enables distributed computations by a group of clientscoordinated by a server, such
as the SETI@home volunteer distributed computing effort [3]. On our system, we run a BOINC server
and its clients in VMs. The reference monitors of each of the machines hostingthe BOINC VMs perform
a mutual verification of acceptable reference monitoring software and MACpolicy. Then, each of these
reference monitors enforce the isolation of the BOINC VMs from others and protect other coalitions from
the BOINC VMs. We describe how the DTRM approach enables verificationof trust and MAC-enforced
isolation. We note that other MAC policies may be enforced on the BOINC system, depending on the trust
in the user-level VMs, which can also be established via remote attestation.

The rest of this paper is organized as follows. Section 2 provides background motivation for the problem
of building a distributed, trusted reference monitor. Section 3 presents the architecture of our DTRM, and
Section 4 describes our prototype implementation. Section 5 examines an experimental evaluation of the
security features of the prototype implementation. Section 6 discusses some outstanding issues and areas
for future work, while Section 7 surveys related work. Finally, Section 8 offers our conclusions.

2 Background

Other researchers have developed systems that meet some of the necessary requirements for a distributed
MAC system. However, we find that existing systems are each insufficient along at least one of three axes:
software complexity, policy complexity, and trust establishment.

Software Complexity As Figure 2 illustrates, a prohibitively large number of operating system hooks
are required to mediate security-sensitive operations in operating system MAC systems. This level of code

3

complexity greatly reduces the usefulness of MAC policy and attestation mechanisms, as the policies must
be hardware- and operating system-dependent to be effective. For example, the reference monitor must
mediate all possible access paths to all system objects (e.g., files, sockets, IPC, shared memory, packets, etc.)
defined by the operating system. The result is a large reference monitor code base. Also, since operating
system unify different physical objects into files, the subtle semantic distinctions between different objects
(e.g., socket, device, and regular files) complicate reference monitoring.C u r r e n t M A C S y s t e m s s H y p e M A C S y s t e mO p e r a t i n g S y s t e mA p p l A p p l s H y p e H y p e r v i s o rR e p r e s e n t s R e f e r e n c e M o n i t o r A u t h o r i z a t i o n sM A CV M V M V M V MA p p l A p p l
Figure 2:Current Mandatory Access Control systems use a prohibitively large number of operating system
hooks (on the order of hundreds). MAC policies for these systems depend on details of the particular system,
making enforcement across a distributed system difficult. By comparison, our system leverages virtualization
so that MAC policies can be largely system-independent, resulting in significantly fewer required mediation
points. sHype is a hypervisor security architecture developed by IBM Research for different virtual machine
monitors [31].

An example of an operating system with MAC capabilities that suffers from these shortcomings is
Trusted Solaris [37]. Trusted Solaris consists of extensions to the Solarisoperating system to provide multi-
layer security (MLS) labels. Subjects and objects (e.g., processes, files) are labeled with secrecy levels, and
communication is also labeled using IP Security Options. Since the operating system is the lowest level of
MAC, a prohibitive number of instrumentation points (hooks) are required toenforce MAC policy. This
complexity precludes formal analysis, and thus the robustness of the resulting system cannot be guaranteed.

We consider an alternative: the use of a VMM layer which supports coarse-grained MAC enforcement.
VMMs exist today which are several orders of magnitude smaller than commodity operating systems. As
shown in Figure 2, we find that some operating system-style MAC controls arerequired to control inter-VM
communication, but these are minimal (e.g., seven authorization hooks).
Policy Complexity A further advantage gained from the use of virtualization technology is reduced policy
complexity. A VMM-level MAC policy is naturally more coarse-grained than that of an operating system.
For example, in the sHype hypervisor1 security architecture [31], a VMM-level MAC system considers
VMs as subjects and only inter-VM communications as objects. Also, problems where unnecessary sharing
is present in current systems can be remedied by using separate VMs. Asa result, simpler policies with real
separation may enable formal verification of security goals from MAC policies, which has been difficult for
OS-level policies. We note that 8 of the 13 authorization hooks for the VMM-level MAC system are for
policy administration, for which few subjects are authorized.

NetTop [27] uses a virtual machine monitor (VMWare) and operating systemwith MAC support (SELinux)

1The difference between a Virtual Machine Monitor and a Hypervisor is a hotly debated topic. We use the terms interchangeably,
referring to a thin software layer that runs directly on top of the hardwareand presents a virtualized image of that hardware to
conventional operating systems running above.

4

to enable what were traditionally physically separate computer terminals on the desks of government em-
ployees to be consolidated onto a single system. However, NetTop does notconsider a VMM with support
for MAC. The NetTop architecture relies extensively on operating systemsecurity controls, which we have
already shown to suffer from excessive complexity. We conclude that NetTop-style systems may have value
if all the systems are under the same administrative domain, but they are not viable in heterogeneous dis-
tributed systems.
Trust Establishment To achieve a secure distributed system, mechanisms are required for establishing
trust into a remote system. While much prior work has been done on attestation, complexity of software
and policy have rendered attestations less meaningful than desired on existing systems. The goal here is to
ensure that each reference monitor is of high integrity, is capable of enforcing the desired MAC policy, and
is really using that policy. The use of the VMM-based approach means thatattestation of the VMM itself
and any privileged supervisor VMs is necessary to verify referencemonitor integrity and enforcement (e.g.,
authorization hooks). These components should be smaller and more stable than operating system-only
MAC systems. Consider the the complexity of MAC policies in current OS systemsand the large number
of system drivers. The simplifications offered by the VMM MAC approachreduce the complexity of MAC
policy through simpler subject (e.g., VM) and object (e.g., inter-VM communications) labeling, and through
simpler subject rights. Also, the MAC VM can be stabilized by focusing on inter-VM control function and
a small number of drivers.

Terra [12] introduces an architecture which uses VMM technology for isolation and includes attestation
support. Today, the Xen hypervisor system [5] with Trusted Platform Module (TPM) support, which we
leverage in our solution, achieves similar properties to those of Terra. However, Terra itself is an incomplete
solution, because no controls exist for enforcing a MAC policy.

We have designed a distributed trusted reference monitor (DTRM) that facilitates all three of the re-
quirements described above. The DTRM approach builds trust in layers,starting from the bottom, such
as from trusted hardware like the Trusted Computing Group’s Trusted Platform Module (TPM). After the
BIOS and boot firmware, the bottom-most software layer is a VMM which is capable of enforcing a coarse-
grained (hence low complexity) MAC policy regarding information flows between isolated VMs. The VMM
codebase is substantially smaller than that of a host OS (tens of thousands of lines of code, as opposed to
millions, using Xen and Linux as examples), predicating formal verification for assurance. The MAC VM
and MAC policy attestation complete the establishment of DTRM trust, and we aim to show that the com-
plexity required of these components can still be a significant improvement over host OS MAC. Note that
we have not formally verified the implementation that we describe later in the paper, but that our architecture
lends itself to making the most security-critical components as small as possible,thereby helping to alleviate
security-relevant dependencies on components of excessive complexity.

The resulting system is shown conceptually in Figure 3; the entire distributed system functions as if
there is one reference monitor, which enforces the necessary policy onall members of the distributed sys-
tem. In order to build a reference monitor across machines, we must enable verification of its tamperproof
protections and its mediation abilities, and that verification of correctness of itsimplementation and MAC
policies is practical. We discuss these goals in light of our approach and implementation in Section 6.

3 System Architecture

In this section, we outline the system architecture for a DTRM and examine its ability to achieve the guar-
antees of a host reference monitor across a distributed environment.

The goal of our architecture is to enable the creation of distributed coalitionsof VMs, as shown earlier
in Figure 1. Sailer et al. define acoalition as a set of one or moreuser VMsthat share a common policy

5

M A C S y s t e mM A C S y s t e mT r u s t e d cC o m p u t i n g cB a s e cR e fM o n T r u s t e d cC o m p u t i n g cB a s e cR e fM o n
M A C S y s t e mT r u s t e d cC o m p u t i n g cB a s e cR e fM o nV M V M V M V M V M V MD i s t r i b u t e d , T r u s t e d R e f e r e n c e M o n i t o r f o r a l l V M s

Figure 3:The DTRM approach results in a conceptually singular reference monitor which is shared across
all machines in the distributed system. Individual machines have assurance that other machines are enforc-
ing the desired MAC policy.

and are running on a single hypervisor system with MAC [31]. We extend the definition of a coalition to
include VMs on physically separate hypervisor systems which share a common MAC policy. The resulting
distributed coalition has a MAC policy enforced by adistributed, trusted reference monitor(DTRM). We
begin by providing a high-level overview of our architecture. We then present the specifics of the hypervisor
MAC architecture we use (Section 3.2). Next, the process of extending theDTRM is presented, thereby
establishing abridge between two systems (Section 3.3). We also discuss some limitations of our design
(Section 3.4).

3.1 Architecture Overview

As depicted in Figure 4, our architecture consists of the following concepts: (1) user VMsimplement ap-
plication function; (2)coalitionsconsist of a set of user VMs implementing a distributed application; (3)
distributed, trusted reference monitors(DTRM) consist of a combination of reference monitors for all ma-
chines running user VMs in a single coalition; (3)common MAC policiesdefine MAC policies for a single
DTRM; (4) hypervisorsare VMMs that run on a single physical machine and enforce the common MAC
policy for local communications on that machine; (5)MAC VMsenforce the common MAC policy on inter-
VM communications across machines; and (6)secure, MAC-labeled tunnelsprovide integrity protected
communication which is also labeled for common MAC policy enforcement.

User VMs represent application processing units. Typically, a user VM will belong to one coalition
and inherit its label from that coalition. For example, a set of user VMs thatmay communicate among
themselves, but are isolated from all other user VMs, would form a coalition. Each user VM runs under the
same MAC label, and all have read-write access to user VMs of that label. We note that other access control
policies are possible within a coalition. In another case, the coalition user VMscan be labeled with secrecy
access classes and interaction is controlled by the Bell-LaPadula policy [6].

Special user VMs may be trusted to belong to multiple coalitions, such as the MAC VM that is accessible
to all coalitions. These have a distinct label that conveys rights in the common MAC policy to access multiple
coalitions.

A coalition’s reference monitor is a distributed, trusted reference monitor (DTRM). It consists of the
union of the reference monitors for the physical machines upon which coalition’s user VMs run.

The common MAC policy is the union of the MAC policies of the reference monitorsin a coalition’s
DTRM. The common MAC policy must ensure MAC properties (e.g., isolation) ofits coalition in the context
of the other user VMs from other coalitions that may also be present on the DTRM’s physical machines.

The hypervisor and MAC VM comprise the reference monitoring componentson a single physical

6

Physical Machine

Distributed Reference Monitor

Secure MAC -
Labeled Tunnel

Hypervisor with MAC

MAC VM MAC VM

USER VM USER VM

Physical Machine

Hypervisor with MAC

Common
MAC

Policy

Physical Machine

Distributed Reference Monitor

Secure MAC -
Labeled Tunnel

Hypervisor with MAC

MAC VM MAC VM

USER VM USER VM

Physical Machine

Hypervisor with MAC

Common
MAC

Policy

Figure 4:Example of a distributed, trusted reference monitor (DTRM).

machine. The hypervisor controls user VM function local to that machine, and the MAC VM enforces inter-
machine communications. That is, we define that inter-machine communications are implemented only in
the MAC VM. Both enforce controls based on the common MAC policy.

Inter-machine communication is implemented via secure, MAC-labeled communicationtunnels. The
DTRM constructs secure communication tunnels between physical machines toprotect the secrecy and
integrity of communications over the untrusted network between them. Further, the tunnel is labeled, such
that both endpoint reference monitors in the DTRM can control which userVMs can use which tunnels.

The combination of above concepts forms a distributed, trusted referencemonitor system. The architec-
ture must enable composing and extending DTRMs as new machines join, an act that we callbridging. The
key step is the establishment of trust in the resultant DTRM.

3.2 sHype MAC Hypervisor

The foundation of a DTRM is sHype, a hypervisor security architecture developed by IBM Research for
different virtual machine monitors [31]. Building on emerging and broadly available hardware and soft-
ware support for virtualization, sHype provides simple, system-independent and robust security policies and
enforcement guarantees within the boundaries of a single VMM. sHype deploys mandatory access control
policies enforced independently of the controlled virtual machines. It offers two policy components: a Sim-
ple Type Enforcement policy (STE) that controls the sharing between different VMs, and a Chinese Wall
policy (CHWALL) that controls which VMs can run simultaneously on the same system.

The STE policy component controls sharing between virtual machines by controlling access of virtual
machines to inter-VM communication and to any virtual resources such as virtual block devices and virtual
network devices, through which VMs can share information indirectly. Conceptually, the STE policy cre-
ates coalitions of VMs and assigns VM and resource memberships to coalitions. Treating both VMs and
virtualized hardware resources equally as generic resources, access control decisions using STE are based
on common coalition membership. This is stated formally below, whereres stands forresource:

(1)access allowed(res1, res2) = ∃coalition : member(res1, coalition)∧member(res2, coalition)

7

(2) member(res, coalition) = coalition ∈ ste label(res)

The CHWALL policy component controls which VMs can share a physical machine at any time. It is de-
signed to approximate an air-gap between conflicting workloads so that such workloads, running in different
virtual machines but at different times, cannot affect each other evenin the absence of strong resource con-
trol or in the presence of residue covert channels. The CHWALL policydefinesconflict setsthat consist of a
set of CHWALL types (usually a CHWALL type refers to a certain data set used by a workload). Every VM
is assigned a CHWALL label consisting of the set of CHWALL types for this VM. Let running typesbe the
managed set of CHWALL types of all labels of currently running VMs. Then starting a VM A is decided as
follows:

(3) start allowed(A) = ∀type ∈ chwall label(A),∀conflict setsCS :
type ∈ CS → ∀cstype ∈ CS, cstype 6= type : cstype /∈ running types

The sHype CHWALL component implements the simple security property of the formal Chinese Wall
security model defined by Brewer and Nash [8]. The *-property can be approximated by properly configur-
ing the STE policy component by aligning the STE and CHWALL type definitions.For example, a financial
analyst being prevented from knowing conflicting information of different companies in the Brewer/Nash
model corresponds to the hypervisor in sHype being prevented from multiplexing access to a single shared
hardware device between conflicting workload types.

3.3 Setting up a Bridge

When a user VM of a system joins a coalition, its reference monitor (components of the VMM and MAC
VM on the joining system) bridges with the coalition’s DTRM. In our implementation, areference monitor
that is already a coalition member serves as a representative for the coalition. The following steps are
necessary to complete the bridging process: (1) the new reference monitor needs to obtain the coalition’s
configuration: its MAC, secure communication, and attestation policies; (2) using the attestation policies, the
joining reference monitor (JRM) and the DTRM mutually verify that their tamper-responding and mediating
abilities are sufficient for the bridging; (3) the new user VM is initialized; and(4) the secure, MAC-labeled
network communication of the bridge is enabled. Each of the four stages of the bridging process are now
described in detail.

Stage 1: Establish Common MAC Policy A new reference monitor joining the coalition will affect MAC
policy in two ways: (1) the joining reference monitor will add the coalition label and its rights to its local
MAC policy and (2) the DTRM common MAC policy will become the union of the JRM and former DTRM
MAC policies. First, the JRM must verify that the resultant coalition policy is compatible with the current
policy (e.g., does not violate isolation guarantees of the coalition). Second,the resultant DTRM policy now
includes that of the JRM to ensure that overall DTRM security goals can beenforced.

We present two different ways that the joining reference monitor (JRM) can obtain a coalition’s common
MAC policy. First, the JRM may have its own MAC policy and a means for translating coalition MAC policy
to its labels. This is necessary because the semantics of a particular label (e.g.,green) in the JRM’s existing
configuration may map to those of another label (e.g.,blue) in the distributed coalition. In a coalition that
uses a single label, the label name may be translated to one the JRM understands. Using simple name
translation, coalitions may easily interact, but effort is required to predefine a universal label semantics and
syntax into which coalition labels of the local system can be translated.

A second option is to have the distributed reference monitor push a configuration to the JRM and have
the JRM enforce coalition-specific policies. In this case, coalitions would beisolated since the knowledge

8

of how to combine them is not included. Our prototype uses the first approach, so the MAC policy is fixed
at the hypervisor level and coalition policies are mapped to it.

Stage 2: Confirm Tamper-Responding and Mediating Abilities An attestation policy is used to mutually
verify JRM and DTRM tamper-responding and mediation abilities. We require attestations of the hypervisor
and MAC VM code, as well as the MAC policy each system has used. This identifies the initial state of the
system, its isolation mechanism, its reference monitoring mechanism, and the security goals that will be
enforced via the MAC policy. Our prototype, which we describe in Section 4, attests to the Xen hypervisor
code, MAC VM code, and the MAC policy.

Stage 3: Initialize User VM The code to be executed inside the user VM is assigned a MAC label based
on attestation of the code. In the BOINC example, the user VM is already present and labeled (e.g.,green),
so initialization is trivial. The BOINC server may want attestation that the BOINC client was started as
expected. In that case, attestation may be applied at the user VM level to prove to the BOINC server which
code was used. An additional optimization, which we discuss in Section 6, is to have the BOINC server
provide the code for the entire user VM (i.e., the OS image as well as the BOINCclient software).

Stage 4: Secure, Labeled CommunicationWe construct a secure, MAC-labeled tunnel for the bridge in
the MAC VM. The secure communication policy is selected when the user VM attempts to communicate
with a coalition member and determines the secrecy and integrity requirements of the communication (e.g.,
AES encryption with keyed-hash message authentication code integrity protection) as well as the MAC label
for the tunnel. The MAC label determines which endpoint VMs have accessto the tunnel. For example, a
greenuser VM may have access togreentunnels and only togreentunnels, so an isolated coalition can be
constructed. Our prototype uses the MAC-labeled Linux IPsec implementationin the MAC VM to construct
and control access to tunnels for user VMs.

3.4 Limitations

The distributed reference monitor architecture is not without some limitations, discussed below.

Hardware Attacks This architecture does not protect the system against cracking of keysvia hardware
attacks. If such protection is needed, attestation needs to obtain appropriate guarantees (e.g., from a TPM in
a location that assures such protections).

Initialization While discovering that an initial value is wrong is easy (e.g., Tripwire [23]),proving that an
initial configuration is correct is difficult, particularly for the mutable input data to a system. The proposal
for Integrity Verification Procedures (IVPs) for the Clark-Wilson integrity model has been met with very few
examples [9]. Attestation enables verification of the initial state of code and static data, but not for mutable
data.

Runtime Tamper-Responsiveness TPM-based attestation mechanisms (e.g., the Integrity Measurement
Architecture (IMA) of Sailer et al. [30]) measure inputs at load-time. Thus, runtime tampering may go
undetected. Other techniques, such as Copilot [18] and BIND [33], aimto provide some runtime guarantees
in addition to load-time guarantees, but they face other obstacles, such as preventing circumvention and
annotation effort.

Misbehaving Coalition Member This architecture does not protect a user VM from a coalition member
that is misbehaving in ways that are not detected by the tamper-responding mechanisms. Since load-time
guarantees do not cover all runtime tampering, such issues are possible.However, the code loaded and
attested can safely be related to known vulnerabilities. It is here that minimizing code and policy complexity

9

can pay off. The lower the complexity, the stronger the guarantees that can be provided via attestation.
Ideally, everything would be of sufficiently low complexity to enable formal verification for assurance.

Enforcement Limits The individual reference monitors will not have complete formal assurance, so some
information flows, such as covert channels, may not be enforced. Theprotections afforded by reference
monitors should be stated in attestation policies, so that the creation of incompatiblecoalitions on the same
system is not allowed. The sHype hypervisor MAC policy enables by use of conflict sets of the Chinese
Wall policy to formally define which coalitions cannot run at the same time on the same hypervisor system
[31].

4 Implementation

We implemented a DTRM for volunteer distributed computation according to the design presented in the
previous section. This section describes our implementation in detail. It starts with a description of the
hardware and software configuration of our prototype. It continues with descriptions of how we imple-
mented secure, MAC-labeled tunnels for network communication; type mappingand MAC enforcement for
the reference monitor; and integrity measurement for attestation.

Physical Machine 2

Prototype Distributed Reference Monitor

SELinux-Labeled�
IPsec Tunnel

Xen Hypervisor with sHype MAC

SELinux

Standard Linux

Physical Machine 1

Xen Hypervisor with sHype MAC

SELinux

BOINC server�
Apache�
MySql�
PHP

BOINC client

Standard Linux

domU User VM

dom0 MAC VM dom0 MAC VM

domU User VM

Figure 5:Bridging the Distributed, Trusted Reference Monitor (DTRM) in our distributed computing proto-
type.

4.1 Machine Configuration

We configured two hypervisor systems running Xen [5] with sHype [31].One system runs a dedicated
BOINC [2] server inside a non-privileged user VM. The other system runs one or more BOINC clients,
each in its own user VM. The supervisor domain in each Xen system runs Fedora Core 4 with SELinux [35]
configured instrict mode. These supervisor domains serve as the MAC VMs and perform the necessary pol-
icy translations from SELinux labels on an IPsec tunnel [21, 22] to local sHype labels. Our implementation
is based on a Simple Type Enforcement (STE) policy, where Xen VMs can share resources and data only if
they have been assigned a common STE-type. Figure 5 shows the structureof our prototype.

10

We used two machines in our experiments,shype1 andshype2. Each has a 2.4 GHz Pentium IV
with 1 GB of RAM and a 512KB cache. We usedshype1 as the BOINC client andshype2 as the BOINC
server. We will provide more details as appropriate, referencing the machines by name for convenience.

Device Driver and MAC VMs on Xen
We built and maintain our DTRM prototype on the current unstable development version of Xen 3.0:

xen-unstable. While one of the design goals for Xen 3.0 is the ability to assign various physical
resources to device driver VMs, such functionality is not currently implemented byxen-unstable. When
xen-unstable boots, it starts a special privileged VM with ID 0 called domain 0, ordom0. dom0 has
access to all devices on the system, thus, in our prototype, we have only one device driver VM –dom0.

Our configuration ofxen-unstable has sHype enabled and enforces a Simple Type Enforcement
(STE) policy. dom0 runs SELinux and serves as the MAC VM that does policy translation between the
labeled IPsec tunnel and local sHype types. As we will show, the SELinux policy needed ondom0 is
significantly smaller than an SELinux policy for a typical Linux distribution, as it deals primarily with
networking controls.

User VMs on Xen ThedomU on shype2 runs Fedora Core 4 and consists of installations of Apache,
MySQL, PHP, and the BOINC server software. The BOINC server issues compute jobs to clients, collects
and tabulates results, and makes status information available via the website it hosts.

ThedomU onshype1 runs Fedora Core 4 and the BOINC client software. The BOINC client accepts
compute jobs from the BOINC server, runs them, and returns the results.

4.2 Labeled IPsec Tunnels

We use labeled IPsec connections operating in tunnel-mode [22] as the secure communication mechanism
between thedom0s (MAC VMs) onshype1 andshype2. We first describe the role of the labeled tunnels
in the distributed MAC system, and then describe their implementation. We describethe processing of
packets arriving at adom0 from a remote system and destined for a localdomU; processing is symmetric in
the opposite direction, when packets arrive at adom0 from a localdomU and destined for a remote system.

Packets arrive indom0 having come in over the labeled IPsec tunnel from another machine in the
distributed coalition. The first check is that these packets are destined forsomedomU on the local hypervisor
system (packets with any other destination are silently dropped usingiptables rules indom0).

The packets in a flow destined for adomU on the local hypervisor system must pass through a reference
monitor before being delivered. It is the responsibility of the MAC code indom0 to perform the translation
between SELinux subject labels on the IPsec tunnel and the sHype labels on eachdomU. As illustrated
abstractly in Figure 5, reference monitor functionality exists in both the endpoint of the IPsec tunnel (OS
type checkin dom0) and in the hypervisor (hypervisor type checkin sHype).

The OS type check occurs automatically as part of the normal operating behavior of our IPsec configu-
ration. The IPsec tunnels that we employ use tunnel-mode extensions to a prior patch by Jaeger et al. [17].
These researchers added support for SELinux subject labels to be included in the negotiation process when
IPsec connections are established. This functionality is achieved throughadditions to three code bases: (1)
theracoon Internet Key Exchange (IKE) [13] daemon which does all negotiation for IPsec connection
establishment; (2) thesetkey application which adds and removes entries from the IPsec Security Policy
Database (SPD); and (3) the netfilter and Linux Security Modules (LSM) hooks in the Linux kernel where
IPsec packets are processed. The key authorization controls which IPsec policies, and hence labels for resul-
tant IPsec security associations, may be authorized to a subject (i.e., a user VM). There are six other hooks
used: four authorize allocation and deallocation of IPsec policies and security associations, and two filter

11

incoming and outgoing packets.
The functionality provided by the enhancedracoon of Jaeger et al. provides the necessary guarantee

that all IPsec packets will have subject labels that are known to both endpoints. That is, an IPsec connection
cannot be established without both endpoints having an entry for the tunnel label in their respective IPsec
and SELinux policies. Thus, packets with unknown labels will never arrive via an established IPsec tunnel.

In our current implementation, the IPsec policy for eachdom0 (acting as a MAC VM) in the DTRM of
a distributed coalition must be preconfigured with all possible SELinux subject types that may be needed by
racoon in a negotiation to establish an IPsec tunnel. However, recent work by Yin and Wang shows that it
is possible to add new IPsec policy on the fly [40].

4.3 Type Mapping and Enforcement

The IPsec tunnel(s) between machines in a distributed coalition provide authenticated, encrypted commu-
nication while conveying MAC type information. This information is applied in the enforcement of sHype
policy. That is, the IPsec tunnel and MAC VM are tools that help to ensure that machines in a distributed
coalition enforce semantically equivalent sHype policies. To achieve this goal, we must translate between
SELinux subject types and sHype types.

In our prototype, the mapping from sHype types to SELinux subject types isconfigured statically.
SELinux subject types have the formuser:role:type, while sHype types can be arbitrary strings. Since cur-
rently we have no type transitions (in the SELinux sense) for the types ofdomUs, we use the userdomu u
and the roledomu r. We adopted the convention that we interpret the sHype type label as an SELinux type.
For example, an sHype typegreen t will map to SELinux typedomu u:domu r:green t.

We modified the authorization hook in the IPsec extensions of Jaeger et al. tocall our own authoriza-
tion function for IPsec packets destined for somedomU. SELinux subject labels for making authorization
decisions are inferred from the sHype label of thedomU to which flows are destined, or from which they
originate. Onxen-unstable, the OS running in eachdomU has a virtual network interface driver known
as afrontend. Thebackenddrivers for all these virtual network interfaces reside indom0, manifested in the
form of additional network interfaces. sHype mediates communication between frontends and their corre-
sponding backends inside the hypervisor. Device drivers for physical network interfaces reside entirely in
dom0, so that packets to and from physical networks always leave and enterthe platform viadom0.

Our authorization function (see pseudocode in Figure 6, and a summary oftotal code changes in Fig-
ure 7),get sid from flowi(), returns an SELinux SID (thesid) when given aflowi and direction.
A flowi is a small kernel struct which maintains state for a generic Internet flow. The state which interests
us includes the input interface (iif), output interface (oif), and source and destination IP addresses.

One of our design goals is to minimize per-packet overhead. We decided to use theiif andoif
to keep track of packet origin and destination while packets traverse the IProuting logic inside the ker-
nel. By default inxen-unstable, the iif andoif are not maintained all the way through to our
authorization function, though space for the variables exists in theflowi. We added one line of code
to net/ipv4/xfrm4 policy.c in thedom0 kernel to maintain theiif (e.g.,vif1.0) on outgoing
flows (packets travelling fromdomU to the IPsec tunnel) so that theiif can be used in the authorization
logic for outgoing flows. Note that thisiif value may be incorrect if a packet traverses the routing logic
multiple times (through, e.g., multiple kernel-only virtual interfaces withindom0, which are not visible
outside ofdom0). Since our prototype system does not use multiple layers of routing logic, theiif value
is always correct.

Though we would like to make a corresponding change for packets travelling from the IPsec tunnel
to somedomU in order to authorize packet delivery to thatdomU, theoif is not known until after the

12

packets have been routed. We would like to keep the label of the tunnel on which a packet arrived with that
packet until it reaches our authorization function. However, we decided against adding additional memory
requirements for all packets. Maintaining theiif on packets arriving on the physical interface for the IPsec
tunnel will not be helpful because traffic for more than onedomU may travel through a particular physical
interface. Hence, we currently use the destination IP address of a tunneled packet to lookup the destination
interface of adomU from a small struct that we added to the kernel, described below. Note thatthe integrity
of the destination IP address is maintained by the IPsec tunnel.

We added two data structures (linked lists of smallstructs) to thedom0 kernel to maintain the addi-
tional information necessary for policy translation between SELinux and sHype types. The first list main-
tains metadata for eachdomU: its domain ID, Internet-visible IP address, and backend interface name.The
second maintains a mapping between sHype textual labels and their binary equivalents in compiled sHype
policy. Both of these lists are manipulated by reading and writing to entries in/proc/dynsa (for dynamic
security association). Maintenance of the first list (domU metadata) is performed automatically by exten-
sions we made to the Xen scripts which start and stopdomUs. The second list (sHype mapping) is populated
whenever the sHype policy is loaded or changed (typically once per boot,although it is possible to change
the policy while a system is running).

structures, types, & enumerations:
100: list entry t ≡ 〈domid , ipaddr , iface name〉 /∗ domU metadata list entry.∗/
101: sid t ≡ 〈Integer〉 /∗ SELinux Security ID.∗/
102: ssid t ≡ 〈Integer〉 /∗ sHype Security ID.∗/
103: flowi t ≡ 〈src ip, dst ip, src port , dst port , iif , oif , ...〉 /∗ kernel-definedflowi. ∗/
104: dir t ∈ {IN ,OUT} /∗ kernel-defined enumeration.∗/

get sid from flowi(flowi t fl, dir t dir) : /∗ return SELinux SID given flow info.∗/

200: list entry t e
201: if (dir == OUT) then
202: e = find list entry by iface(fl .iif) /∗ domU to tunnel, search by interface.∗/
203: else if(dir == IN) then
204: e = find list entry by ipaddr(fl .dst) /∗ tunnel todomU, search by IP addr.∗/
205: end if
206: if e == NULL

207: then return ⊥ /∗ Fail if no entry found.∗/
208: ssid t ssid = hcall ssid from domid(e.domid) /∗ get sHype SSID for domain domid via hCall.∗/
209: string t label = get label from ssid(ssid) /∗ map sHype SSID to string label.∗/
210: label = “domu u : domu r :′′ + label /∗ convert sHype label to SELinux label.∗/
211: sid t sid = security context to sid(label) /∗ obtain SELinux SID for textual label.∗/
212: return sid

Figure 6:Pseudocode for the authorization function in our bridging reference monitor. The stringlabel
is the human-readable type label, which gets converted from an sHype label to an SELinux subject label
by prependingdomu u:domu r:. Thesecurity context to sid() function is part of a normal
SELinux installation; the remaining functions are all part of our implementation.

13

File LOC Purpose
dynsa.c 814 get sid from flowi(), /proc entries, linked lists
xfrm.c 10 callsget sid from flowi()
xfrm.h 1 get sid from flowi() prototype
privcmd.c 35 hcall ssid from domid()
privcmd.h 1 hcall ssid from domid() prototype
xfrm4 policy.c 1 maintainiif
xfrm6 policy.c 1 maintainiif
vif-route 8 update/proc entries on domain create / destroy

Figure 7:Size of code changes for our DTRM implementation.dynsa.c is the only file that we created;
all other entries in the table refer to modifications to existing files. LOC stands for Lines of Code.

4.4 Integrity Measurement

We establish trust into the individual systems that form a distributed MAC system by determining that
each system is running software that forms an acceptable reference monitor enforcing the required security
properties, that each system has been configured with a MAC policy whereby the common MAC policy
protects the coalition, and that the software and policy have not been tampered with. To this end we use
remote attestation based on the Trusted Platform Module (TPM).

The most important requirement is to establish trust into the parts of each system that make up the
DTRM. Recall from Figure 5 that the DTRM comprises the Xen hypervisor and MAC VM (i.e.,dom0) on
all systems that join a coalition. We attest to the integrity of these components by inspecting measurements
of the system BIOS and boot loader, the Xen hypervisor image and its MAC policy, as well asdom0’s
SELinux kernel image, its initial RAM disk and its MAC policy. Currently, we do not attest to the IPsec
configuration programsracoon andsetkey because of an SELinux limitation having to do with stacking
multiple LSM modules in the same kernel. However, we expect that this limitation will belifted in future
Linux versions, and we plan to extend attestation to application-level software indom0 at that time.

We also provide a way to establish trust into the user VMs running on top of theDTRM (i.e.,domUs).
We attest to the integrity of adomU by inspecting measurements of its Linux kernel image and its initial
RAM disk, as well as application binaries loaded in that virtual machine. For the BOINC client and server,
this involves measurement of their binaries.

We use a virtual TPM (vTPM) facility, which is already a part ofxen-unstable, to report measure-
ments of software loaded intodomUs. This facility is necessary to make TPM functionality available to
all virtual machines running on a platform. It creates multiple vTPM instances that each emulates the full
functionality of a hardware TPM, and multiplexes requests as needed to the single physical TPM on the
platform. EachdomU is associated with a vTPM instance that is automatically created and connected tothe
domU when that virtual machine is created.

We have achieved this by dividing the number of TPM Platform ConfigurationRegisters (PCR) into two
regions. The lower PCR registers are designated for the vTPM-hosting environment – currentlydom0 – and
reflect the accumulation of boot measurements taken therein. Queries for their values by thedomU return
the current values of the hardware TPM. Requests for extending their values, however, are rejected, since
the registers do not belong to thedomU. The upper set of PCR registers, on the other hand, are free for
use by thedomU and their values can be extended as needed, for example for accumulatingmeasurements
of launched applications. This connection of independent measurement lists is valid since the party that
connects the hardware TPM with the software TPM measurements is fully attested by the hardware TPM.

14

5 Experiments

We ran a number of experiments to verify the workload isolation and softwareintegrity properties of our
distributed MAC system. In all these experiments we used the prototype systemshown in Figure 5 and
described in Section 4.

5.1 Isolation

To verify isolation, we first constructed appropriate sHype, SELinux and IPSec policies onshype1 and
shype2. To the sHype and SELinux policies we added types named for colors, e.g .,red t, green t,
andblue t. In the sHype policy, we gavedom0s access to all sHype types since eachdom0 plays the
role of a MAC virtual machine in our system. Recall that MAC virtual machines assist the hypervisor in
enforcing MAC policy and form part of the truted computing base. Also in thesHype policy, we assigned the
same sHype type to the client and serverdomUs, e.g.,green t, since they form part of the same distributed
coalition of virtual machines. To our policy translation tables we added mappings between corresponding
sHype and SELinux types, e.g.,green t in sHype mapped togreen t in SELinux.

As a final step in the policy configuration, we created labeled IPsec policiesbased on the IP addresses
of shype1 andshype2, and on the IP addresses of the client and serverdomUs. ThedomUs, being
full-featured virtual machines, have their own IP addresses separate from the IP addresses ofshype1 and
shype2. So for example, we added an entry to the IPsec Security Policy Database on bothshype1 and
shype2 that instructed the system to allow communication between the clientdomU and the serverdomU
via a dynamically established IPSec tunnel betweenshype1 andshype2 that is labeledgreen t. The
SELinux policy has authorization rules that allowgreen t subjects to send and receive usinggreen t
security associations.

Next, we confirmed thatshype1 andshype2 could not communicate unless the proper IPsec, SELinux
and sHype policies were in place at both endpoints. We verified that thedom0s onshype1 andshype2
would not establish an IPsec tunnel between them until the necessary entries had been added to the IPsec
Security Policy Database and the SELinux policy at each endpoint. More specifically, we ranping in both
directions betweendom0 onshype1 anddom0 onshype2, and usedtcpdump to confirm that no traffic
flowed in either direction. We also verified that neither system would forward packets between the IPsec
tunnel endpoint indom0 and the localdomU until the necessary entries had been added to the the sHype
policy in the Xen hypervisor, the SELinux policy indom0, and the type mapping tables indom0. In this
case, we ranping in both directions between thedom0 in one platform and thedomU on the remote plat-
form, and between thedomUs in both plaforms. We again usedtcpdump to confirm that no traffic to or
from adomU would be forwarded by adom0.

In summary, only when all the appropriate policies where in place would packets flow between the two
domUs. In that case the BOINC server successfully sent compute jobs to the BOINC client, who ran the
jobs and successfully sent the results back to the server.

5.2 Integrity

To verify the trustworthiness of the hypervisor environments including thedom0 integrity, we first built a
database of software components. For each component, the database contains its measurement (i.e., hash),
and whether it’s trusted or untrusted. We added database entries for the key trusted components mentioned
in the discussion of attestation in the previous section. For example, for the Xen hypervisor we measured
its loadable image and its security policy. For eachdom0 we measured its SELinux kernel image, its initial
RAM disk, and its MAC policy.

Next, we set up two pairwise attestation sessions. In each session, one system periodically challenges

15

the other system for measurements of the software it has loaded into the hypervisor environment that is
relevant for the trustworthiness of the DTRM. We haddom0 onshype1 challengedom0 onshype2, and
vice versa. The challenged system returns a quote signed by the TPM of the current values of PCR registers
as well as the list of measurements taken by the Integrity Measurement Architecture [14]. The challenging
system compares the returned measurements to its database and attestation succeeds if only known compo-
nents are measured, which can be found in the created databases and which are tagged trustworthy in the
database.

Finally, we confirmed thatshype1 andshype2 could not communicate if any aspect of attestation
failed. We verified that thedom0s onshype1 andshype2 would not establish an IPsec tunnel between
them unless the attestation sessions between them showed that they where running the expected software.

We also haddomU onshype1 challengedomU onshype2, and vice versa. This attestation pair estab-
lishes security properties by mutually attesting the BOINC client to the BOINC server and vice versa. These
properties are essential for the distributed BOINC client-server application to ensure the trustworthiness of
the BOINC computation result. For eachdomU we measured its Linux kernel image, its initial RAM disk,
and the images and configuration information of applications such as the BOINC client. We also added to
the database an entry for a test application that we labeleduntrusted.

We also verified that thedomUs onshype1 andshype2 would not communicate unless the attesta-
tion sessions between them showed correct results. In particular, we tested the effectiveness of our periodic
challenges by running our untrusted test application alongside the BOINC client software after communi-
cation had been successfully established. The next time the serverdomU challenged the clientdomU, the
returned measurements included one for the untrusted application, which caused the serverdomU to shut
down network communication with the clientdomU.

6 Discussion and Future Work

In this section, we review the achievements of the prototype relative to the construction of a reference
monitor across machines, and briefly mention lessons we learned during its construction.
Retrospective We discuss three requirements for a DTRM listed at the end of Section 2 in lightof our
architecture, prototype and experiments.

1. Distributed tamper-proofness:Our prototype requires a VM to successfully attest its ability to uphold
the security policies relevant for membership in a particular distributed coalition. We perform both
bind-time checks and periodic checks – resulting in tamper-responding behavior. The labeled IPsec
tunnel protects the flow of information between members of a distributed coalition.

2. Distributed mediation:The labeled IPsec tunnel, SELinux policy in the MAC VM, and sHype policy
in Xen ensure that all communication involving members of a distributed coalition is subject to the
constraints of the distributed reference monitor.

3. Verifiable enforcement:Our prototype uses 13 total authorizations in Xen and SELinux to enforce
MAC policies, and the MAC policies themselves only apply to user VMs for 5 of the authorizations.
However, the coalition examined is fairly simple. Nonetheless, we are optimistic that verification of
the reference monitor and MAC policies at this level of abstraction may provepractical for a number
of interesting systems. The main challenge is reducing the MAC VM or enabling verification of
reference monitor in spite of significant function in the MAC VM, such as network processing, as
discussed further below.

Reducing Attestation Overhead by Shipping CodeThe biggest challenge to effectively using attestation
is interpreting the measurement values returned to the party requesting the attestation from the attested
system. This is typically done by matching the returned measurement(s) againsta database containing

16

measurements of known-good software. To reduce the requisite maintenance of this database, the DTRM
may “ship” code to a new VM when it joins a coalition. Under these conditions, rather than checking a
measurement against a set of acceptable measurements, the DTRM knowsexactlywhat measurement to
expect. In this case, the reference monitor can construct the new user VM and immediately assign it a MAC
label. Consider the BOINC example used in this paper. The user VM can already be present and labeled
(e.g.,green) when the user joins it to an existing coalition. Then, the VM receives thegreenBOINC code
from the server and attests its integrity to prove to the BOINC server that this code was used.
Minimizing the DTRM In our prototype, the size of the MAC VM is on the order of a regular Linux
distribution. The quantity of code in this VM violates the code size constraints for reference monitors—a
problem which has plagued every commercial reference monitor we know of. The majority of the code
even in a minimal Linux installation is extraneous in a MAC VM. The critical components for the MAC
VM in a bridging system are (1) the operating system which boots in the VM; (2) the interface with the
hypervisor MAC system; (3) the interface with the labeled secure tunnel to other machines in the distributed
coalition; (4) the policy for the labeled secure tunnel; (5) the attestation mechanisms in the MAC VM;
(6) the attestation policy; and (7) the mechanism for determining policy compatibility(e.g., when joining
a distributed coalition). Instead of running a full Linux kernel in the MAC VM, specialized code can be
run which drives the network interface over which the secure labeled tunnel connects, and supports the
critical components just described. Hypervisors that can assign the responsibility for a particular device to
a particular VM (adevice driverVM) can help to reduce the code size of a MAC VM. We note that such
device driver VMs exist in enterprise-grade hypervisors (e.g., IBM’s PHYP) and are a planned feature for
the next major release of Xen.
Layering Security Policy Our distributed MAC architecture enforces MAC policy at two layers, the hyper-
visor and MAC VM. A distributed MAC system is arranged such that the most important security properties
are achieved by the lowest-complexity (most assurable) mechanisms. In other words, the DTRM enforces
coarse-grained policies. We envision thatintra-VM security controls, such as traditional discretionary access
control on file and user granularity or sophisticated mandatory controls such as implemented by SELinux,
will work within the inter-VM security controls offered by the DTRM into the application environment.
Theseintra-VM controls can benefit directly from the DTRM mandatory controls through a hypervisor in-
terface that allows VMs to interact in a controlled way with the hypervisor mandatory access control policy.
This structure is advantageous since the most security-critical componentsare also the most robust. The
layered service interface between the user VMs and the hypervisor follows the model of a layered Trusted
Computing Base. This may enable a service provider to host competing enterprises on the same physical
platform—a practice which is rare today because of the difficulty of enforcing service-level agreements.

7 Related Work

In Section 2 we discussed other systems which are related to distributing mandatory access control and
remote attestation. We now review additional alternatives to securing distributed systems.

Virtual Private Networks (VPNs) allow roaming individuals to connect to a geographically constrained
network as though they were located within those constraints. Today, IPsec [22] is commonly used in the
implementation of VPNs. While VPNs enhance the security of communication across the untrusted Internet,
they are founded on the assumption that all users of the network are benign. As the size of organizations
increases, this assumption becomes increasingly troublesome.

Kang et al. explore distributed MLS computing in a high-assurance environment [19]. The authors
combine single-level systems to multi-level distributed environments by using the network pump [20] to
safely connect systems of different security levels. Reeds [29] describes the networking of similar machines

17

that are mutually trusted by administration. He looks ahead to connecting heterogeneous machines and
states the requirements of such interconnected systems to mutually discover each other’s TCB, policy, and
software implementation properties. These are among the problems we have addressed in this work.

Distributed system access control was investigated in the context of the Taos operating system [24]. They
defines a general approach for administering authorizations in a distributed system based on discretionary
management of access and delegation statements. Some aspects of this work are requirements of ours, such
as building trust bottom-up, but we also focus on achieving security guarantees via MAC policies, where
Taos supported discretionary delegation.

Trust management systems also aim to describe authorization policies acrossa distributed system.
Such approaches compute authorizations from specifications in certificates that enable more general delega-
tions [7, 10, 25, 26]. These approaches are also discretionary, butthey connect user identities to programs.
We rely on code identity (i.e., digests) for labeling. Connecting users to subject labels will be done at user
VM initialization time, but the exact mechanism is to be determined.

Seshadri et al. propose Pioneer [32], a system for achieving run-timeattestation of code executing on
a particular hardware platform. This work is currently preliminary, but the approach shows promise as
an alternative for TPM-based load-time attestation. This work is complementary toour distributed MAC
system, which could leverage run-time attestation as well as TPM-based attestation.

Globus is an open architecture for grid computing [11]. Globus has been designed with attention to
security, concentrating on using a certification authority for a particular project that can issue certificates for
all participants [39]. The security design for Globus assumes that Globusis run on dedicated, administered
machines. Globus is not designed to be securely run alongside commodity applications (e.g., untrustwor-
thy downloads from the Internet). Using our bridged coalitions, Globus could share hardware with other
applications.

8 Conclusions

We developed a distributed systems architecture in which MAC policies can be enforced across physically
separate systems, therebybridging the reference monitor between those systems and creating a Distributed,
Trusted Reference Monitor (DTRM). The major insights are that attestation can serve as a basis for extend-
ing trust to remote reference monitors and that it is actually possible to obtain effective reference monitor
guarantees from a distributed reference monitor. This work provides a mechanism and guarantees for build-
ing a distributed reference monitor to support distributed applications such as BOINC. In addition, the
architecture also enables exploration of MAC, secure communication, and attestation policies and the con-
struction of reference monitors from a set of open-source components. As the community gains experience
with MAC bridging and new architectural features become available (e.g., TPMs [38], Intel LT [15] and
VT [16], and AMD Pacifica [1]), the quantity of code in the bridged TCB can be further reduced. Our
bridging architecture enables security policies to be layered based on theircomplexity, from coarse-grained
hypervisor-level policy up to sophisticated application-level policy.

References
[1] AMD. AMD64 virtualization codenamed ’Pacifica’ technology, secure virtual machine architecture reference manual. Tech-

nical Report Publication no. 33047, revision 3.01, May 2005.
[2] D. P. Anderson. BOINC: A system for public-resource computingand storage. InProceedings of the Workshop on Grid

Computing, November 2004.
[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@Home: An experiment in public-resource

computing.Communications of the ACM, 45(11):56–61, 2002.
[4] J. P. Anderson. Computer security technology planning study. Technical Report ESD-TR-73-51, The Mitre Corporation, Air

Force Electronic Systems Division, Hanscom AFB, Badford, MA, 1972.

18

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. InProceedings of the Symposium on Operating Systems Principles (SOSP),
October 2003.

[6] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and multics interpretation. Technical report,
MITRE MTR-2997, March 1976.

[7] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The keynote trust-management system, version 2. IETF RFC
2704, September 1999.

[8] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In Proceedings of the IEEE Symposium on Security and
Privacy, 1989.

[9] D. Clark and D. Wilson. A comparison of commercial and military computer security policies. InProceedings of the IEEE
Symposium on Security and Privacy, 1987.

[10] C. M. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M. Thomas, , and T. Ylonen. Spki certificate theory. IETF RFC 2693,
September 1999.

[11] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual organizations.Supercomputer
Applications, 15(3), 2001.

[12] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual machine-based platform for trusted
computing. InProceedings of the 19th Symposium on Operating System Principles(SOSP2003), October 2003.

[13] D. Harkins and D. Carrel. The internet key exchange (IKE). IETF RFC 2409, November 1998.
[14] IBM. Integrity measurement architecture for linux.http://www.sourceforge.net/projects/linux-ima.
[15] Intel Corporation. LaGrande technology architectural overview. Technical Report 252491-001, September 2003.
[16] Intel Corporation. Intel virtualization technology specification for the IA-32 Intel architecture. Technical Report C97063-002,

April 2005.
[17] Trent R. Jaeger, Serge Hallyn, and Joy Latten. Leveraging IPSec for mandatory access control of linux network communica-

tions. Technical Report RC23642 (W0506-109), IBM, June 2005.
[18] Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - a coprocessor-based kernel runtime

integrity monitor. InUSENIX Security Symposium, pages 179–194, 2004.
[19] M. H. Kang, J. N. Froscher, and I. S. Moskowitz. An Architecture for Multilevel Secure Interoperability.Proceedings of the

13th Annual Computer Security Applications Conference, San Diego, CA, 1997.
[20] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network Pump.IEEE Transactions on Software Engineering, 22(5):329–338,

1996.
[21] S. Kent and R. Atkinson. IP encapsulating security payload (ESP). IETF RFC 2406, November 1998.
[22] S. Kent and R. Atkinson. Security architecure for the internet protocol. IETF RFC 2401, November 1998.
[23] Gene H. Kim and Eugene H. Spafford. The design and implementation of tripwire: A file system integrity checker. InACM

Conference on Computer and Communications Security, pages 18–29, 1994.
[24] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Authentication in distributed systems: Theory and

practice.ACM Transactions on Computer Systems (TOCS), 10(4):265–310, 1992.
[25] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegationlogic: A logic-based approach to distributed authoriza-

tion. ACM Transactions on Information and System Security (TISSEC), 6(1):128–171, February 2003.
[26] Ninghui Li and John C. Mitchell. Understanding SPKI/SDSI using first-order logic. InProceedings of the IEEE Computer

Security Foundations Workshop, pages 89–103, June 2003.
[27] Robert Meushaw and Donald Simard. NetTop: Commercial technology in high assurance applications.Tech Trend Notes,

9(4):1–8, 2000.
[28] Microsoft Corporation. Next generation secure computing base. http://www.microsoft.com/resources/

ngscb/, May 2005.
[29] Jim Reeds. Secure IX network. InCryptography and Distributed Computing, Series in Discrete Mathematics and Theoretical

Computer Science. AMS/ACM, 1991.
[30] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-based integrity measurement archi-

tecture. InProceedings of the USENIX Security Symposium, 2004.
[31] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramón Ćaceres, Ronald Perez, Stefan Berger, John Griffin, and Leendert

van Doorn. Building a MAC-based security architecture for the Xen opensource hypervisor. InProceedings of the Annual
Computer Security Applications Conference (ACSAC), December 2005.

[32] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendertvan Doorn, and Pradeep Khosla. Pioneer: Verifying integrity
and guaranteeing execution of code on legacy platforms. InProceedings of ACM Symposium on Operating Systems Principles

19

(SOSP), pages 1–16, October 2005.
[33] Elaine Shi, Adrian Perrig, and Leendert Van Doorn. BIND: A time-of-use attestation service for secure distributed systems.

In Proceedings of IEEE Symposium on Security and Privacy, May 2005.
[34] Stephen Smalley and Peter Loscocco. Integrating flexible supportfor security policies into the linux operating system. In

Proceedings of the FREENIX Track: USENIX Annual Technical Conference, 2001.
[35] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing SELinux as a linux security module. Technical Report

01-043, NAI Labs, 2001.
[36] Sean W. Smith. Outbound authentication for programmable secure coprocessors. InProceedings of the European Symposium

on Research in Computer Security (ESORICS), October 2002.
[37] Sun Microsystems. Trusted Solaris 8 Operating System.http://www.sun.com/software/solaris/

trustedsolaris/, February 2006.
[38] Trusted Computing Group. Trusted platform module main specification, Part 1: Design principles, Part 2: TPM structures,

Part 3: Commands, October 2003. Version 1.2, Revision 62.
[39] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski,J. Gawor, C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke.

Security for grid services. InProceedings of Symposium on High Performance Distributed Computing (HDPC), June 2003.
[40] Heng Yin and Haining Wang. Building an application-aware ipsec policysystem. InProceedings of the USENIX Security

Symposium, 2005.

20

