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Product offering conditioning aims at creating marketable product alternatives to mitigate 
misalignments of supply and demand and to enable companies to take full advantage of a “sell-
what-you-have” strategy. A well executed conditioning process benefits the customers through 
improved delivery times, and it benefits the enterprise through higher inventory turns, fewer 
supply overages and shortfalls, and reduced inventory liability exposure. We describe an 
analytical optimization model that determines profitable product offerings that minimize 
inventory liabilities and lost sales risks over the entire supply chain. The model provides 
dynamic, real-time sales recommendations based on current availability, price, performance and 
customer demand information. It not only improves the coordination of supply and sales in terms 
of optimizing profit, but also helps managing major product and technology transitions. It is most 
effective in an assemble-to-order environment with sales building blocks where end products are 
configured from pluggable components. 
 
Keywords: Assemble-to-order; configure-to-order; demand conditioning; demand–supply 
matching; inventory liability; product variety.  

 

1.  Introduction 
In a rapidly shifting global economy, product proliferation combined with declining product life 

cycles make it increasingly difficult for manufacturers to balance supply with customer demand. 

Often the linkage between a company’s marketing and sales organization, procurement and 

manufacturing operations is inefficient and leads to misalignment of supply and demand deci-

sions. Sales teams are unable to react intelligently to constraint situations with alternative sales 
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recommendations that satisfy customer needs. This invariably leads to situations of component 

shortfall on one hand, and component excesses on other hand, which can have dramatic effects 

on a company’s top-line performance through missed revenue, and its balance sheet through in-

ventory liabilities or write-downs.  

Supply chain performance can often be improved by the intelligent application of trend 

analysis that results in the company’s ability to position itself to condition demand for existing 

and planned supply (Sheffi 2005; Cachon and Terwiesch 2005; Kapoor et al. 2005; Butner and 

Buckley 2004). Such actions, known as conditioning actions, may touch on three dimensions of 

the supply chain: demand, supply and product offerings. Supply conditioning actions focus on 

working with suppliers to resolve supply imbalances, such as negotiating for additional supply or 

rebalancing supply between sales regions. Demand conditioning actions focus on adjusting the 

sales plan to affect demand in a desirable way. Examples are sales promotions for a surplus 

product or price reductions on an alternative product in order to transfer demand from a con-

strained product. Product offering conditioning actions focus on creating new product models 

that use excess components or substitutions for supply-constrained components. The success of 

the conditioning process depends on the timely and proactive identification of supply imbalances 

and the degree to which the conditioning plan is optimized to meet business objectives. A well-

executed conditioning process benefits the customers through improved delivery times, and it 

benefits the enterprise through higher inventory turns, reduced inventory, and lower component 

liabilities which lead to higher profits. 

In this paper, we describe an analytical optimization model for product offering conditioning. 

The model determines profitable product offerings to minimize inventory liabilities and lost sales 

risks over the entire supply chain. A major goal is to create a financially viable, marketable 

product portfolio that meets customer demand and best utilizes available component inventory. 

The model is most effective in an assemble-to-order (ATO) environment with sales building 

blocks where end products are configured from pluggable components. It provides dynamic, 

real-time sales recommendations based on current availability, price, performance and customer 

demand information. This enables on demand up-selling, alternative-selling and down-selling to 

better integrate the supply chain horizontally, connecting the interaction of customers, business 

partners and sales teams to the procurement and manufacturing capabilities of the company.  
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An up-sell opportunity is where a customer or business partner is sold a more richly config-

ured solution above the customer’s initially selected price range. Incentives may be used to en-

tice the customer to agree to an up-sell. An alternative-sell relates to a sale of a similar product 

that falls within the selected price range. An alternative-sell is performed when an up-sell is not 

available or the customer opts for a similarly priced product. A down-sell opportunity refers to a 

sale of a product that falls below the price range selected by the customer.  

Conventional methods of up-selling, alternative-selling, and down-selling include scanning 

the product portfolio and estimating other recommended products that provide the customer with 

what they are looking for, in addition to meeting the company’s revenue and profit targets. These 

approaches typically require sales personnel to have expert knowledge of the offerings and fi-

nancial benefits, as well as require that the product portfolio be small and uncomplicated. Large-

scale product offerings and automation use an approach to up-selling, alternative-selling, and 

down-selling wherein static product substitutions are created by marketing or product planning 

personnel who have detailed product knowledge. A significant problem with these static ap-

proaches is that they are manually created and entered into automated systems, and they are often 

limited to a single product family.  Another significant problem is that the substitutions are pre-

determined and remain unchanged for an indeterminate length of time, even though certain crite-

ria such as product or component availability, pricing, or technological features may have 

changed. 

Product offering conditioning is by no means limited to dealing with oversupply situations. 

Assume that a company’s demand-supply process for analyzing forecasted demand versus sup-

ply position identifies a short-term constraint (1-2 weeks) of an 80 GB hard drive used in high-

end laptop products. While procurement evaluates the constraint posture against additional sup-

ply actions, sales teams are informed of the constraint that to ensure that promotions and market-

ing campaigns for the affected products are suspended. Sales personnel are advised of product 

alternatives via special scripts to exercise the conditioning recommendations as they take orders. 

Product alternatives may include configurations that use 120 GB hard drives that may be in am-

ple supply. For Internet orders, product alternatives that were identified are presented to the cus-

tomer via sales prompts on the web. The alternative products may further be discounted to miti-

gate customer dissatisfaction that the desired product is unavailable. The end result is improved 

customer satisfaction because the company is selling readily available finished goods and com-
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ponents. End-to-end integration of the company’s demand-supply and sales processes would en-

able alternative product offerings immediately when a constraint is recognized. 

The contributions of this paper are as follows. First, we formulate the problem of finding 

marketable product alternatives in a given product portfolio that best utilize the available com-

ponent supply as an optimization problem. We present two variants of the problem that over-

come the deficiencies of conventional product offering conditioning methods: a single-period 

model that aims at creating new product models that either use surplus components or substitu-

tions for supply-constrained components; and a multi-period model that assists planners in man-

aging major product and technology transitions as well as pending orders for improved revenue 

attainment. Second, we develop an efficient column generation procedure for solving these prob-

lems. The procedure involves solving a master optimization problem and a slave problem in an 

iterative algorithm. The master problem generates an optimal build plan for a recommended set 

of product configurations. The slave problem utilizes column generation to determine the best 

new configurations to be added to the existing set such that an overall financial objective is op-

timized. And third, we demonstrate the efficacy of product offering conditioning by numerical 

experiments with realistic production data. This produces several insights into how the proposed 

models help proactively coordinate of supply and sales, and it quantifies business benefits of 

product offering conditioning in assemble-to-order systems.  

The rest of the paper is organized as follows. In section 2 we review the related literature. In 

section 3 we present the single-period offering conditioning problem and derive an efficient col-

umn-generation procedure for solving it. In section 4 we present its extension to a multi-period 

model and explain its application to product transitioning. Computational findings and discus-

sions of results are presented in section 5. Section 6 concludes the paper. 

2.  Literature Review 
The model developed in this paper spans several streams of literature. One stream of research is 

the literature on available-to-promise (ATP) systems for order promising and fulfillment. Ball et 

al. (2005) provide a classification of ATP models as either push-based or pull-based. Their paper 

presents a general optimization framework for ATP models that have been described in the lit-

erature, as well as several examples of actual ATP business practices in the electronics industry. 

Chen et al. (2002) present a mixed integer programming model that provides an ATP order 
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promising and fulfillment solution for a batch of orders that arrive within a predefined time 

interval. A variety of constraints, such as raw material availability, production capacity, material 

compatibility, and customer preferences, are considered. Dietrich et al. (2005) describe an im-

plosion technology that takes into account parts availability and solve a resource allocation prob-

lem to determine which products should be produced so that an overall profitability objective is 

maximized. Ervolina and Dietrich (2001) describe an application of the implosion technology for 

ATP order promising in an assemble-to-order (ATO) or configure-to-order (CTO) environment. 

The goal is to create a feasible production plan that can be used to schedule (or promise) orders 

against. Another application of the implosion technology that is closely related to our work is 

available-to-sell (ATS). The goal of ATS is to provide a squared set analysis for the consumption 

of excess inventory, and finding marketable products that consume the excess while minimizing 

additional purchase. Dietrich et al. (2005) describe a basic ATS implosion model where the set 

of new product configurations is predetermined. No explicit demand statement is provided and 

the configurations are assumed to have infinite demand. 

A second stream of research is related to the product substitution problem. Balakrishnan and 

Geunes (2000) describe a manufacturing planning method with flexible bills-of-materials and 

component substitution. A dynamic programming solution method is developed to find produc-

tion and substitution quantities that satisfy demands at minimum total cost, comprising setup, 

production, substitution, and inventory holding cost. Because supply is unconstrained, the model 

does not address matching of demand and supply. Another particular type of substitution is the 

so-called downward substitution where high-end products can substitute for low-end products 

when the latter are out of stock. Bassok et al. (1999) study the single-period and infinite horizon, 

multi-product, downward substitution problem and provide proof for the concavity of the profit 

function. Hale et al. (2001) extend the analysis of the downward substitution problem to an ATO 

system with two end-products where each product is composed of two components. Substitutions 

are carried out at the component level. Chen and Plambeck (2005) study a single-item produc-

tion-inventory system with periodic replenishments where customers may accept substitutes or 

choose not to buy when a product is out of stock. They show that learning about the demand dis-

tribution and customer substitution behavior influences the optimal inventory levels. Although it 

is not the focus of this paper, pricing can also be an effective part of demand conditioning. For a 

review the reader is referred to Chan et al. (2004). 
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A third stream of related literature deals with disassembly decisions in reverse logistics sup-

ply chains, see Dekker (2003) and Fleischmann et al. (2005) for an overview. In reverse logis-

tics, products which by themselves are no longer marketable may be disassembled to recover 

components or subassemblies. The recovered components may serve as spare parts or as compo-

nents in new configurations that are resold in secondary markets. Gupta and Taleb (1994) and 

Taleb et al. (1997) develop effective disassembly configurations with common components 

among products and limited inventory of products available for disassembly. Veerakamolmal 

and Gupta (1998) present a mathematical programming model for component recovery that 

computes the number of products to disassemble in order to fulfill the demand of the components 

at the minimal disassembly and disposal costs. Veerakamolmal et al. (2002) examine the costs 

and benefits of different product take-back (PTB) scenarios for used electronics equipment. The 

model determines a theoretical optimal cost scenario for PTB programs. Meacham et al. (1999) 

determine optimal disassembly configurations to meet a specified demand for recovered compo-

nents and subassemblies from an available supply of recovered products. Products are repre-

sented through their bills-of-materials. As in our approach, a fast column generation algorithm is 

proposed to determine maximum revenue disassembly configurations for individual products. 

Finally we mention the literature on ATO and CTO systems. Product offering conditioning is 

more likely to be implemented in a build-to-order environment because of its flexibility in re-

sponding to changing customer demand; refer to Song and Zipkin (2004) for a review of research 

to date on ATO systems. Among other issues, multi-component, multi-product ATO systems 

pose challenging inventory management problems. Xu and Akcay (2004) formulate a two-stage 

stochastic integer program with recourse for allocating constrained components and selecting 

base-stock levels to maximize the fraction of orders assembled within a quoted maximum delay. 

They develop a heuristic method based on a simple, order-based component allocation rule. 

Cheng et al. (2002) study the problem of minimizing average component inventory holding cost 

subject to product family dependent fill rate constraints in a CTO system. Plambeck and Ward 

(2003) employ diffusion approximation to allocate supply-constrained components to out-

standing customer orders in an ATO system to maximize expected discounted profit.  
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3.  Single Period Product Offering Conditioning Model 
In this section, we formulate the single period product offering conditioning problem and 

develop an efficient solution algorithm that uses decomposition and column generation to enable 

a conditioning process.  

We are given a portfolio of existing product offerings and their demand forecasts. Existing 

offerings are grouped into product categories such as economy, value and performance products. 

Our goal is to build enough volume to satisfy the demand forecast for each existing offering. If 

that can not be achieved, we create new product offerings (with new configurations) to sell in 

each product category. A new offering created for a product category can be used to fulfill 

unsatisfied demand for an existing offering in the same category with additional subsitution cost 

incurred.  

The components used to configure (assemble) end products are grouped into commodity 

groups with each component belonging to exactly one commodity group. A bill-of-materials that 

describes the component consumption is given for each existing product offering. For each 

product category, we also have product configuration rules that restrict the components that can 

be used in every commodity group to create new product offerings for this category. Product 

configuration rules represent technical and manufacturing restrictions that dictate how various 

parts can be assembled into a product. For example, the power consumption requirements of a 

specific component could limit the product category in which this component can be used and 

would thus be expressed as a product configuration rule. The product offering conditioning 

model compares and analyzes product alternatives to create a set of recommended new product 

configurations. The analysis is based on optimizing financial objectives and includes liability 

costs for excess inventory and penalty costs for violating desired customer services levels.  

3.1 Notation 
Before we discuss the formulation, let us define the notation required.  

 

Products, commodities, and components 

I  : Number of components (indexed by i, i = 1, …, I) 

K  : Number of commodity groups (indexed by k, k = 1, …, K) 

P  : Number of product categories (indexed by p, p = 1, …, P) 
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pM  : Number of existing product offerings in category p (indexed by m, m = 1, …, ) pM

 

Demand and supply 
p

mD  : Demand forecast for the existing product offering m in category p 

min
iS  : Downside supply flexibility for component i (minimum supply quantity supported by 

the component supplier) 
max
iS  : Upside supply flexibility (maximum supply quantity supported by component supplier) 

 

Bills-of-materials 

ikB  : 1 if part i  belongs to commodity group k, 0 o/w 

p
imu  : 1 if part i  is used to assemble existing product offering m in category p, 0 o/w (BOM) 

p
iw  : 1 if part i  can be used to assemble products in category p, 0 o/w (selection menu) 

 

Costs 

ih  : Unit holding cost of component i (liability cost) 

p
mb  : Unit lost-sales (or backorder) cost of existing product offering m in category p 

pc  : Unit substitution cost for product category p. Building one unit of a new offering in 

product category p to fulfill the demand forecast of an existing offering in the same category will 

incur the cost  pc

 

Decision Variables 
p

mX  : Build volume of existing product offering m in category p 

pN  : Number of models to build for product category p (indexed by n, n = 1, …, Np) 

p
inv  : 1 if component i  is used to assemble new product offering n in product category p; 0 

o/w 
p

mnY  : Build volume of new product offering n in product category p that is used to substitute 

existing offering m in the same product category 
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iS  : Quantity of component i ordered from supplier based on the build volumes 

3.2 Problem Formulation 
We can now formulate the single period product offering conditioning model. The objective 

function given by (1) is to minimize the total supply chain cost which consists of three compo-

nents:  

1. Lost-sales (or backorder) costs. If the build volume allocated to an existing product offer-

ing falls short of the demand forecast, a lost-sales cost is incurred.  

2. Product substitution costs. Costs incurred for using a new product offering to (partially) 

fulfill demand for an existing product offering. 

3. Inventory holding (or component liability) costs. Costs incurred for holding excess com-

ponent inventories. 
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Let us now formulate the constraints. The consumption of component i, Si, is bounded by a 

maximum and minimum order quantity: 
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The components used in a new product offering must not violate the selection menu specified 

for the product category of the new product offering: 

  (6) npiwv p
i

p
in ,,,∀≤

Each new product offering must be a squared set configuration, i.e., it uses one and only one 

component from each commodity group: 

  (8) npkvB
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Finally, we also have non-negativity and integrality constraints on the decision variables. 

  (8a) mpX p
m ,,0 ∀≥

 iSi ∀≥ ,0  (8b) 

  (8c) nmpY p
mn ,,,0 ∀≥

 pInteger&N p ∀≥ ,    0  (8d) 

 { } pniv p
in ,,,1,0 ∀∈  (8e) 

It is important to note that, even if the number of new product configurations in product cate-

gory p, Np, were fixed, there is a nonlinear term ( ) in (1) and (4). It is possible to linearize 

this term using standard techniques and convert the problem into a mixed integer program (e.g., 

Barnhart et al. 1998). However, given that industry-size problems involve hundreds of compo-

nents and dozens of product categories (which results in thousands of binary variables), finding 

the optimal solution of the MIP is likely to take a prohibitively long time. Because speed of exe-

cution is essential for a timely resolution of demand–supply imbalances, we have developed an 

iterative procedure based on column generation to efficiently solve this problem. The algorithm 

is described next.  

p
n

p
inYv

3.3 Computational Algorithm 
The basic idea is that new product offerings are columns that are introduced into the problem one 

at a time in an iterative algorithm. The problem is decomposed into two sub-problems: a master 

problem (MP) that aims at finding the optimal build volumes for a given set of new and existing 

product offerings, and a set of slave problems ( , p = 1, …, P and m=1, …, ) that gener-p
mSP pM
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ates new product offerings and supplies them to MP. The two sub-problems are solved iteratively 

until the optimal solution is reached. The master problem is given in (9) as follows: 

 

Master Problem (MP): 
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Note that the bills-of-materials of the new product offerings, , are not decision variables in 

MP and are fixed along with Np. Thus, the master problem (9) is a linear program that can be 

solved very efficiently even for large problem sizes.  

p
inv

Let iλ , i = 1,…, I, denote the shadow prices pertaining to the liability constraint (5), and , 

m = 1…, Mp and p = 1, …, P, denote the shadow prices pertaining to the build volume constraint 

(4), in the optimal solution to MP. We can now formulate the slave problems  for  p = 1, …, 

P and m=1, …,  as follows. 

p
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We use a standard column generation procedure to solve the problem (e.g., Barnhart 1998). 

In the initial step of the algorithm, MP is solved without any new product offerings and its solu-

tion is fed into the slave problems. The slave problems subsequently try to improve the solution 

by introducing new product offerings for every product category. Any new product offerings are 

then added back into MP after updating the corresponding values of Np for p = 1, …, P, and the 

master problem MP is resolved. This process iterates until no further improvement is possible. 

Below is a detailed description of the algorithm. 

 

 11



Algorithm 1: Single-period problem 

Step 1: Initialize  and set  for all p, i.e., there are no new product offerings. 0:=pN φ=}{ p
inv

Step 2: Solve the master problem, MP, and obtain the optimal values of iλ  and . p
mβ

Step 3: Solve the slave problems . Because the solutions for all the existing product offerings 

in a given product category p differ by a constant term , we only solve problem (10) 

for a single existing offering m in each category p. The existing offering m selected is the one 

with the smallest  value since (10) is a minimization problem.  

p
mSP

p
m

p
mb β+−

p
m

p
mb β+−

 
Step 4: If ,∀ p, we have found the optimal solution; STOP and print the results from 

the current master problem solution. Otherwise, go to Step 5. 

0)(2 ≥⋅pZ

Step 5: Select the category  that has the minimum  value and update the number of new 

product offerings of this category by

*p )(2 ⋅pZ

1: ** += pp NN . Append the new product offering *p
iv  to the 

set of new product offerings of category  as *p },{}{ *** p
i

p
in

p
in vvv = and go to Step 2. 

 

In Step 3, we generate a new product offering that will improve the LP solution. In Step 4, all 

0)(2 ≥p
i

p vZ  means no improvement is possible and we have found the optimal solution; other-

wise, we continue to the next iteration.  

Although the slave problem  is an integer program, it has a special structure that can be 

exploited to solve it easily: For each commodity group, first consider the parts that belong to this 

group and are allowed in the selection menu . Compare their 

p
mSP

p
iw )( iih λ+−  values and choose the 

one with the minimum )( iih λ+−  value. It is easy to see that repeating this procedure for all 

commodity groups produces a squared set product offering that minimizes )(2
p

i
p vZ . This proce-

dure is efficient in terms of the computational requirement per iteration. To further improve the 

runtime performance of the algorithm, we modified Step 5 of the above procedure to introduce 

multiple columns (new product offerings) per iteration instead of just one. This is achieved by 

simultaneously introducing all columns that yielded a negative  value.  )(2 ⋅pZ
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4.  Multi-Period Product Offering Conditioning Model 
The single period model discussed in the previous section captures the dynamics of a product 

offering conditioning process on an aggregate basis, say, at a quarterly level. Having developed a 

procedure to design new product offerings that enable supply-demand matching for the aggregate 

problem, we will discuss its extension into a multi-period model where we capture the invento-

ries and back-orders at a much more granular level, say, on a weekly basis. The new product of-

ferings recommended by the model are available for marketing throughout a quarter, although 

the recommended build volumes differ from week to week to reflect available supply. The multi-

period model described next helps planners gain more detailed insights into supply consumption 

and demand satisfaction and it enables better decision making as explained below:   

• Managing excess inventory to reduce liability. A multi-period model helps distinguish be-

tween excess inventory costs and liability costs. Although supply commitments for compo-

nents are usually updated every week, excess components inventory will incur liabilities only 

at the end of a quarter. Excess supply within the quarter may incur a (comparatively small) 

inventory holding cost. 

• Managing pending orders to improve revenue attainment. A multi-period model also helps 

distinguish between backorders and pending orders at the end of a financial quarter. Backor-

dered demand within a quarter imposes a smaller penalty to the business compared to orders 

that are left pending across quarters because pending orders directly affect a company’s top-

line revenue. 

• Managing technology transitions. Most importantly, a multi-period model helps planners to 

better manage product and technology transitions. For example, when a new technology (say 

a faster CPU) is announced, a supplier might offer price or other incentives to accelerate the 

ramp-up of the new technology during product introduction and to rapidly phase out the 

predecessor technology. While the new component will carry a higher profit margin, the 

component it replaces may expose a manufacturer to inventory liabilities and obsolescence 

costs. The multi-period model captures the detailed sales ramp-up and ramp-down processes 

during product transitions, and it enables product planners to create transition plans that bal-

ance the trade-offs between costs and profits. 
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4.1 Notation 
Before we formulate the multi-period model, let us define the required notation. Most of the no-

tation carries over from the single period model with an additional subscript t for the time period. 

The additional notation required is defined below. 

 

Inputs 

H : Number of time periods or length of horizon (indexed by t, t = 1, …, H) 

δm : Unit cost of horizon-end pending orders for existing product offering m 

θi : Unit cost of liability for excess inventory of part i at end of horizon 

 

Decision Variables 

Bmt  : Backorders of existing product offering m at end of period t 

Iit : Excess inventory of part i at the end of period t 

4.2 Problem Formulation 
We next formulate the master problem, MPH, and slave problems, SPpt, for each product category 

p and time period t. The master problem, MPH, can be stated as follows: 

 

Master Problem (MPH): 
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As in the single period model, the objective of MPH is to decide the build volumes, given the 

existing product offerings and a given number of new product offerings for the product catego-

ries. The objective function (11) is the sum of the backorder costs, horizon-end pending orders 

costs, excess inventory costs and liability costs. Constraints (12) give the volume balance equa-

tions to set the backorders at the end of each period for the existing product offerings. Con-

straints (13) bound the order quantities to the supplier based on the available supply flexibilities. 

Constraints (14) involve volume balance equations to set the excess inventories carried over at 

the end of every period based on the consumption due to the build volumes. Constraints (15) are 

non-negativity constraints. As can be seen from the above model, the optimal build volumes pro-

vide period-by-period (e.g., weekly) allocations for the various product offerings that are fully 

aligned with the available component supply.  

Let us next discuss the structure of the slave problems, SPpt, for the multi-period problem. As 

is obvious, we now have to solve several slave problems per iteration. Let itλ be the shadow 

prices pertaining to the inventory non-negativity constraints, (15d), and mtμ , be the shadow 

prices pertaining to the backorders for product offerings, (15e), in the optimal solution to the 

master problem. We can now formulate a slave problem, SPpt, for every product category p and 

time period t as follows: 

 

Slave Problem ( ): ptSP
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subject to constraints 
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Constraints (17), (18) and (19) are similar to those in the single period model. The objec-

tive function also has the same structure as the single period model. As in the single period 

model, for every product category p, we choose the model m ∈  Mp that has the lowest value of 

 in the objective function. ( ) ( p
m

Hm
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tr
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4.3 Computational Algorithm 
We will use the column generation procedure similar to the one developed for the single period 

model. Below is a detailed description of the algorithm. 

 

Algorithm 2: Multi-period model 

Step 1: Initialize  and set  for all p, i.e., there are no new product offerings. 0=pN φ=}{ p
inv

Step 2: Solve the mater problem and obtain the optimal values of itλ  and mtμ . 

Step 3: Solve the following slave problems, for every category p and time period t. 

Step 4: If ,∀p, t, we have found the optimal solution, STOP and print the results from 

the current master problem solution. Otherwise, go to Step 5. 

0)(,
2 ≥⋅tpZ

Step 5: Append all the columns, pt
iv , that yielded a negative  value as )(2 ⋅pZ },{}{ ,tp

i
p
in

p
in vvv = after 

updating the appropriate Np. and go to Step 2. 

 

In each iteration of the procedure we may introduce more than one column for every product 

category. We found that this was more efficient than introducing one column at a time, given the 

large number of slave problems. The master problem for the multi-period model remains an LP 

that can be solved efficiently and all the slave problems can still be solved using a greedy heuris-

tic similar to the one described for the single period model. Thus, the procedure we have devel-

oped is efficient in terms of computational requirements.  

Finally, let us discuss how we can model product transitions using this model. For a new 

component being introduced, the minimum supply commit at the end of every period, , can min
itS
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be set such that the desired ramp-up pattern is captured within the horizon. Given that the model 

aims at reducing inventory costs, it will make build decisions that best accommodate the desired 

ramp-up targets. Also, to encourage the design of product offerings that use the new component, 

one can give sufficient upside flexibility by making the difference between  and large 

for the new component being introduced. For the component that becomes obsolete, one can set 

such that the end-of-life inventory is consumed and inventory write-offs are minimized. The 

upside supply flexibility can be set to be equal to the downside supply flexibility, discouraging 

the model to consume more old components than needed. In addition to capturing technology 

transitions, the model also allows planners and the sales teams to test ramp-up and ramp-down 

patterns for their practicality with respect to the availability of supply in other commodities and 

demand satisfaction other product offerings that may not use the transitioning parts. These ad-

vantages make the multi-period model extremely valuable in practice.  

min
itS max

itS

min
itS

5.  Numerical Results 
In this section we present and discuss our numerical findings. The numerical study focuses on  

1. evaluating the benefits of offering conditioning (in terms of expected backorder and li-

ability costs) relative to a conventional Material Requirements Planning (MRP) approach 

with a static portfolio of product configurations;  

2. assessing the impact of supply quantity flexibility on supply chain performance when 

combined with product offering conditioning; and 

3. managing product transitions to minimize exposure to inventory liabilities and pending 

orders. 

We illustrate the capabilities of the models by implementing the solution procedures and ap-

plying them to an assemble-to-order system for personal computers (PCs). The product portfolio 

in our numerical study consists of three PC product families representing low-end, mid-range 

and high-end portable computers. Each product family comprises a number of predefined prod-

uct configurations with bills-of-materials as depicted in Table 1. The data set resembles a real-

world problem compiled from actual PC supply chain data.   
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Table 1. Bill-of-materials, supply requirements, and supply commitments for example scenario. 

 

Product configurations P1 to P4 are low-end systems, P5 to P7 are mid-range systems, and P8 

to P10 are high-end computers. Each configuration is assembled from components of the four 

commodity groups: panels, hard drives, processors, and optical drives. For example, product P1 

is assembled from a 14"XGA panel, a 30GB hard drive, a Pentium M725 processor, and a 24X 

optical combo drive. Notice that all configurations within a product family use the same type of 

panel (i.e., 14"XGA for low-end systems, 15"XGA for mid-range systems, 15"SXGA+ for high-

end configurations). 

We assume that the top-level demand forecast for configuration m in product family p is 

units. To determine the supply requirements for each PC component, the demand 

forecast is exploded through the bills-of-materials in a standard MRP calculation. The two 

rightmost columns of Table 1 show the supply requirement and a sample supply commitment 

pertaining to the top-level demand forecast. The supply commitment indicates a suppliers’ capa-

bility to deliver to the manufacturer’s supply requirements. For now, we assume that the mini-

mum supply quantity  is equal to the maximum supply quantity , i.e., there is no supply 

flexibility. Comparing the supply requirements with the supply commitment indicates supply 

constraints on 14"XGA and 15"SXGA+ panels. To mitigate the constrained supply, the panel 

supplier committed a higher than requested supply volume of 10,000 units for the 15"XGA 

panel. Notice that the supply commitment matches the supply requirements at the commodity 

group level, although the individual component mix deviates from the requirements.  

500,1=p
mD

min
iS max

iS

Given the supply commitment, a conventional MRP system would match the available sup-

ply to the demand forecast and provide an optimized build plan. A build plan created by such a 
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tool is displayed in the bottom row of Table 1. Notice that the constrained supply of 14"XGA 

and 15"SXGA+ panels results in 3,500 backorders of low-end systems and 2,000 backorders of 

high-end systems. Next, we apply the single-period model described in Section 3 to the example 

scenario. Table 2 shows the selection menu  for the three product families.  p
iw

 

Table 2. Selection menu for low-end, mid-range, and high-end product categories. 

 

Recall that the master problem begins with the initial set of product configurations, their de-

mand forecasts and the component supply commitments. Once a feasible production plan is de-

termined, the algorithm executes a slave problem to generate new product configurations until 

the inventory costs can not be further reduced. In this example, the algorithm creates a total of 

four new product configurations. The bills-of-materials of the new configurations are shown in 

the shaded areas of Table 3. The conditioned build plan is displayed in the bottom row. As a re-

sult of offering conditioning, backorders for low-end systems are reduced from 3,500 to 500, and 

backorders for high-end systems are reduced from 2,000 to 1,000.   

Table 3. Conditioned build plan and bills-of-materials of new product offerings. 
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Table 4 compares the allocated supply and excess component inventories that result from the 

two build plans. We observe that a substantial portion of the component supply in the MRP build 

plan remains unallocated, in particular 5,500 units of 15"XGA panel and 5,000 units of 30GB 

and 40GB hard drives. The reason for the large overage is that none of the existing product offer-

ings in Table 1 is configured with a 15"XGA panel with a low-end hard drive. To prevent such 

overages, the offering conditioning model creates three new configurations in the low-end and 

mid-range category, each of which utilizes a 15"XGA panel and a 30GB or 40GB hard drive in 

its bill-of-material. As a result, the total excess component inventory is reduced from 22,000 to 

6,000 units.  

 

Table 4. Supply and excess inventory for MRP allocation and product offering conditioning. 

  

If we assume that the inventory liability cost for component i is 5=ih , the build plan gener-

ated by the offering conditioning model yields an inventory cost of 30,000 which is significantly 

less than the cost of 110,000 produced by the MRP allocation. If we further assume that the 

backorder cost per unit of unfilled demand is  and the product substitution cost 

is , the offering conditioning model yields a backorder cost of 75,000, a substitution cost 

of 45,000 and a total cost of 150,000. Given that the total cost arising from the MRP allocation is 

385,000 the percent cost improvement gained by employing the offering conditioning model is 

more than 60 percent when compared to the MRP-based approach. The individual costs pertain-

ing to the two approaches are depicted in Table 5. 

50=p
mb

10=pc
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Table 5. Cost comparisons between MRP allocation and product offering conditioning. 

 

Next we investigate the benefit of supplier quantity flexibility in conjunction with product of-

fering conditioning on supply chain cost. Quantity flexibility can be specified in a supply con-

tract that allows a manufacturer to adjust its order quantities after an initial purchase order is 

placed. In addition to a committed order quantity, a manufacturer can purchase option contracts 

or other derivative instruments for risk management to protect its supply chain against demand 

risk. Such flexibility enables the buyer to reduce its risk in over- or under-stocking, but it gener-

ally comes at an extra cost which gives the supplier an incentive to offer flexibility while under-

taking more risk.  

As before, the top-level demand forecast for configuration m in product family p is 

units and the minimum supply commit for component i, , is as shown in the 

rightmost column of Table 1. To model quantity flexibility, let  denote the 

maximum supply quantity, where 

500,1=p
mD min

iS

minmax )1(: ii SS α+=

α is a contingency factor that determines the amount of upside 

supply flexibility. With quantity flexibility the supplier is committed to provide up to  units 

of component i. The manufacturer assumes inventory liabilities only if the allocated supply is 

less than . Figure 1 shows the optimized inventory cost, backlog cost, and total cost when the 

contingency factor takes on values 

max
iS

min
iS

=α  0, 0.1, 0.2, and 0.3. The secondary y-axis shows the 

number of new product configurations generated by the conditioning model in each instance. We 

observe that the total cost improves from 150,000 for the based scenario (no upside flexibility) to 

80,000 for the scenario with 30 percent flexibility. This result is intuitive because higher supply 

flexibility provides more opportunities for building squared set configurations without increasing 

inventory liability exposure. Furthermore the results confirm that even a modest level of upside 

flexibility can results in significant percentage cost improvements. When 1.0=α , the backorder 

cost decreases by 40 percent and the total cost decreases by 25 percent compared to the base 
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case. Such numerical analysis can help procurement managers to quantify and price flexible sup-

ply contracts. 

 

Figure 1. Optimal cost of conditioned build plan as a function of supply quantity flexibility. 

 

Finally, we apply the multi-period model to investigate the impact of product transition plans 

on costs. In assemble-to-order systems, transition plans are often expressed at the component 

level as the relative proportion of supply of a new technology during its introduction phase 

(ramp-up). In our PC assembly example, assume that the 14"XGA panel is replaced by a 

15"XGA panel. We investigate three transition plans over three time periods (e.g., months): 

slow, moderate, and fast. In the slow transition plan, denoted as (10%-50%-90%), the 15"XGA 

panel accounts for 10 percent of the total volume in the first month; 50 percent in the second 

month, and 90 percent in the third month. In the moderate and fast transition plans, the transition 

rates are (30%-60%-90%) and (50%-75%-90%), respectively. In all transition plans, the total 

combined supply of 14"XGA and 15"XGA that is available in each of the three months is 4,000 

units. The supply commit for the two panels and the other components is shown in Table 6. We 

assume that the top-level demand forecast for configuration m in product family p and time pe-

riod t is units. 500=p
mtD
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Table 6. Supply commitments for multi-period scenario. 

 

The results of applying the multi-period offering conditioning model are shown in Table 7. 

Our first observation is that the fast transition plan incurs a significantly lower cost than the slow 

and moderate transition plans. The total cost of the fast transition plan is 172,500. This is 11 per-

cent less than the cost of the moderate transition plan and 45 percent less than the cost of the 

slow transition plan. Table 7 further illustrates that the main cost driver is the backorder cost 

which accounts for up to 67 percent of the total cost. To understand why the backlog cost is at its 

lowest in the fast transition plan, we tracked the backlog separately for the three product catego-

ries low-end, mid-range and high-end. We observe that the largest difference between the transi-

tion plans is in the backlog cost of the mid-range product category. The order backlog in the mid-

range category contributes a cost of 110,000 in the slow transition plan, 15,000 in the moderate 

transition plan, and zero in the fast transition plan.  

 
Table 7. Backorder, inventory, and substitution costs of different transition plans.  

 

The technology selection menu in Table 2 shows that the 15"XGA panel can be substituted in 

each one of the three product categories whereas the 14"XGA panel can only be used in low-end 
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products. This explains why the fast transition plan incurs the lowest backlog costs. With the fast 

transition plan there is enough supply of 15"XGA panels in the first two months which reduces 

backlog cost and consequently the total cost. With a slow transition plan there is an over-supply 

of 14"XGA panels and a supply shortage of 15"XGA in the first two periods which sharply in-

creases the order backlog for mid-range and high-end systems and thus drives up the total supply 

chain cost.  

In the electronics industry that is characterized by short product lifecycles and a proliferating 

product variety, development teams deal with technology transitions that occur simultaneously 

and often involve multiple predecessors or multiple successors. The experiments illustrate that 

product planners have to be aware of feasible supply plans, component substitutions, and squared 

set allocations when deciding on target ramp-up and ramp-down profiles during product transi-

tions. The models presented of this paper help automate the decisions by enabling planners to 

test different transition plans, tune ramp-up patterns for technology introductions based on the 

results, and choose a transition plan that is most cost effective. 

6. Summary and Conclusions 
In this paper we have described a novel approach to demand-supply imbalance resolution in 

assemble-to-order supply chains that overcomes many deficiencies of conventional methods. The 

approach aims at finding marketable product alternatives in a product portfolio that best utilize 

inventory surplus and replace demand on supply-constrained components. We formulated the 

problem as a nonlinear program and developed efficient computational procedures based on de-

composition and column generation to generate optimal solutions. We demonstrated the benefits 

of product offering conditioning through numerical experiments with realistic production data. 

We quantified business improvements in the context of assemble-to-order supply chains, and 

showed how offering conditioning can help manage major product and technology transitions. 

Given that companies are facing significantly uncertain demand and that point forecasts are in-

variably wrong, we are currently investigating how the proposed models can be extended to ac-

commodate stochastic demand. Hedging against demand risk in conjunction with supply flexibil-

ity arrangements will ultimately help create a more responsive supply chain that can react to de-

mand and supply fluctuations even when not anticipated. Another extension would be to develop 

a revenue-based objective function. While this is straightforward to do and does not affect our 
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solution procedure, it helps capture the revenue aspects of up-sell, down-sell or alternative-sell 

opportunities. Finally, we also plan to incorporate pricing decisions into the model. 

Most companies recognize that imbalances will differ in magnitude and severity, but rarely 

invest resources to develop a systematic approach for resolution. Some leading companies in the 

industry have begun to implement conditioning processes that seek to dynamically adjust product 

offerings to guide marketing and sales teams. However, these are almost always entirely manual 

processes that rely on expert’s knowledge and partial sets of data. With hundreds or even thou-

sands of product offerings in a typical product portfolio it is impossible for a person to assemble 

the data and reach an optimal conclusion. An automated approach based on optimization not 

only ensures that the resources invested have the likelihood of producing a successful result, but 

offers the additional advantage of speed in execution which is critical for a timely resolution of 

short-term demand-supply imbalances. 

The models proposed in this paper can play a pivotal role in helping companies to recover 

from supply disruptions or other disruptive supply chain events as quickly as possible. Compa-

nies with a lean supply chain design are more robust to supply chain disruptions since they carry 

very little inventory and rely on last minute supply of components. An assemble-to-order model 

combined with flexible sales processes and postponed assembly enables such companies to take 

full advantage of a “sell-what-you-have” strategy. The conditioning principles and models de-

scribed in this paper can be imbedded in supply chain operations and substantially improve day-

to-day flexibility. Companies with a direct sales business model deal with customers directly 

through their website or telesales system can highlight featured models on-the-fly based on cur-

rent component availability and steer customers towards product configurations that they can 

supply easily and profitably. 
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