
RC23873 (W0602-086) February 9, 2006
Computer Science

IBM Research Report

On Range Query Indexing for Efficient Stream Processing

Kun-Lung Wu, Shyh-Kwei Chen, Philip S. Yu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On Range Query Indexing for Efficient Stream Processing

Kun-Lung Wu, Shyh-Kwei Chen and Philip S. Yu

IBM T.J. Watson Research Center

19 Skyline Drive

Hawthorne, NY 10532

{klwu, skchen, psyu}@us.ibm.com

phone: 914-784-6615

Abstract

To monitor a large number of continual range queries against a rapid data stream, each
incoming data item should only be evaluated against relevant queries, not all the queries.
Generally speaking, a main memory-based query index with a small storage cost and a
fast search time is needed. In this paper, we study a 2D range query index that meets
both criteria. It centers around a set of predefined, containment-encoded squares, or CES’s.
CES’s are multi-layered, virtual constructs used to decompose range queries and maintain
the query index. With containment-encoding, the search process is extremely efficient; most
of the operations can be carried out by a simple logical-shift instruction. Simulations show
that, with a small index storage cost, the CES-based query index substantially outperforms
other alternatives in search time.

Keywords: Sensor Data Monitoring, Data Streams Processing, Query Indexing, and
Continual Queries.

1 Introduction

Continual range queries can be issued to monitor a variety of conditions in many stream appli-

cations. For example, in a sensor network stream application, continual range queries can be

used to monitor the temperature, humidity, flow of traffic and many other sensor readings. In

a financial stream application, continual range queries can be created to monitor the changes

in prices and volumes of company stocks or government bonds. In this paper, we focus on the

efficient processing of continual 2D range queries that can be specified as rectangles, such as

(x1 ≤ X ≤ x2) ∧ (y1 ≤ Y ≤ y2), on two independent attributes X and Y from a data stream,

possibly derived from various readings of a sensor network.

Processing continual range queries has become increasingly more difficult, if not impossible,

as the stream rate continues to increase. CPU can quickly become the bottleneck. Data items

may have to be dropped without processing, i.e., load shedding [2, 6, 18]. However, it is more

1

desirable that a system process as many data items as possible. Hence, it is important that

each data item in the stream is processed against only the relevant queries, not all the queries.

One approach to quickly identifying relevant queries for processing is to use a query index 1.

Each data point in an incoming stream is used to search the query index to find the range queries

containing the data point. This is referred to as the stabbing query problem [17], i.e., finding

the range queries that are stabbed by a data point.

Though maybe conceptually simple, it is quite challenging to design an effective 2D range

query index for stream processing, especially if the stream flows rapidly. Generally speaking,

a main memory-based query index with a small storage cost and a fast search time is needed.

Low storage cost is important so that the entire query index can be loaded into main memory,

eliminating potential performance degradation due to paging. Fast search time is critical so

that the system can handle a rapid stream. Existing spatial indexes [17], such as R-trees [8, 4],

can be used to index range queries. However, most of them are disk-based and generally not

suitable for stream processing because disk I/O’s might be needed during a search operation,

slowing down stream processing.

In this paper, we explore a new main memory-based query index for efficient stream process-

ing. It is based on predefined virtual constructs, VC’s. VC’s are a set of well-defined constructs

used as a reference framework to properly index arbitrarily-sized range queries. They are used

to decompose range queries and maintain the query index. Each VC is associated with a query

ID list, storing the queries covering that VC. For each incoming data point, search is conducted

indirectly by first computing the covering VC’s and then the covering queries.

There are three key challenges in designing an effective VC-based query index. (1) There

should be no ambiguity on whether or not a range query really covers a data point. Otherwise,

extra computation is needed to resolve the ambiguity. To eliminate ambiguity, a range query

should be “perfectly” covered by one or more VC’s. (2) Each range query should be decomposed

into a small number of VC’s in order to minimize the storage cost. (3) Each incoming data

point should be covered by a small number of VC’s in order to reduce the search time.

In the area of mobile computing, such as [10, 22], various query indexes were proposed

to efficiently evaluate continual range queries over moving objects. These approaches can be

considered as VC-based query indexing. By treating moving object locations as data points in

a stream, these query indexes in mobile computing can be applied to index range queries in

stream processing.

However, to the best of our knowledge, none of the previous work on VC-based query indexes

1Note that we are indexing the continual range queries, not the data in the stream.

2

meet all three challenges simultaneously. These indexes can be divided into two categories based

on the VC sizes: fixed-sized [10] and variable-sized [22]. The simplest and most naive fixed-sized

approach uses unit grid cells, UGC’s. However, a UGC-based query index fails in the second

challenge because a range query can be decomposed into a large number of UGC’s, incurring a

large storage overhead. In [10], cells of a fixed size L×L, where L > 1, were proposed for query

indexing. However, it fails in the first challenge because these fixed-sized cells cannot perfectly

cover every range query. This leads to ambiguities on whether or not a query really covers a

data point during a search. Search time suffers as a result. In [22], a variable-sized approach

was proposed for query indexing. However, it fails in the third challenge because the number

of VC’s covering a given data point can be large, leading to increases in search time.

In this paper, we present a new range query index that simultaneously meets all three

challenges. It belongs to the variable-sized category. It is based on a set of containment-

encoded squares, CES’s, predefined over the entire query space. There are multiple layers of

virtual squares with different sizes. Virtual squares in two different layers exhibit containment

relationships and such relationships are encoded in their ID’s. Containment-encoding makes the

search process extremely efficient because most of the operations can be carried out by a simple

logical-shift instruction. Each range query is perfectly decomposed into one or more CES’s.

Hence, no ambiguity exists on whether or not a data point is covered by a range query. With

variable-sized CES’s, each query can be decomposed into a small number of CES’s, reducing the

index storage cost. Containment-encoded squares limit the number of VC’s that can possibly

cover any data point to a small number, effectively lowering the search time.

Note that the current paper is not the first one, or the only one, to use the concept of

multi-layered, hierarchical squares. It has also been used for various other applications, such as

spatial joins [11] and spatial data mining [20, 21]. However, to the best of our knowledge, the

labeling of these multi-layered squares into containment-encoded squares, the use of CES’s to

decompose range queries for query indexing and the use of CES’s to facilitate extremely fast

search operations are new and unique. Our contributions can be summarized as follows:

• We presented a new CES-based range query indexing approach for efficient stream process-

ing. It simultaneously meets all three challenges to effective VC-based query indexing. It

is based on containment-encoded squares, which are virtual squares used to decompose

range queries, maintain the query index and conduct efficient search operations.

• We compared qualitatively and quantitatively the CES-based query index with other

alternatives. The results show that, with a small storage cost, the CES-based query index

3

significantly outperforms other alternatives.

The rest of the paper is organized as follows. Section 2 presents the details of the CES-

based query index. Section 3 provides qualitative comparisons of the CES-based index with

alternatives. Section 4 shows performance evaluation. Section 5 discusses related work. Finally,

Section 6 summarizes our paper.

2 CES-based query indexing

The new CES-based query index aims to have both low storage cost and fast search time. It

defines a set of containment-encoded squares to meet all three challenges. Here, we describe

the system model, the definition and labeling of CES’s, and the decomposition and the search

algorithms.

2.1 System model

Individual data items in a stream are assumed to be relational tuples with well-defined at-

tributes, e.g., network measurements, meta data records, sensor readings, and so on. Range

queries are assumed to be specified as conjunctions of two intervals involving two attributes

X and Y , i.e., a rectangle in a 2D space. For simplicity, assume that the attribute ranges are

0 ≤ X < R and 0 ≤ Y < R, respectively. Note that the monitoring region need not be a

square. It can be a rectangle. Query boundaries are assumed to be defined along the integer

grid lines of X and Y 2. However, data points from the stream can be any non-integer numbers.

In this paper, we define a rectangle or a virtual construct with (a, b, w, h), where (a, b) is the

bottom-left corner, w is the width and h is the height. To avoid duplication, we assume that a

virtual construct (a, b, w, h) is defined as {(x, y)|(a ≤ x < a + w) ∧ (b ≤ y < b + h)}.

2.2 Containment-encoded squares (CES)

Fig. 1 shows an example of containment-encoded squares and their ID labeling. The CES’s are

defined as follows. First, we partition the entire R × R monitoring area into (R/L)2 virtual

square partitions, each of size L × L. Here, we assume that L = 2k and L is the maximal

side length of a CES. The L × L squares are called level-0 virtual squares. Then, we create

k additional levels of virtual squares. Level-1 virtual squares are created by partitioning each

level-0 virtual square into 4 equal-sized L/2 × L/2 virtual squares. Level-2 virtual squares are

2If query boundaries are not integers, we can expand them to the nearest integers. The CES-based query

index can still be used to first efficiently identify a set of candidates. Extra checking might be needed to find the

final results from the candidates.

4

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1

2 3

0

Level 0

Level 1

Level 2

L

L 10

Containment-encoded squares (CES)

)4(33

4
)

3

14
()

2
(

 : regionfor thedefined sCES' total
221k

2
kk

RRR −=−+

kL

L

R

2 oflength sidea with squares virtual

0-level)(into region thepartition 2

=

422 ==L

0 1 2 3

7

11

65

98

12 1413 15

4

Figure 1: An example of containment-encoded squares (CES’s).

created by partitioning each level-1 virtual squares into 4 equal-sized L/4×L/4 virtual squares.

Level-k virtual squares have unit side length, i.e., 1 × 1.

The total number of CES’s defined within each level-0 virtual square, including itself, is
∑i=k

i=0 4i = (4k+1 − 1)/3. These virtual squares are defined to have containment relationships

among them in a special way. Every unit-sized CES is contained by a CES of size 2× 2, which

is in turn contained by a CES of size 4 × 4, which is in turn contained by a CES of size 8 × 8,

· · · , and so on.

Property 1 The total number of CES’s defined in an R×R monitoring region is (R
L
)2

∑i=k
i=0 4i =

4R2

3 − R2

3(4k)
.

The total number of CES’s defined is very close to that of UGC’s defined, which is R2.

However, CES-based indexing does not suffer from high storage cost as much as UGC-based

indexing. This is because large-sized CES’s, e.g., L × L, are available for decomposition. In

contrast, only unit grid cells of size 1 × 1 are available in a UGC-based query index, causing

each query to be decomposed into a large number of UGC’s.

Now, we describe the labeling of CES’s with containment encoding. A separate pointer

array is used to map the 2D virtual squares at each level into a linear order. Hence, there are

k + 1 pointer arrays for a CES-based query index.

Within each level, the ID of a virtual square consists of two parts: a partition ID and the

local ID within the partition. If a virtual square has a partition ID p and local ID zi, then its

unique ID ci at level i, where 0 ≤ i ≤ k, can be computed as follows:

ci = 4ip + zi. (1)

5

0

0 321

321 4 765 8 11109 12 151413

Level 0

Level 1

Level 20

Figure 2: An example of a perfect quaternary tree and its containment-encoded labeling.

This is because there are 4i CES’s within each partition at level i. The partition ID can be

computed as the row scanning order of the level-0 CES’s starting from the bottom row and

moving upwards. For example, for a level-0 CES (a, b, L, L), where (a, b) is the bottom-left

corner and L is the side length, its partition ID can be computed as follows:

P (a, b, L, L) =
a

L
+ (

b

L
)(

R

L
). (2)

The labeling of local CES ID’s within a partition follows that of a perfect quaternary tree

as shown in Fig. 2, where the ID’s of the four child squares are 4s, 4s+1, 4s+2 and 4s+3 if the

parent has a local ID s. In order to preserve containment relationships between virtual squares

at different levels, the CES ID’s within the same partition at each level follow the z-ordering

space-filling curve, or Morton order [14, 13, 17]. For example, in Fig. 1, the ID’s for the 16

level-2 virtual squares for partition 10 follow the z-ordering space-filling curve. In general, the

local ID’s of 4s, 4s + 1, 4s + 2 and 4s + 3 are assigned to the southwest, southeast, northwest

and northeast children, respectively, of a parent virtual square with a local ID s.

Property 2 For any CES at level i with a local ID zi, where 0 < i ≤ k, the local ID of its

parent can be computed by bzi/4c, or a logical right shift by 2 bits of the binary representation

of zi.

Let Z(a, b, 2i) denote the local z-order of a CES (a, b, 2i, 2i), where 0 ≤ i < k. Z(a, b, 2i)

can be easily computed by a bit-shuffling procedure [14, 13]. We summarize this procedure

as follows. Let ak−1 · · · a1a0 and bk−1 · · · b1b0 denote the least significant k bits in the binary

representations of â and b̂, respectively, where â = a − Lba/Lc and b̂ = b − Lbb/Lc. Note that

â and b̂ are the local bottom-left corner of CES (a, b, 2i, 2i) relative to that of its partition.

Z(a, b, 2i) can be computed by interleaving the most significant k − i bits of ak−1 · · · a1a0 and

6

Decomposition (a, b, w, h) {
m = 1; Q = (a, b, w, h) ;
while ((Q 6= NULL) ∧ (m < L)) {
remove leftmost column strip with width m, if any; split it into m × m CES’s;
remove topmost row strip with height m, if any; split it into m × m CES’s;
remove rightmost column strip with width m, if any; split it into m × m CES’s;
remove bottommost row strip with height m, if any; split it into m × m CES’s;
m = m × 2;

}
if (Q 6= NULL) {
divide Q into multiple L × L CES’s;

}
}

Figure 3: Pseudo code for decomposition algorithm with CES’s.

bk−1 · · · b1b0 as follows: bk−1ak−1 · · · biai. As an example, assume k = 2, then Z(10, 11, 20) =

14 = 11102, the binary representation of 14. It is derived from bit shuffling of 102, the most

significant 2 bits of 2 (10 − 8 = 2), and 112, the most significant 2 bits of 3 (11 − 8 = 3) (see

Fig. 1). Similarly, Z(10, 10, 21) = 3 = 112.

Property 3 The total number of CES’s that can possibly cover/contain any given data point

within the monitoring region is k + 1.

2.3 Decomposition algorithm

Fig. 3 shows the pseudo code for decomposing a rectangle range query (a, b, w, h) into one or

more CES’s. It is a modification of a strip-splitting-based optimal algorithm for decomposing a

query window into maximal quad-tree blocks [19]. The difference is that the algorithm in [19]

allows m to be as large as R, assuming that R = 2r, r is some integer, and R is the side length

of the monitoring area. In contrast, we only allow m to be as large as L = 2k, the maximal side

length of a CES. The decomposition algorithm performs multiple iterations of 4 strip-splitting

processes. During each iteration it tries, if possible, to strip away from Q a column strip or a

row strip of width or height of m = 2i, where 0 ≤ i < k, from each of the four outside layers

of Q, starting with i = 0. The column strip or row strip is then split or decomposed into

multiple m × m square blocks. The goal is to use minimal number of maximal-sized CES’s to

decompose Q. The entire strip-splitting process is like peeling a rectangular onion from the

outside. The width of each layer at each successive iteration doubled until it reaches L. After

that, it decomposes the remaining Q using L × L CES’s.

During each iteration, the rule to determine if there is any strip of width or height 2i that

7

can be removed from the remaining Q is based on the bottom-left corner, width and height of

Q [19]. Assume that the current remaining Q is denoted as (a′, b′, w′, h′), if (a′ mod 2i+1) 6= 0,

then a column strip of width 2i, where 0 ≤ i < k, can be removed from the leftmost of Q. If

((b′ + h′) mod 2i+1) 6= 0, then a row strip of height 2i can be removed from the topmost of Q.

If ((a′ +w′) mod 2i+1) 6= 0, then a column strip of width 2i can be stripped from the rightmost

of Q. Finally, if (b′ mod 2i+1) 6= 0, then a row strip of height 2i can be removed from the

bottommost of Q.

As an example to illustrate the strip-splitting-based decomposition, Fig. 4 shows the step-

by-step decomposition of a range query Q defined as (5, 2, 8, 12). (1) A column strip (5, 2, 1, 12)

of width 1 is stripped away from the leftmost outside of Q because (5 mod 2) 6= 0. The

remaining Q becomes (6, 2, 7, 12). The column strip can be split into 12 CES’s of size 1 × 1.

(2) Another column strip (12, 2, 1, 12) of width 1 can be stripped from the rightmost outside

of the remaining Q because ((6 + 7) mod 2) 6= 0. This column strip again can be split into 12

CES’s of size 1 × 1. After the stripping, the remaining Q becomes (6, 2, 6, 12). (3) A column

strip (6, 2, 2, 12) of width 2 is removed from the leftmost outside of Q because (6 mod 4) 6= 0.

The remaining Q becomes (8, 2, 4, 12). (4) A row strip (8, 12, 4, 2) of height 2 is removed from

the topmost outside of Q because ((2+12) mod 4) 6= 0. The remaining Q becomes (8, 2, 4, 10).

(5) A row strip (8, 2, 4, 2) of height 2 is removed from the bottommost outside of Q because (2

mod 4) 6= 0. The remaining Q becomes (8, 4, 4, 8). (6) Finally, (8, 4, 4, 8) is decomposed into

two 4×4 CES’s and the remaining Q becomes NULL. In total, 36 CES’s are used to decompose

the original Q. The query ID is inserted into the 36 associated query ID lists. In contrast, it

would have required 96 unit grid cells to decompose the same range query.

4 8 12

4

8

12

0,0 16

16
column strip with a
width of 1---(5, 2, 1, 12)
Q = (6, 2, 7, 12)

column strip with a
width of 1--(12, 2, 1, 12)
Q = (6, 2, 6, 12)

strip-splitting Q = (5, 2, 8, 12)

1 2

column strip with a
width of 2---(6, 2, 2, 12)
Q = (8, 2, 4, 12)

3

row strip with a
height of 2--(8, 12, 4, 2)
Q = (8, 2, 4, 10)

4

row strip with a
height of 2--(8, 2, 4, 2)
Q = (8, 4, 4, 8)

5

column strip with a
width of 4—(8, 4, 4, 8)
Q = null

65

4

31 26

Figure 4: An example of strip-splitting-based decomposition with CES’s.

8

Bottom-up Search(x, y) {
Ix = bxc; Iy = byc;
Px = bIx/Lc; Py = bIy/Lc;
// (LPx, LPy) is the partition bottom-left corner
p = Px + Py(R/L); // partition ID
z = Z(Ix − LPx, Iy − LPy, 2

0);
// local ID of CES (Ix, Iy, 1, 1)
for (l = k; l ≥ 0; l = l − 1) {
c = 4lp + z; // covering CES ID at level l
if (IDlist(l, c) 6= NULL) { output(IDList(l, c)); }
z = z/4; // right shifts by 2 bits

}
}

Figure 5: Pseudo code for a bottom-up search algorithm.

2.4 Search algorithm

For a given data point (x, y), the search algorithm finds the k + 1 CES’s that contain or cover

(x, y). Fig. 5 shows the pseudo code for a bottom-up search algorithm. It first finds the partition

ID and the local ID of the level-k CES that contains (x, y). Let p denote the partition ID and z

denote the local ID of the covering CES at level k. The unique ID of the covering CES at level

k is 4kp + z. From Property 2, the local ID at level k − 1 can be easily computed by dividing

z by 4 because of containment encoding. This can be implemented by a logical right shift by 2

bits. As a result, the entire search operation is extremely efficient. If the entire query index can

be fully loaded into main memory, the CES-based query index can handle a very rapid stream.

Note that even though we partition each virtual square at level i into 4 equal-sized quadrants

at level i+1, similar to the quad-tree space partition, the bottom-up search algorithm described

in Fig. 5 makes the CES-based query index unique. Most of quad-tree-based search algorithms

start from the root and hence are top-town approaches. The bottom-up search algorithm

achieves efficient search by taking advantage of the containment encoding embedded in the

local ID’s of virtual squares at different levels.

3 Qualitative comparisons with alternative query indexes

Fig. 6 describes a taxonomy of alternative VC-based 2D range query indexes based on the

sizes of VC’s and whether or not containment encoding exists among the VC’s. There are

3 categories: FS-NC, VS-NC and VS-CO. FS-NC uses fixed-sized VC’s and no containment

encoding exists among the VC’s. Both unit grid cells and L × L cells [10], where L > 1,

9

Table 1: Qualitative comparisons of alternative VC-based 2D query indexes.

Challenge 1 Challenge 2 Challenge 3 storage cost search time

FS-NC(1); e.g., UGC meets
√

fails meets
√

high fast

FS-NC(2); e.g., [10] fails meets
√

meets
√

low slow

VS-NC; e.g., [22] meets
√

meets
√

fails low slow

CES meets
√

meets
√

meets
√

low fast

belong to the FS-NC category. VS-NC uses variable-sized VC’s and no containment encoding

exists among the VC’s. The various VCR-based indexes presented in [22] belong to this VS-NC

category. Finally, VS-CO uses variable-sized VC’s and containment encoding exists among the

VC’s. The CES-based query index described in Section 2 belongs to the VS-CO category. Note

that the FS-CO category is not applicable because containment relation can not exist among

fixed-sized VC’s.

VC-based
query index

Variable-sized VC’s
(VS)

Fixed-sized VC’s
(FS)

No containment encoding
exists among the VC’s

(NC)

No containment encoding
exists among the VC’s

(NC)

Containment encoding
exists among the VC’s

(CO)

Category: VS-CO Category: VS-NC Category: FS-NC

Figure 6: A taxonomy of alternative VC-based 2D range query indexes based on the sizes of
VC’s and whether or not containment encoding exists among the VC’s.

In the following subsections, we describe examples of generic query indexes under the cat-

egories of FS-NC and VS-NC. For the FS-NC category, we show two alternatives: FS-NC(1)

uses unit-sized, or 1×1, cells and FS-NC(2) uses L×L, where L > 1, cells. Table 1 summarizes

the qualitative comparisons of various alternative VC-based query indexes.

3.1 Fixed-sized and no containment encoding I (FS-NC(1))

The simplest VC-based range query index is based on unit grid cells, UGC’s. The total number

of virtual constructs defined is R2. A range query (a, b, w, h) is decomposed into wh unit grid

cells. This is referred to as an FS-NC(1) query index. In a UGC-based query index, there is no

ambiguity on whether or not a query really covers a point. This is because every range query

can be perfectly covered by one or more UGC’s. However, the number of UGC’s needed to

10

0 4 8 12 16

4

8

12

16
q1

q2

q3

q4

ambiguity

iC cell

Figure 7: An example of a generic FS-NC(2) query index.

cover a range query can be large, especially if the area occupied by the range query is large.

Hence, the storage cost for the query ID lists can be prohibitive. The number of covering VC’s

for any given data point (x, y) is exactly 1 and its ID can be computed as bycR + bxc. The

search performance hence is very fast if the entire query index can be loaded into main memory.

If not, the search time can also be degraded due to page swapping effects.

3.2 Fixed-sized and no containment encoding II (FS-NC(2))

The high index storage cost of a UGC-based index can be reduced if L× L cells, where L > 1,

are used. This is referred to as an FS-NC(2) query index. One of the query indexes proposed

in [10] belongs to this category. Fig. 7 shows an example of a generic FS-NC(2) query index,

where 4 × 4 fixed-sized cells are used. With larger-sized cells for decomposition, a range query

requires fewer cells to cover it. Hence, storage cost is lowered. However, there is ambiguity

on whether or not a query really covers a point. For example, in Fig. 7, queries q1, q2 and q3

partially overlap with cell Ci. As a result, they may not cover a point inside cell Ci, creating

ambiguities during a search with a data point. Even though the number of cells that cover a

data point is only 1, boundary comparisons are needed to resolve the ambiguities, degrading

the search performance. This is particularly true if the boundary definitions are stored in a file

on disk.

3.3 Variable-sized and no containment encoding (VS-NC)

In a VS-NC query index, variable-sized VC’s are used. Fig. 8 shows an example of a generic

VS-NC query index using virtual construct squares, VCS’s, similar to one of the various query

indexes proposed in [22] for locating moving objects in mobile computing. For each unit grid

point, k + 1 virtual construct squares (VCS’s) are defined. These k + 1 VCS’s all have its

bottom-left corners at the same grid point. But, they have side lengths of 20, 21, · · · , 2k, where

k = log(L) and L is the maximal side length of a VCS.

11

Each query can be perfectly covered by one or more VCS’s. Hence, there is no ambiguity

on whether or not a query really covers a point. Moreover, because VCS’s of difference sizes

are available for decomposition, each range query can be covered by a small number of VCS’s.

Hence, the storage cost is low.

However, each data point can be covered by a large number of VCS’s, leading to increases

in search time. From Fig. 9, it can be shown that there are (4L2 − 1)/3 VCS’s that can cover a

data point (x, y). This can be derived as follows. Assume that (x, y) is inside the unit grid cell

in Fig. 9. Consider the bottom-left VCS with size L × L that covers the unit grid cell. This

L×L VCS can be moved eastwards along the X-axis and upwards along the Y -axis. There are

a total of L2 possible positions where the bottom-left corner of the L × L VCS can be placed

such that it still covers the unit grid cell. Similarly, for the VCS with size L/2 × L/2, the

number of possible positions is (L/2)2. Hence, the total number of possible covering VCS’s for

any data point (x, y) is L2 + (L/2)2 + · · ·+ 1 =
∑k

i=0(L/2i)2 = (4L2 − 1)/3. In contrast, there

are only k + 1 CES’s that can cover a data point, where k = log(L).

0

1

2

x

Virtual construct squares (VCS)

size: 1x1

size: 2x2

size: 4x4

)log(where,)1(

 : regionfor thedefined sVCS' total
2 LkRk =+

.2 where,2,...,2,2 of

length side with s,VCS')1(defines celleach

cellsgrid unit R into region thepartition

10

 2

L

k
kk =

+

422 ==L

Figure 8: An example of a generic VS-NC query index using VCS’s.

4 Performance evaluation

4.1 Simulation studies

Simulations were conducted to evaluate and compare quantitatively the CES-based index with

generic indexes from the FS-NC(1), FS-NC(2), and VS-NC categories, respectively. We focused

on the storage cost and search time because they are two of the most important metrics for a

VC-based query index. A low storage cost is desirable so that the entire index can be loaded into

12

L

L 2

L 4

L

2/L

4/L

4/L

4

L
2

L

2/L
L

Lunit grid cell

X

Y

Figure 9: Many VCS’s can cover a data point.

main memory. A fast search time is important so that a rapid stream can be properly handled.

Note that, the search time, in terms of finding the ID lists from the covering VC’s, of all the

VC-based query indexes are independent of n, the total number of continual queries indexed.

However, in our simulations, the search time included the report time, which involves reporting

the query ID’s stored in the associated query ID lists. As a result, it generally increases as n

increases. This is because on average the ID lists contain more query ID’s for a larger n. We

implemented all four VC-based indexes. The simulations were conducted on an RS6000 model

43P machine running AIX 5.1.

The experiments were conducted under monitoring regions of different sizes. The bottom-left

corner of a range query was randomly chosen from the monitoring region. Once the bottom-left

corner was chosen, the width w and the height h of a range query were chosen uniformly and

independently from [1,W]. Namely, w̄ = W/2 and h̄ = W/2. Various W ’s were used. The

maximal side length L of a virtual construct was varied from 2 to 32. A total of n rectangle

range queries were generated and inserted into the query index. In the experiments, n was

varied from 1,000 to 64,000. After insertion, we performed about 50,000 to 100,000 random

searches and computed the average search time. The storage cost included the pointer array(s)

and the query ID lists maintained. The data points for search was a pair of floating point

numbers chosen randomly and independently between 0 and R.

4.2 Impact of maximum side length (L)

We first examine the impact of the maximal side length L on the alternative query indexes in

terms of storage cost and average search time. Note that, when L = 1, the FS-NC(2), VS-NC

and CES-based indexes all degenerate into the UGC/FS-NC(1)-based index. Figs. 10(a) and

(b) show the storage cost and average search time, respectively, of the four indexes when R2

is relatively small (R2 = 65, 536). In contrast, Figs. 11(a) and (b) show the storage cost and

13

average search time, respectively, when R2 is relatively large (R2 = 262, 144). For the entire

set of experiments, a default W of 50 was used. The total number of range queries inserted was

16,000.

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

50

UGC/FS−NC(1)

max. VC side length (L)

to
ta

l i
nd

ex
 s

to
ra

ge
 (

M
 b

yt
es

)
(a) n = 16,000; W = 50; R = 256

CES
VS−NC
FS−NC(2)

10
0

10
1

10
2

0

20

40

60

80

100

120

140

UGC/FS−NC(1)

max. VC side length (L)

av
er

ag
e

se
ar

ch
 ti

m
e

(m
ic

ro
 s

ec
on

ds
)

(b) n = 16,000; W = 50; R = 256

CES
VS−NC
FS−NC(2)

Figure 10: Impact of L, when R2 is relatively small, on (a) total index storage cost; (b) average
search time.

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

45

50

UGC/FS−NC(1)

max. VC side length (L)

to
ta

l i
nd

ex
 s

to
ra

ge
 (

M
 b

yt
es

)

(a) n = 16,000; W = 50; R = 512

CES
VS−NC
FS−NC(2)

10
0

10
1

10
2

0

5

10

15

20

25

30

35

40

UGC/FS−NC(1)

max. VC side length (L)

av
er

ag
e

se
ar

ch
 ti

m
e

(m
ic

ro
 s

ec
on

ds
)

(b) n = 32,000; W = 50; R = 512

CES
VS−NC
FS−NC(2)

Figure 11: Impact of L, when R2 is relatively large, on (a) total index storage cost; (b) average
search time

As expected, the UGC/FS-NC(1) query index (the case with L = 1) has the fastest search

time and the highest storage cost. The high storage cost can be effectively lowered by all

three alternative indexes with a larger L. The lowest storage cost can be achieved by the FS-

NC(2)-based index with a large L. Note that, in the computation of index storage costs in this

paper, the query boundary definitions were not included for the FS-NC(2) index. Moreover, we

assumed that these definitions are stored in memory as well for fast search time. The search

time quickly increases for the FS-NC(2)-based index as L increases. In contrast, from L = 2 to

L = 32, the CES-based index has a comparable search time performance as the UGC/FS-NC(1)

index while incurring only a small fraction of the index storage cost. For example, for L = 16,

the storage cost of the CES-based index is less than 14% and 24% of that of the UGC/FS-NC(1)

14

index in Fig. 10(a) and Fig. 11(a), respectively. These represent improvements of 86% and 76%,

respectively.

In general, the average search time increases as L increases. This is particularly true for the

FS-NC(2) and VS-NC query indexes because their search times increases far more quickly than

the CES-based index as L increases. This is due to the failures of challenge 1 and challenge 3 by

the FS-NC(2) and VS-NC query indexes, respectively (see Table 1). For the FS-NC(2) index,

boundary comparisons dominate the search time even though there is only a single covering cell

for any data point. As discussed in Section 3.3, there are (4k+1−1)/3 VC’s that can potentially

cover a data point for the VS-NC index. In contrast, there are only k + 1 covering VC’s for the

CES-based index.

Under all cases, the CES-based index performs significantly better than the FS-NC(2) and

VS-NC query indexes in terms of search time. The advantage in average search time is par-

ticularly dramatic when L is large (see Figs. 10(b) and 11(b)). Note that the storage cost of

the CES-based index generally decreases as L increases while the search time increases only in

proportion to log(L). Hence, we can choose a large L, such as L ≈ W/2 and L = 2k, to lower

the storage cost without a noticeable increase in search time.

4.3 The impact of search result size

From now on, we will focus on the comparisons among FS-NC(2), VS-NC and CES-based

indexes. We assume that all three indexes use the same maximal side length L for their VC’s.

Depending on the number of range queries and the distribution of these queries, the search

result sizes can vary substantially. Search time is generally larger if a search result contains more

query ID’s because more ID’s need to be reported. Fig. 12 shows the impact of search result

size on search time. The search result size varies from about 120 to 200. For this experiment,

n = 16, 000, L = 16,W = 50 and R = 256. Because most of the search times for this experiment

are less than 70µ seconds, we repeated the same point search for 100,000 times and compute the

average. Fig. 12 plots the search times of 2000 random point searches for the FS-NC(2), VS-NC

and CES-based indexes. It also plots the corresponding average search times from Fig. 10(b)

as three different horizontal lines. In general, the search time is higher if the search result size

is larger for all three indexes. Moreover, if the search result is spread over many query ID lists

and they are far apart in the ID’s of the covering VC’s, the search time is higher for the same

search result size. This is due to the effect of paging swap.

Note that there are gaps between the horizontal lines and the corresponding search times

for the three indexes. This is due to the fact that the 100,000 repeated searches for a given data

15

point might cause the query ID lists containing the result to be cached in memory in Fig. 12.

On the other hand, each data point was only searched once and no caching benefits can be

realized in Fig. 10(b). Moreover, the caching benefit is most significant, i.e., the gap is widest,

for the VS-NC index among the three because it has the largest number of VC’s defined and

hence the covering VC’s may be spread most widely.

120 130 140 150 160 170 180 190 200 210
0

10

20

30

40

50

60

70

80

search result size

se
ar

ch
 ti

m
e

(m
ic

ro
 s

ec
on

ds
)

n=16,000; L=16; W=50; R=256

FS−NC(2)
VS−NC
CES

Figure 12: Impact of search result size on search time.

4.4 The impact of monitoring area

As R increases, the storage cost for the pointer array(s) becomes dominant in determining the

total storage cost. This is because more virtual constructs will be defined. Figs. 13(a) and 13(b)

show the total index storage and average response time, respectively, for the FS-NC(2), VS-NC

and CES-based query indexes as R varies from 128 to 2,048. The storage cost of the VS-NC

index becomes greater than that of the CES-based index when R becomes large because more

VC’s are defined. The storage cost of the FS-NC(2) index is the smallest. However, the search

time is substantially higher than those of the VS-NC and CES-based indexes, respectively,

especially when R is small. This is because, with the same number of queries, there are far

fewer ambiguities to be resolved during a search for a large R than for a small R. Namely, the

same number of queries is spread over a larger region and hence the number of queries that

can partially overlap with a cell is smaller. More importantly, the average search time of the

CES-based index remains very low for most of R values.

4.5 The impact of number of range queries (n)

Figs. 14(a) and 14(b) show the index storage cost and average search time, respectively, when

R2 is relatively large. For this set of experiments, W was 60, n was varied from 1,000 to 64,000

and L = 8.

16

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

monitoring region side length (R)

to
ta

l i
nd

ex
 s

to
ra

ge
 (

M
 b

yt
es

)

(a) W = 60; L = 16; n = 16,000

CES
VS−NC
FS−NC(2)

10
2

10
3

0

50

100

150

200

250

300

monitoring region side length (R)

av
er

ag
e

se
ar

ch
 ti

m
e

(m
ic

ro
 s

ec
on

ds
)

(b) W = 60; L = 16; n = 16,000

CES
VS−NC
FS−NC(2)

Figure 13: Impact of R on FS-NC(2), VS-NC and CES-based indexes in terms of (a) index
storage cost and (b) average search time.

Once again, these figures show that, as n increases, both the storage costs and the search

times of all three indexes tend to increase. The FS-NC(2) index has the lowest storage cost

while the CES-based index has the fastest search time. Moreover, the search time of the CES-

based index remains low even as n increases dramatically. From Fig 14(b), the average search

time of the CES-based index outperforms the FS-NC(3) and VS-NC indexes by a wide margin,

especially for a large n.

10
3

10
4

10
5

0

5

10

15

20

25

30

35

number of window queries (n)

to
ta

l i
nd

ex
 s

to
ra

ge
 (

M
 b

yt
es

)

(a) W = 60; L = 8; R = 512

CES
VS−NC
FS−NC(2)

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

45

50

number of window queries (n)

av
er

ag
e

se
ar

ch
 ti

m
e

(m
ic

ro
 s

ec
on

ds
)

(b) W = 60; L = 8; R = 512

CES
VS−NC
FS−NC(2)

Figure 14: Impact of n, when R2 is relatively large, on (a) index storage cost; (b) average search
time.

5 Related work

Query indexing was also used in mobile computing to locate moving objects [5, 10, 12, 15, 22].

Some of the methods can be applied to the query indexing problem discussed in this paper.

For example, the FS-NC(2) and VS-NC indexes were adapted from the cell-based [10] and the

VCR-based [22] schemes, respectively, for moving objects. However, in addition to fast search

17

time, query indexing in mobile computing needs to address other challenges, such as allowing

query processing to take advantage of incremental updates in object locations.

Although range queries can be treated as rectangles, traditional spatial indexing meth-

ods [17], such as an R-tree or any of its variants [4, 8], are not effective because they are mostly

disk-based indexing methods. As shown in [10], R-trees is not as effective as the FS-NC(2)

query index. Moreover, the performance of an R-tree quickly degenerates when the regions of

range queries start to overlap with one another [4, 9].

Quad-tree decomposition has been studied for many applications, such as image databases,

geographic information systems, and so on [1, 16, 17, 19]. A quad-tree index usually involves

mapping the quadrants into a linear order, such as the z-order [17], and storing the quadrants

in a B-tree. Because a B-tree is normally disk-based, a quad-tree-based query index is generally

not as efficient for stream processing.

The decomposition algorithm of the CES-based query index is adapted, with some modifi-

cations, from the optimal quad-tree decomposition as described in [19]. This is possible because

the definition of log(L) + 1 levels of CES’s within each square partition follows the quad-tree

space partition. However, the CES-based approach is more like a combination of grid partition

and quad-tree partition. First, grid partition is used to create level-0 CES’s of size L×L. Then,

quad-tree partition is used to create log(L) additional levels of CES’s. Because of grid partition,

we can also handle a rectangular monitoring region. In contrast, a quad-tree partition always

starts with a square region.

Multi-layered, hierarchical squares have also been used for other applications, such as spatial

joins [11] and spatial data mining [20, 21]. However, they are used in different manners and

for different purposes. Specifically, they are not labeled as containment-encoded squares to

decompose range queries, to maintain a query index, or to facililate extremely fast search, as

they are in this paper.

Classifying network packets based on a set of rules, referred to as the packet classification

problem, has been extensively studied for Internet routing [3, 7]. Each rule specifies some

criteria applied to the packet header. Typical rules involve longest prefix matching or range

matching. Range matching on two header fields, such as source IP and destination IP, in packet

classification is similar, to some extent, to the stream processing problem discussed in this paper.

However, range matching in packet classification usually finds the top-priority rule matching a

packet. In contrast, we return all the range queries that cover a data point. Moreover, each

range rule is usually converted into a set of prefixes first and then a longest prefix matching

algorithm is used to solve the range matching problem in packet classification [7].

18

Finally, a query index based on containment-encoded intervals, CEI’s, has been proposed

for efficient stream processing [23]. However, it deals with one dimensional interval queries. The

labeling of containment-encoded intervals is derived from a perfect binary tree. In contrast, we

discuss two dimensional rectangle queries in this paper. The labeling of containment-encoded

squares is derived from a perfect quaternary tree.

6 Summary

We have presented a new CES-based query index for efficient processing of continual range

queries against a rapid stream. Ideally suited for stream processing, it has two desirable prop-

erties: low storage cost and fast search time.

The CES-based range query index centers around a set of virtual containment-encoded

squares. The entire monitoring area is first divided into equal-sized partitions of size L × L,

where L = 2k and L is the maximal side length of a CES. These square partitions are called

the level-0 virtual squares. For each level-0 virtual square, we then define an additional k levels

of virtual squares by successively subdividing each virtual square into 4 equal-sized virtual

squares. The virtual squares at level k are similar to unit grid cells. These virtual squares are

defined and labeled such that containment relationships are encoded in their ID’s. Containment

encoding makes the search process extremely fast because most of the operations can be carried

out by a simple logical shift instruction.

Simulations have been conducted to evaluate the performance of the CES-based query index

and compare it with other alternative query indexes. The results show that (1) The UGC/FS-

NC(1) query index has a high storage cost but a very fast search time; (2) The CES-based

query index substantially outperforms the FS-NC and VS-NC query indexes in search time,

especially when n or W is large.

References

[1] W. G. Aref and H. Samet. Decomposing a window into maximal quadtree blocks. Acta Informatica,
30:425–439, 1993.

[2] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over data streams.
In Proc. of IEEE ICDE, 2004.

[3] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core routers: Is there an alternative
to CAMs? In Proc. of IEEE INFOCOM, 2003.

[4] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys, 30(2):170–
231, June 1998.

[5] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Motion adaptive indexing for moving continual queries
over moving objects. In Proc. of ACM CIKM, 2004.

19

[6] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Adaptive load shedding for windowed stream joins. In
Proc. of ACM CIKM, 2005.

[7] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network, pages 24–32,
Mar./Apr. 2001.

[8] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of ACM SIGMOD,
1984.

[9] E. Hanson and T. Johnson. Selection predicate indexing for active databases using interval skip
lists. Information Systems, 21(3):269–298, 1996.

[10] D. V. Kalashnikov, S. Prabhakar, W. G. Aref, and S. E. Hambrusch. Efficient evaluation of contin-
uous range queries on moving objects. In Proc. of DEXA, 2002.

[11] N. Koudas and K. C. Sevcik. Size separation spatial join. In Proc. of ACM SIGMOD, 1997.

[12] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processing of continuous
queries in spatio-temporal databases. In Proc. of ACM SIGMOD, 2004.

[13] J. A. Orenstein. Spatial query processing in an object-oriented database system. In Proc. of ACM
SIGMOD, 1986.

[14] J. A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proc. of
ACM PODS, April 1984.

[15] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query indexing and
velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE
Trans. on Computers, 51:1124–1140, Oct. 2002.

[16] G. Proietti. An optimal algorithm for decomposing a window into maximal quadtree blocks. Acta
Informatica, 36:257–266, 1999.

[17] H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[18] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a data
stream manager. In Proc. of VLDB, 2003.

[19] Y.-H. Tsai, K.-L. Chung, and W.-Y. Chen. A strip-splitting-based optimal algorithm for decom-
posing a query window into maximal quadtree blocks. IEEE TKDE, 16(4):519–523, Apr. 2004.

[20] W. Wang, J. Yang, and R. Muntz. STING: A statistical information grid approach to spatial data
mining. In Proc. of VLDB, 1997.

[21] W. Wang, J. Yang, and R. Muntz. STING+: An approach to active spatial data mining. In Proc.
of IEEE ICDE, 1999.

[22] K.-L. Wu, S.-K. Chen, and P. S. Yu. Processing continual range queries over moving objects using
VCR-based query indexes. In Proc. of IEEE MobiQuitous, Aug. 2004.

[23] K.-L. Wu, S.-K. Chen, and P. S. Yu. Query indexing with containment-encoded intervals for efficient
stream processing. Knowledge and Information Systems, to appear (online version available in May
2005, a preliminary version appeared in ACM CIKM 2004).

20

