
RC23881 (W0602-133) February 15, 2006
Computer Science

IBM Research Report

Efficient Replication for Disconnected Business Applications

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 1

Efficient Replication for Disconnected
Business Applications

Avraham Leff James T. Rayfield

Abstract

Business applications that execute on disconnectable client devices require the periodic replica-

tion of server-based data to keep them up-to-date. We propose an efficient replication algorithm that

compresses the state that a server must store to perform such replication. Furthermore, the algorithm

enables additional compression when a server transmits state to an individual client. We examine

the implications of this approach for client-to-server synchronization, and discuss issues related to

implementing this algorithm in a prototype.

Index Terms

database replication, database compression, synchronization, method-replay

I. I NTRODUCTION

A. Disconnected Business Applications

A business applicationis characterized by the fact that the application (1) updates state that is

shared by multiple users; (2) must perform these updates transactionally [5] to a shared database;

and (3) must operate securely. Business applications therefore have requirements that other appli-

cations do not: chiefly, to access persistent shared datastores securely and transactionally. Business

applications have traditionally been deployed inconnected(continuously networked) environments

in which the shared database can always be accessed by the application. In contrast, when appli-

cations are deployed to mobile devices such as personal digital assistants (PDAs), hand-held com-

puters, and laptop computers, these devices are only intermittently able to interact with the shared

IBM T.J. Watson Research Center email: avraham@ibm.com
IBM T.J. Watson Research Center email: jtray@ibm.com

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 2

database residing on the server. Historically, resource constraints (e.g., memory and CPU) have

precluded disconnected devices from running business applications. Ongoing technology trends,

however, imply that such resource constraints are disappearing. For example, DB2 Everyplace [3]

(a relational database) and WebSphere MQ Everyplace [11] (a secure and dependable messaging

system) run on a wide variety of platforms such as PocketPCTM, PalmOSTM, QNXTM, and Linux;

they are also compatible with J2ME [6] configurations/profiles such as CDC and Foundation. It

seems likely that mobile devices will even be able to host middleware such as an Enterprise Jav-

aBeans container. As a result, business applications that previously required the resources of an

“always connected” desktop computer can potentially run on a disconnected device.

The set of “non-business” disconnected applications is declining in size and importance at

the same time that the set of disconnected business applications is expanding. For example, even

simple mobile applications typically support synchronization of updates back to the user’s personal

PC. Since the PC copy of the database may be updated by both the synchronization agent and other

PC-based applications (e.g. calendaring), the database is, in fact, shared. Also, users will probably

be very disappointed to discover that synchronization of updates did not occur transactionally (e.g.,

if concurrent updates to the same record were not detected and resolved in some way). Finally,

security of PDA databases is certainly a concern nowadays.

Various scenarios motivate the requirement for an application to execute on a disconnected

device. A network connection to the server may simply not exist; or the network bandwidth may

be so limited, or the latency so great, as to make constant communication between the device and

the server impractical. To operate while disconnected, the device must therefore cache sufficient

state from the server in order to execute the disconnected applications. This caching requirement,

in which the server maintains the “master” database state for a set of clients, and clients inde-

pendently cache the state they need to execute disconnected aplications, implies that disconnected

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 3

applications have alife-cycle that distinguishes them from their connected counterparts. Ideally,

disconnected applications should be supported by middleware that addresses this life-cycle’s re-

quirements. Otherwise, developers are forced to solve these problems on a per-application basis.

B. Life-cycle of a Disconnected Business Application

Disconnected business applications typically have the following life-cycle. First, their initial

deployment on a client device requires that an administrator perform a one-time setup of the mobile

device’s database(s). The key challenge here is to replicate sufficient data (from the server to

the device) such that the application can execute correctly. This can be a difficult task when an

application can potentially access a data set that is too large to fit on the device. In such cases,

application administrators must determine the subset of data that will actually be used by the

application, and replicate that subset to the device. This is often done throughad-hoc, but effective,

business rules. For example, a salesman may not need to have the entire set of customer data

replicated; only the set of customers in her district is typically needed.

After this initial setup is performed, the mobile device repeatedly executes the following se-

quence:

Server-to-Client Replication:Before disconnecting, the server’s updates are propagated to

the device. As with the one-time setup tasks, typically only the relevant subset of updates

are copied, e.g., by executing a query (or set of queries) against the server database, and

storing the results on the device’s database.

Application(s) Execution:The user executes one or more business applications on the discon-

nected device.

Client-to-Server Synchronization:The user reconnects the device to the server, and the client

software propagates the work performed while disconnected to the server-side database.

Note that in our terminology, we use “replication” to indicate server-to-client data flow, and

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 4

“synchronization” to indicate client-to-server data flow.

C. Replication

The goal of the replication phase is for the device’s state to be identical to a subset of the state

on the server. To the extent that this goal isnotmet, the device’s state becomes increasingly “stale”

as it diverges from the server’s actual (and “master”) state. (We assume that multiple devices

concurrently execute the same set of disconnected applications.) Also, when the device’s state is

“stale”, modifications to this state are more likely to be invalidated when the device synchronizes

its state to the server.

Current approaches [1][2] recognize that transmitting a complete copy of the server database

to each device on every replication request is very inefficient, since the device’s database typically

has not diverged that much (since the last replication) from the server’s state. It is more efficient

for the server to transmit only the state needed to transform the device’s state to the server’s current

state. Therefore, the server stores – on behalf of all its clients – sufficient state to transform each

client’s state to that of the server during replication. Standardized protocols can then be used to

pass data between a device and the server. SyncML [14], for example, enables such data exchanges

– across wireless and wired networks and over multiple transport protocols – by using the standard

format defined in its “representation” protocol. In addition, SyncML provides a “synchronization”

protocol which efficiently replicates server-side data to the device, by doing either a “one-way

sync from server only” or a “refresh sync from server only”. In the former, the device gets all data

modifications that have been committed on the server; in the latter, the server exports all of its data

to the device, which then replaces its current set of data.

Our paper improves the current approach through a compression scheme through which (1)

the server reduces the amount of state it needs to perform replication and (2) the server reduces the

amount of state that it transmits to a given client during the replication process itself. Furthermore,

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 5

Fig. 1. Uncompressed Server-Side Replication State (DB2 Change-Data)

IBMSNAP_OPERATION NAME
IBMSNAP_COMMITSEQ IBMSNAP_INTENTSEQ NAME VALUE

x’43EBBE8D000000010000’ x’00000000000062744C57’ U balance $3000
x’43EBBE8D000000010000’ x’00000000000062744CC7’ U balance $4000

our paper examines the implications of this compression scheme on synchronization algorithms.

II. COMPRESSION-BASED REPLICATION

The following example illustrates these different approaches to representing replication state.

Assume that the datum D has an initial value of D0 at time t0. This value is replicated to client1

during its initial client setup at time t1. After client1 has disconnected, a single transaction executes

against the server database at time t2. This transaction sets D to the successive values{D1, D2, D3}

and then commits. Then, at time t3, a second client (client2) performs its initial setup, receiving

the value D3. Finally, at time t4, a second transaction executes, setting D to the successive values

{D4, D5}.

Current (non-compressed) approaches [1][2] log theentiresequence of changes (D1 through

D5) on the server. We verified this experimentally with DB2 v8.2.3 by applying this SQL sequence

to a sample table:

update mvcchip.crudpp set value=’$3000’ where name=’balance’

update mvcchip.crudpp set value=’$4000’ where name=’balance’

commit

The resulting change-data table records are shown in Figure 1.

We see that even though the two updates were applied in a single transaction (x’43EBBE8D000000010000’),

the first update record is kept evenafter the second update record is inserted into the log. This is

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 6

done despite the fact that, once the transaction commits, only the last update is relevant.

In contrast, in our approach the server logs only D3 and D5 as a consequence of using the

compression algorithm discussed below. We trade-off the benefit of reduced storage against the

processing cost of applying the compression algorithm.

As shown above, compression can reduce the amount of state that the server must store. Com-

pression can also reduce the amount of state that a server transmits when replicating to its clients.

Thus, using an uncompressed approach, if both clients perform an incremental replication at time

t5, the server will transmit{D1, D2, D3, D4, D5} to client1 and{D4, D5} to client2. The clients,

in turn, apply this state change sequence serially to transform their copy of D to its current value

on the server (D5). In contrast, in our approach, the server transmits only D5 to both client1 and

client2. This provides two benefits: less bandwidth is consumed in server-to-client transmission,

and client-side processing is reduced.

To understand how the compression algorithm works, we must first explain “what” is being

compressed: namely, astate change record.

A. State Change Records

A state-change record contains information about a single state change to a single datum. It

consists of:

• The typeof the state change: either a CREATE, a DELETE, or UPDATE. In contrast to

the well-known “CRUD” operations, a state-change record only tracks “CUD” operations.

Retrieve (query) operations on the data are irrelevant to replication because they do not

change a datum’s state.

• A sequence number (or timestamp) that specifies where this state change occurred relative

to the server’s overall state change (or transaction) sequence.

• An identifier that uniquely identifies the datum to which the state change was applied. In

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 7

TABLE I

COMPRESSINGTWO-RECORDSEQUENCES

CS1CS2 ⇒ Illegal create of existing record
CS1US2 ⇒ CS2

CS1D ⇒ Empty set (remove theC record)
US1CS2 ⇒ Illegal create of existing record
US1US2 ⇒ US2

US1DS2 ⇒ D
DCS2 ⇒ US2

DU ⇒ Illegal update of nonexistent record
DD ⇒ Illegal delete of nonexistent record

the case of a relational database row, for example, one would typically use (1) the name of

the database table containing the row and (2) the row’s primary key.

• The state (value) of the datum (e.g., the database row)after the given state change was

applied. ThusCS1 refers to a create operation with valueS1, US2 refers to an update with

valueS2, andD refers to a delete (deletes have no state associated with them).

B. Server-Side Compression

Replication-record compression is the process in which a sequence of state-change records,

during one or more transactions, is replaced with (at most)one state-change record containing

only the state needed for replication to a client. Because clients are interested only in the end result

of the sequence, the server need not store the sequence itself. Table I shows how compression is

applied to valid two-record sequences. A sequenceCS1US2 indicates that a datum was first created

with valueS1, and subsequently updated to have valueS2. Sequences such asCS1CS2 are logically

impossible (a record cannot be recreated after being created without first being deleted). We do

not show the sequence number and identifier components of the replication records as they are

irrelevant to the compression algorithm.

While the basic compression idea is straight-forward, care must be taken in the details. In the

case ofDC, for example, we cannot simply compress to aC because (from a client’s perspective)

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 8

the datum couldnot have been created. Since the datum already exists on the client, attempts to

“create” the datum on the client, during replication, in order to bring its state up-to-date with the

server will fail. Instead, the sequence is compressed to aU operation, coupled with the datum’s

state after it was created. This allows the client to replicate from the server by simply updating the

already existent datum to its most recent state on the server.

Since Table I shows how to convert all valid pairs of state-change records into a single state-

change record, it is also clear that sequences of three or more state-change records may be com-

pressed by repeated application of the compression rules. First, compress the first two records into

a single record; then, compress the result of that compression with the (former) third record, and so

on until only a single record remains. Table II shows the results for sequences of three state-change

records.

TABLE II

COMPRESSINGTHREE-RECORDSEQUENCES

CS1US2US3 ⇒ [CS1US2]US3 ⇒ [CS2]US3 ⇒ CS3

CS1US2D ⇒ [CS1US2]D ⇒ [CS2]D ⇒ Empty set
CS1DCS3 ⇒ [CS1D]CS3 ⇒ []CS3 ⇒ CS3

US1US2US3 ⇒ [US1US2]US3 ⇒ [US2]US3 ⇒ US3

US1US2D ⇒ [US1US2]D ⇒ [US2]D ⇒ D
US1DCS3 ⇒ [US1D]CS3 ⇒ [D]CS3 ⇒ US3

DCS2US3 ⇒ [DCS2]US3 ⇒ [US2]US3 ⇒ US3

DCS2D ⇒ [DCS2]D ⇒ [US2]D ⇒ D

Use of compression-based replication gives two benefits:

• The server stores at most one state-change record per datum per transaction. Compression

is performed dynamically by the server as transactions create, update, and delete data. As

a result, the server stores the minimum number of records required to replicate its data on

behalf ofall of its disconnected clients. In this use of compression, the server cannot further

optimize by compressing state-change recordsacrosstransactions. Because the server must

service multiple clients, each of whom may have (1) disconnected at different times, and

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 9

(2) may reconnect at different times, the server can compress only within a transaction’s

boundaries.

• The server transmits at most one state-change record per datum when replicating to a spe-

cific client. This suffices to replicate state that was modified duringall transactions that

executed while the client was disconnected from the server. In this use of compression, the

server first determines that, while disconnected, a given client “missed” transactions txi,

..., txn, so that the server must transmit the state-change records from these transactions.

The same compression algorithm originally used for intra-transaction compression is used

to perform further inter-transaction compression over the set of records maintained by the

server for transaction txi, ... txn.

III. I MPLICATIONS FORSYNCHRONIZATION

Disconnected business applications can use compression in yet another way, depending on the

method used to synchronize the work done by disconnected clients to the server.

Broadly speaking, synchronization may bedata-basedor method-based[10]. Data-based syn-

chronization propagates the disconnected client’s work by copying the client’sdata to the server.

For example, assume that an insurance agent uses her “customer application” to issue a new pol-

icy. The application creates new rows in the “customer” and “policy” tables, and updates rows in

the “agent” table. Data-based synchronization will copy the new and updated rows to the corre-

sponding tables in the server’s database: by doing so, the work performed while disconnected is

propagated to the server. Method-based synchronization propagates the disconnected client’s work

by replaying (on the server) the methods that executed on the client. In our example, therefore,

the “new policy” method of the “customer application” is replayed against the server’s database.

In one sense, the end-result is the same: new rows are inserted in the database tables, and exist-

ing rows are appropriately modified. However, the “propagation units” are methods rather than

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 10

database rows.

The relative advantages of data-basedversusmethod-based synchronization are complex, and

discussed elsewhere [10]. Assuming, however, that a client does successfully synchronize with

the server, the data-based approach has an advantage over the method-based approach. Successful

data-based synchronization automatically makes the client’s state consistent with the server. The

method-based approach must do more work even after a successful synchronization to reach this

consistent state.

To see why this is so, consider the following subsets of the client and server databases.

• DC : the set of data that was modified on the client (including creates and deletes) andnot

concurrently modified on the server.

• DS: the set of data that was modified on the server andnot concurrently modified on the

server.

• DB: the set of data that was modified on both the client and the server (while this client was

disconnected).

Data-based synchronization is concerned only with resolving conflicts inDB, such that the

client and server databases are identical. Assuming that synchronization has made the value ofDB

andDC identical on the client and the server,DB andDC can be ignored during replication since

we knowa priori that the server’s state is identical to the client’s. Similarly, the processing ofDS

during replication is straightforward: copy it to the client and overwrite the corresponding client

data. Thus, synchronization followed by replication immediately results in consistent client and

server states.

This attractive feature is not present when method-based synchronization is used. This is

because the method-replay approach does not lend itself to simple definitions ofDC , DS, andDB.

The fact that a datum was not modified on the client does not mean that it will not be modified

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 11

on the server during a method replay (although it strongly suggests it). Conversely, server-side

method replays may leave data unmodified on the server that was modified during the original

execution on the client.

This disadvantage of method-based synchronization can be viewed as the mirror-image of its

advantage with respect to reducing synchronization conflicts. Consider a “new order” application

that decrements stock from an “items” database table as an agent places the order. Assume that

the stock count was five items when the server last replicated to the client and that one order was

placed by the disconnected client. If no other orders were concurrently placed on the server, data-

based synchronization can then simply copy its data (stock =four) to the server, and its database

will match the server. But what if another orderwasconcurrently placed on the server? In this

case, data-based synchronization will typically fail because the middleware will detect a conflict

between the client’s and server’s versions of the data. Method-based synchronization, in contrast,

will succeed because the server’s table will be serially modified to stock =four items (by the

server-side application) and then to stock =three items (as the client synchronizes to the server).

Conflicts are reduced precisely because the specific state of the data is unimportant: only successful

application execution is important. However, the tradeoff is that successful synchronization may

still require further work to ensure a consistent client database (e.g., the stock =threedata must

now be replicated to the client).

One approach is to perform a consistency check on each datum in DB. However, we think

that this effort is prohibitive. Instead, we prefer an approach in which – after synchronization – a

client’s database is:

1. Rolled-back (“undone”) to its state immediately after the last server-to-client replication.

2. Rolled-forward (“redone”) to the server’s current state by replaying all state-change records

created on the server since the client last replicated, including the changes made by the

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 12

replay of this client’s methods.

We have already discussed how compression can be used to improve the performance of the

“redo” step. We now discuss how systems that use method-based synchronization can also use

compression to improve the performance of the “undo” step.

A. Client-Side Compression

The client-side compression algorithm is similar to the server-side algorithm. The key differ-

ence is that compressed server-side state-change records are used to replicate work performed on

the server to the client. In contrast, compressed client-side state-change records are used to undo

work all work performed on the client since the last replication. The client-side state-change record

is almost identical to that described in Section A – except that it stores the state of the datumprior

to the state change operation, rather than the state after the completion of the operation. Thus,US1

denotes an Update where the state prior to the update wasS1, andDS2 denotes a Delete where the

state prior to the delete wasS2. C denotes a Create operation; the state prior to the Create operation

is undefined (the record did not exist). This allows the client to undo the effect of create, update,

and delete operations.

As state-change operations are performed, they are logged on the client. If only a single

operation was performed on a given datum, only a single corresponding client-side state-change

record is created. When a subsequent state-change is performed on a given datum, the client

compresses the two operations into one record, using the algorithm shown in Table III. The result

of the client-side compression algorithm is that at most one state-change record, per datum, is

stored on the client acrossall transactions that executed since the server last replicated to this

client. (This differs from the server-side result, because a server supports multiple clients, but a

client interacts with only one server).

The client-side algorithm is simpler than the server version in that, forany otherstate-change

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 13

TABLE III

CLIENT-SIDE COMPRESSION OFTWO-RECORDSEQUENCES

CC ⇒ Illegal
CUS1 ⇒ C
CDS2 ⇒ Empty set
US1C ⇒ Illegal

US1US2 ⇒ US1

US1DS2 ⇒ DS1

DS1C ⇒ US1

DS1US2 ⇒ Illegal
DS1DS2 ⇒ Illegal

sequence, the client simply keeps the existing record. For example, for the sequenceUS1US2 , the

US2 is simply discarded. Because the undo algorithm reverts a datum to its statebeforethe first

operation was performed, the algorithm only needs the first state-change record.

Again, care must be taken in the details. In the case ofDS1C, for example, we cannot simply

keep theDS1 because the undo algorithm will later try to recreate the ostensibly deleted – but still

existent – datum. Ifno state-change record is kept at all (because the operations cancel each other

out), the undo algorithm will not be able to restore the datum’s state to that obtaining immediately

before the delete operation.

The followingundoalgorithm uses the state-change records to undo all work performed since

the last replication. For every state-change record:

• If the record is aC, delete the corresponding datum.

• If the record is aDS1, (re)create the datum, setting its state toS1.

• If the record is aUS2, retrieve the existing record and set its state toS2.

IV. COMPRESSIONIN COMPONENT-BASED ARCHITECTURES

The prior discussion assumed that replication and the corresponding compression of state-

change records is done to with respect to relational database tables and their records. We observe

now that that the same concepts and algorithms also apply to component-based architectures such

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 14

as EJBs [4], CORBA [13] and DCOM [12]. Component-based replication requires only that (1) the

component model has a well-defined API for creating, deleting, and modifying components and (2)

that users of the cannot change component state except through this API. Transactional component

architectures typically meet these requirements [9], and efficient replication can therefore also be

applied to such component architectures. The algorithm presented in Section II is modified only

with respect to how the state-change record identifies the associated datum. In the case of a row in

a relational database, one would typically specify (1) the name of the row’s table and (2) the row’s

primary key. In the case of (entity-bean) EJBs, one would would typically specify (1) the JNDI [7]

name of the Enterprise JavaBean’s Home and (2) the EJB’s primary key.

Our experience with theEJBSyncmiddleware [10] confirms this claim. EJBSync is a proto-

type system that projects the EJB programming model to disconnected devices using compression-

based replication. Because EJBSync uses method-based synchronization (Section III), EJBSync

clients also do state-record compression (Section A) to improve the performance of the undo al-

gorithm. While building EJBSync, however, we found that important system issues must be ad-

dressed in order for compression-based replication to be practical. We describe these issues – and

the way that we addressed them – below.

A. Commit-Sequence Number

The inter-transaction compression algorithms discussed in this paper require the system to

know the order in which transactions committed. Although the system knows the order in which

Prepare and Commit calls are made to the Resource Manager(s) [8], the multi-threaded nature

of the system means that the transactions do not necessarily commit in the same order. Only

the Resource Manager(s) (databases) know the order in which a transaction’s results are actually

written to the log, and this information is typically not exposed through any public API.

We addressed this problem by creating a (very short) critical section inside the commit method.

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 15

Within the critical section, each transaction is assigned a “commit sequence number” (CSN) before

the Resource Manager is committed. The critical section prevents the Resource Manager commits

from occurring in a different order than the assignment of CSNs. This solution is not ideal, but

better solutions require access to the internals of the Resource Manager(s).

B. Reducing Hot-Spots

The data-structure that maintains the state-change log is a potential “hot-spot” that can greatly

degrade performance. All server-side transactions must append state-change records to this data-

structure; at the same time, replication requires that the data-structure be read (so as to perform

inter-transaction compression). The naive approach that explictly serializes all access to the data-

structure (a database table, in the case of EJBSync), precludes the possibility of significant concur-

rent server-side activity.

We solved this problem by storing theset of state-change records created by a transaction,

using the transaction’s CSN as the set’s primary key. We then take advantage of the fact that CSNs

define a monotonically increasing range of integers, so that the system can maintain a transient

copy of the largest CSN. Clients that read the data-structure do so by initiating a processing loop in

which each step accesses a single transaction’s set of state-change records (a SELECT by commit

sequence number) rather than accessing the records associated with a range of transaction activity.

A well-defined range of transaction activity is thus read during the loop, terminating at the most

recently committed transaction. This approach (at least with well-designed databases such as DB2)

allow concurrent transactions to append to the table, since their writes involve commit sequence

numbers that are not involved in “read” activity.

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 16

V. CONCLUSION

Business applications that execute on disconnected client devices require servers to replicate

state to clients so that the client databases remain up-to-date. We have shown in this paper that the

standard approach, in which a server stores all state-change activity, can be improved. Specifically,

we presented an efficient replication algorithm that compresses the state that a server must store to

perform such replication. The same algorithm, when applied to inter-transaction activity enables

further compression of the state transmitted by a server to an individual client. The paper shows

that a similar algorithm can be applied to improve the performance of systems that use method-

based synchronization of client state to the server. Finally, we discussed issues encountered while

implementing this approach in a prototype system.

In our approach to synchronization in method-replay systems, we asserted that it was eas-

ier to rollback the client state to the prior replication (disconnection) point, rather than trying to

determine which parts of the modified client state match the post-synchronization server state.

Future work may explore alternate approaches to this problem. Also, for method-replay sys-

tems, the existing algorithms require that the client database be quiesced during the synchro-

nization/rollback/replication process that takes place at reconnection. Future work will examine

algorithms which do not have this restriction.

REFERENCES

[1] IBM DB2 Information Integrator: SQL Replication Guide and Reference (SC27-1121-02).

ftp : / / ftp . software . ibm.com/ps /products /db2 / info / vr82 /pdf /

en US / db2e0e82 . pdf , 2006.

[2] IBM DB2 Everyplacesync Server Administration Guide (SC18-7186-03).ftp : / / ftp .

software.ibm.com/software/data/db2/everyplace/doc/enu/sag82.

pdf , 2006.

Preliminary version for evaluation: Please do not circulate without the permission of the author(s)

EFFICIENT REPLICATION FOR DISCONNECTED BUSINESS APPLICATIONS 17

[3] IBM DB2 Everyplace. http : / / www-306 . ibm . com / software / data / db2 /

everyplace / index . html , 2006.

[4] J2EE Enterprise Javabeans Technology.http : // java.sun.com/products/ejb/ ,

2006.

[5] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann,

San Francisco, CA, USA, 1993.

[6] Java 2 Platform, Micro Edition (J2ME).http : / / java . sun . com / j2me / index .

jsp , 2006.

[7] Java Naming and Directory Interface.http : / / java .sun .com/products / jndi /

docs . html , 2006.

[8] Java Transaction API.http : / / java . sun . com / products / jta , 2006.

[9] A. Leff, P. Prokopek, J. T. Rayfield, and I. Silva-Lepe. Enterprise javabeans and microsoft

transaction server: Frameworks for distributed enterprise components.Advances in Comput-

ers, 54:99–152, 2001.

[10] A. Leff and J. T. Rayfield. Programming models and synchronization techniques for dis-

connected business applications.Advances in Computers, XX:XX–XX, 2006. accepted for

publication.

[11] IBM Websphere MQ Everyplace.http : / / www-306 . ibm . com / software /

integration / wmqe/ , 2006.

[12] F. E. Redmond.DCOM: Microsoft Distributed Component Object Model. John Wiley &

Sons, 1997.

[13] J. Siegel.Quick CORBA 3. John Wiley & Sons, 2001.

[14] Open Mobile Alliance (OMA), SyncML.http : / / www . openmobilealliance .

org / tech / affiliates / syncml / syncmlindex . html , 2006.

