
RC23890 (W0602-197) February 24, 2006
Computer Science

IBM Research Report

Global Power Management Policies for Multi-Core Processors

Canturk Isci, Alper Buyuktosunoglu, Pradip Bose, Chen-Yong Cher
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

March 15, 2006

 1

Global Power Management Policies for Multi-Core Processors

1. Introduction

Chip-level power dissipation limits constitute a fundamental design constraint in future high-
performance microprocessors. Recently, there has been an industry-wide trend of shifting towards
lower frequencies and multiple cores to meet next generation performance targets at affordable
power. Nonetheless, even with reduced per-core frequency, the chip-level performance targets for
such a multi-core processor are aggressive, and meeting the power budget at those performance
levels continues to present a major design challenge. On-chip, dynamic power management is
therefore a design feature that is likely to be an integral part of the overall architecture. Initial
analysis has shown that clock-gating alone is not enough to meet the chip-level power budget for a
high-end multi-core design. Both average and maximum power must be managed to remain within
acceptable limits, dictated by power-related maintenance cost budgets and cooling/packaging
solution cost limits.

Previous research and our own specific power analysis studies have shown that individual
techniques for dynamic management of power (be it of the active, passive or both kinds),
invariably have the following characteristics: (a) the average power savings is a strong function of
the input workload; in fact in some cases, the net power savings may even be zero or negative; (b)
depending on the technique, there is usually an associated performance penalty – either in terms of
cycle time (frequency) or cycles per instruction (CPI); (c) there is an area overhead that is paid as a
price for any expected power reduction; (d) there is no direct or easy way to bound the worst-case
power that is consumed: usually, the only way is an empirical pre-silicon evaluation using an
assumed worst-case workload.

As such, given a “bag of tricks” to reduce power, it is clear that ideally, one would like to invoke a
subset of those tricks, depending on the workload or the particular phase of the workload. This
implies the need for some kind of a “monitor-and-control” facility that would sense the workload
demand and microarchitectural activity and dynamically invoke particular mechanisms from
within the full repertoire of architected techniques for power reduction and control. A detailed
description of a hierarchical power-performance monitor-and-control architecture that can be used
to ensure adherence to stipulated power budgets, while maximizing chip-level performance, has
been documented elsewhere [1]. In general terms, such a hierarchical controller consists of
distributed monitor-and-control units local to each core and non-core storage and interconnect
resource, with direct communication paths to a global on-chip controller. The latter (global)
controller is responsible for assigning appropriate power optimization modes to each monitored
core (or other non-core resource), such that chip-level power budget is not exceeded. Of course,
the objective is to maximize performance, while adhering to chip-level power budgets.

In this report, we focus on the problem of devising efficient algorithms for the global controller in
such a hierarchical monitor-and-control structure. We limit our attention to the core processors in
the multi-core chip. Briefly stated, the problem at hand is: given a total chip power budget, and an
input set of application programs, how to (dynamically) assign power modes to each processor

March 15, 2006

 2

core, such that the chip-level performance is maximized, without violating the total chip power
budget. The rest of the report is organized as follows. In Section 2, we present a brief overview of
the assumptions and objectives governing the global controller function. In Section 3, we describe
a fast static global power management analysis tool, GPAT, to evaluate different power saving
techniques. In Section 4, we describe the global power management policies, with variations for
different objectives such as prioritization, fairness and optimized throughput. We perform
experiments including transition overhead costs.

2. Global Power-Performance Management: Basic Function and Objectives

For the purposes of this report, let us consider a global on-chip hardware controller, that manages
power consumption across multiple cores in the processor chip. We shall call the global power-
performance management unit (GMU). In its most general form, such a GMU could be architected
to cross-optimize across various different metrics, like power, performance, temperature,
reliability, and perhaps even be used to enhance effective chip yield through setting each core to
operate nominally at the “right” voltage and frequency (in the face of process variability). But, for
this report, we limit the function of the GMU to one of managing power and performance only.
The basic objective is to maximize chip-level performance while adhering to a preset chip power
budget. Depending on the operating environment, the performance metric to be optimized may be
different, and one or more issues like thread (task) priority, fairness, single-thread latency or net
chip throughput may be the dominant criteria.

2.1 Power Modes

The GMU optimizes chip power/performance by assigning power modes for each core, based on
application behavior. Therefore, a first step in the design of GMU control policies relies on the
definition of these power modes.

Specifically, for the purposes of this report we consider three power modes for each processor
core: Turbo, Eff1 and Eff2, corresponding to three different speed settings. Our target in each
power saving mode is to achieve a ∆Power Savings : ∆Performance Degradation ratio of 3:1.
Under this target, Eff1 represents a conservative power savings mode with relatively small
performance degradation; Eff2 represents high power saving significant performance degradation.
In Table 1, we summarize the design targets for the three modes.

Mode Power Savings Performance Degradation
Turbo NONE NONE
Eff1 15%0 5%
Eff2 45% 15%
General Target 3X 1X
Table 1. Target ∆Power:∆Performance ratios for the three modes.

For this report, we consider dynamic voltage and frequency scaling (DVFS) as the basic method
for defining modes. In our exploration, we choose a linear DVFS scenario, where both voltage and

March 15, 2006

 3

frequency are scaled linearly. This choice falls within the range of previous product and circuit
analysis datasets. For linear DVFS, we define our modes as follows:

- Turbo: NO DVFS (Vdd,f)
- Eff1: 95% Vdd and 95% f
- Eff2: 85% Vdd and 85% f

A very useful property of DVFS is, power and performance behavior can be approximately
estimated with simple calculations. Note that this simplifies the design of the power/performance
tradeoff table. Power consumption follows the CV2f equation, and therefore has a cubic relation to
DVFS scaling, under our assumption of linear dependence between voltage and frequency. (The
presence of leakage power, which also depends on V, does not cause major perturbation to the
cubic law governing power and performance). The upper bounds for power and performance,
based on these estimations, for our mode choices are shown in Table 2. Note that, actual
performance behavior is expected to be better, as asynchronous memory latencies are not scaled
with DVFS.

Power Saving Performance Degradation
Turbo Eff1 Eff2 Turbo Eff1 Eff2

0 ~14% ~38% 0 <5.3% <17.7%
Table 2. Computed power savings and performance

degradation upper bounds

In these analyses we determine performance degradation from increases in execution time.
Overall, these initial estimates look very promising in terms of achieving 3:1
∆Power:∆Performance ratio. We show in Figure 1, the average power saving and performance
degradation for the whole SPEC suite, for each mode. In our experiments with Turandot, we use a
nominal frequency of 1.1GHZ and Vdd of 1.3V. In the figure, we also show the IPC in different
modes. This shows an increase in IPC as frequency is scaled down, due to asynchronous memory
latencies.

March 15, 2006

 4

Figure 1. Power and performance of different modes defined by DVFS. (power shown in a.u.

arbitrary units)

In Figure 2, we show the aggregate power/performance behavior for the whole SPEC suite. In both
plots, ideal represents the computed values, without latency scaling. The leftmost bars show the
actual values obtained from Turandot simulations. These results show, DVFS is a good candidate
for achieving the 3:1 ratio, and the computations for power/performance estimates at different
modes track very closely with actual behavior. We make use of this fact later in our global power
management policy designs.

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

am
mp

ap
plu ap

si art
bzip

2
cra

fty eo
n

eq
ua

ke

fac
ere

c
fm

a3
d
galg

el gap gcc gzip
luca

s
mcf

mes
a
mgrid

pars
er

perl
bmk

six
tra

ck
sw

im
tw

olf

vo
rte

x vp
r

wupwise

PWR(TURBO) PWR(EFF1) PWR (EFF2)

0

0.5

1

1.5

2

am
mp

ap
plu ap

si art
bzip

2
cra

fty eo
n

eq
ua

ke

fac
ere

c
fm

a3
d
galg

el gap gcc gzip
luca

s
mcf

mes
a

mgrid
pars

er

perl
bmk

six
tra

ck
sw

im
tw

olf

vo
rte

x vp
r

wupwise

IPC(TURBO) IPC(EFF1) IPC (EFF2)

0
0.25

0.5
0.75

1
1.25

1.5

am
mp

ap
plu ap

si art
bzip

2
cra

fty eo
n

eq
ua

ke

fac
ere

c
fm

a3
d
galg

el gap gcc gzip
luca

s
mcf

mes
a
mgrid

pars
er

perl
bmk

six
tra

ck
sw

im
tw

olf

vo
rte

x vp
r

wupwise

EXEC-TIME(TURBO) EXEC-TIME(EFF1) EXEC-TIME(EFF2)

March 15, 2006

 5

Figure 2. Aggregate SPEC results for power and performance under DVFS.

In the remainder of our work, we use DVFS modes for our power mode definitions, and build upon
these for GMU-driven power management. We consider nominal Vdd of 1.3V and frequency of
1.1GHz. We consider leakage as 33% of total unconstrained power and no Vdd gating applied.

3. GPAT: Global Power-Performance Analysis Tool

In order to evaluate GMU-driven power management techniques under a multi-core (CMP)
environment, we developed a static analysis tool, GPAT. GPAT simulates different CMP
constructs with a loose integration with Turandot. It provides a very fast, perfectly scalable
interface to develop and evaluate different policies for GMU, as well as providing benchmark
statistics for single threaded and static mode definitions. It also enables us efficiently explore
different design objectives such as increasing cores per chip or considering yield improvement
with asymmetric mode processors.

GPAT simulation environment uses single threaded Turandot results for each benchmark as input,
and performs a CMP simulation by simultaneously progressing over Turandot traces for different
benchmarks assigned to different cores. Figure 3 depicts the general data flow for GPAT. For each
benchmark, we use Turandot to generate three traces for the three power modes: Turbo, Eff1, Eff2.
These traces are based on fixed instruction granularities. Therefore, when a core switches its power
mode, GPAT identifies the instruction number for that switch and switches to the input trace that
corresponds to the new mode for that benchmark. The mode switches are performed
simultaneously at each core, at execution points we refer to as explore times. After an explore time,
all mode switches are performed and GPAT continues CMP simulation until next explore time.
During this period it simply evaluates the power/performance statistics based on the current input
trace. GPAT updates its simulation stats every delta sim time. That is, at each delta sim time, it
reevaluates per core and overall chip statistics. These statistics change, as GPAT progresses
through a delta instruction sample and moves to next sample on an input trace. As the output,
GPAT produces a single combined trace with delta sim time steps, showing the
power/performance behavior of each core and overall chip. It also produces the track of which core
operates at which mode.

AVE SPEC Performance Degradation

0.0%
3.7%

12.8%

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%

TURBO EFF1(95%) EFF2(85%)

Perf Degradation ideal

AVE SPEC Power Savings

0.0%

14.1%

38.3%

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%

TURBO EFF1(95%) EFF2(85%)

PWR Savings ideal

March 15, 2006

 6

Figure 3. GPAT data flow.

In addition to the simulation timeline, GPAT also produces a large number of statistics, including
native execution statistics for each benchmark, power savings and performance degradations with
respect to baseline Turbo execution, mode transition statistics, time distributions of modes and
transition overhead computations.

GPAT can explore a large number of cores from 2 to 64, with different power budgets, simulation
termination conditions. Policy descriptions and different design constraints can easily be modified,
added and evaluated under GPAT structure. Inevitably, as GPAT is a static evaluation, it does not
include shared L2 bus and address conflicts. Although this should not have significant effect when
the most of the chosen applications are not highly L2 and memory intensive, further research is
needed for a quantitative evaluation. The major advantage of GPAT is, it provides a fast interface
to policy and design evaluation. Although the values may differ between dynamic and static cases,
the inter-relations are mostly consistent.

Here we provide a brief example to GPAT utilization with an evaluation of higher on chip
integration with DVFS power modes. (one of the possible GMU objectives) In Figure 4, we show
the evaluation of a higher core integration for a fixed power budget. In the figure, we show a single
chip with 4,5 and 6 cores respectively. For each case, as we include a new core, we also introduce
a new highly cpu-bound benchmark. While introduction of each new core/benchmark incurs
performance penalties per core, overall system throughput is improved for the same budget. In this
example we use a simple, fair policy that tries to balance power consumption of each core. As
most of these benchmarks—except for mcf, art and parts of ammp—are cpu-bound, we expect
similar conclusions with a dynamic CMP evaluation.

Inputs

GPAT

Turbo Trace
∆ins – IPC – PWR
∆ins – IPC – PWR

:
Eff1 Trace

∆ins – IPC – PWR
∆ins – IPC – PWR

:
Eff2 Trace

∆ins – IPC – PWR
∆ins – IPC – PWR

:

Turbo Trace
∆ins – IPC – PWR
∆ins – IPC – PWR

:
Eff1 Trace

∆ins – IPC – PWR
∆ins – IPC – PWR

:
Eff2 Trace

∆ins – IPC – PWR
∆ins – IPC – PWR

:

Output

Joint Exec-n Trace
Time Modes Power
∆t mode1

… modeN PWR
∆t mode1

… modeN PWR
 : : : : For Each

Benchmark

March 15, 2006

 7

Figure 4. Evaluation of more cores/chip with DVFS modes using GPAT.

4. Power Management Policies for Global Controller

In this section we discuss different GMU policies with a common constraint. We devise policies
that are subject to meeting a specific global power budget by adjusting power modes of individual
cores. Besides this common constraint, different policies target different objectives such as core
prioritization of cores/benchmarks, fairness, power balancing among cores and optimizing system
throughput. We assume that each core reports monitored power and performance information for
each core to the GMU. The latter delivers global power management actions to cores based on the
global constraint and derived policies. In the analysis with GPAT, we use the same parameters
throughout the experiments. We use delta sim times of 50us and explore times at 500us. GPAT
input traces are generated from Turandot with 100K instruction samples. We experiment with
budgets from 150W to 300W for a 4 core CMP, and 300W to 600W for an 8 core case. (The watt
value limits assumed are somewhat arbitrary, and do not necessarily reflect any real chip designs).
The termination condition is, set when one of the benchmarks reach completion. Thus, all cores are
utilized for the experimented regions.

In our evaluations, we use accounting based on (global) time sampling, since, under the multiple
frequency domains, synchronization should be based on a global clock or wall clock. Similarly, for
performance metrics, we use BIPS instead of IPC.

(ammp)
PWR: 71W
BIPS: 1.02

4 Cores:

(mcf)
PWR: 64W
BIPS: 0.43

(crafty)
PWR: 74W
BIPS: 1.79

(art)
PWR: 74W
BIPS: 0.76

Throughput: 4.10 BIPS

(ammp)
PWR: 61W
BIPS: 0.97

5 Cores:

(mcf)
PWR: 55W
BIPS: 0.42

(crafty)
PWR: 59W
BIPS: 1.67

(art)
PWR: 53W
BIPS: 0.72

(ammp)
PWR: 47W
BIPS: 0.90

6 Cores:

(mcf)
PWR: 54W
BIPS: 0.42

(crafty)
PWR: 46W
BIPS: 1.55

(art)
PWR: 49W
BIPS: 0.71

(sixtrack)
PWR: 63W
BIPS: 1.59

(sixtrack)
PWR: 46W
BIPS: 1.44

(parser)
PWR: 54W
BIPS: 1.01

Throughput: 5.37 BIPS Throughput: 6.03 BIPS

March 15, 2006

 8

4. 1 Experimented Policies
Here, we introduce three of the experimented policies for different objectives. The first policy,
labeled priority, assigns different priorities to different tasks. In our implementation, core4 has the
highest priority and core1 has the lowest priority (in a 4-core chip). Therefore, in policy
implementation, it tries to run the last core as fast as possible, while preferring to slow down core1
first in case of a budget overshoot. Second policy, pullHipushLo, tries to balance the power
consumption of each core, by slowing down the core that has the highest power in case of a budget
overshoot and vice versa. Last, MaxBIPS, targets at optimizing the system throughput, by
predicting and choosing the power mode combination that maximizes the throughput at each

 Figure 5. GMU power management policies

explore time. In Figure 5, we summarize the algorithmic implementations of the three policies.

In Figure 6, we show the power/performance behavior of different benchmarks for a 4 core CMP
with the three described policies. The top figures plot average performance degradation for each
benchmark for several power budget targets. The bottom plots show the average power saving for
the same range of budgets. As the target budget is increased towards the worst case corner, all
benchmarks converge to zero performance degradation and power saving, as they all can operate
safely in Turbo mode. In all these experiments, core1 to core4 execute ammp, mcf, art and crafty.
Spanning a range of execution behavior, mcf is highly memory bound, followed by art. Ammp is
an average scale benchmark, with both cpu bound and memory bound regions. Finally crafty is a
highly cpu bound benchmark.

Priority:
(Prioritize cores)

IF Chip PWR > Budget

Push Core1 Turbo Eff1 Eff2
 :
Push CoreN Turbo Eff1 Eff2

 <Until budget is met!>

IF Chip PWR < Budget

Push CoreN Eff2 Eff1 Turbo
 :
Push Core1 Eff2 Eff1 Turbo

 <Until before budget is exceeded!>

pullHipushLo:
(Penalize cores fairly)

IF Chip PWR > Budget

Find MaxPWR core X
 Pull Down core X

 <Until budget is met!>

IF Chip PWR < Budget

Find MinPWR core X
 Push Up core X

 <Until before budget is exceeded!>

MaxBIPS:
(Maximize Throughput)

For all CORE(MODE) combinations:
 Find [Mode(Core1),…, Mode(CoreN)] N-tuples

that meet budget

Among all [Mode(Core1),…, Mode(CoreN)] N-tuples
that meet budget:
 Choose modes for each core that maximize BIPS

March 15, 2006

 9

 Figure 6. Power/performance results for the three policies for a 4 way CMP.

In Figure 6, in the plots on the left side, we see the straightforward interpretation of priority
(prioritization in this example is set as: ammp < mcf < crafty < art). As the power budget is
increased, first core4 (art) then core3 (crafty) is released from Eff2 to Turbo, until all cores can
execute in Turbo mode. In this scheme, priority pushes down mcf to Eff2, as it has the smallest
delta power to fit the budget, then as a higher budget is used, the benchmark in the priority order
can actually find enough slack to move to Eff1. In the middle plots, pullHipushLo tries to balance
the power of each core, therefore the benchmarks move somewhat closer together as the budget is
increased. However, to have fair power distribution, pullHipushLo actually employs kind of a
prioritization as well, where benchmarks are preferred in their memory boundness order (mcf > art
> ammp > crafty). Moreover, once again this policy can choose non-monotonic behavior with
different budgets, as for different budgets different amounts of slack can enable different choices
that satisfy better power balancing. On the right-hand side, we show the MaxBIPS policy, which
actually optimizes for throughput. In this case, we once again see fairly regular behavior, but once
again, this policy inherently assumes a priority. It actually prefers the benchmarks in the order of
their cpu-boundness (crafty > ammp > art > mcf). Therefore, it performs in an almost completely
inverse way to pullHipushLo.

In Figure 7, we show a final overall comparison of all the experimented policies. We show these in
terms of policy curves, where for each policy we draw the overall system performance
degradation—with respect to all Turbo execution—vs. different power budgets. Therefore, the
policy which leads to least degradation for a given budget works better in that budget scenario. In
addition to the policy curves, we also show the total powers for each budget in comparison to the
target budget to fit (dotted straight line). This serves as a ‘sanity check’ to confirm the policies
actually fit into the given power budget.

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

170 220 270
POWER BUDGET

PE
R

F.
 D

EG
R

A
D

A
TI

O
N

0.0%

10.0%

20.0%

30.0%

40.0%

170 220 270
POWER BUDGET

PO
W

ER
 S

A
VI

N
G

S

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

170 220 270
POWER BUDGET

PE
R

F.
 D

EG
R

A
D

A
TI

O
N

0.0%

10.0%

20.0%

30.0%

40.0%

170 220 270
POWER BUDGET

PO
W

ER
 S

A
VI

N
G

S

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

170 220 270
POWER BUDGET

PE
R

F.
 D

EG
R

A
D

A
TI

O
N

0.0%

10.0%

20.0%

30.0%

40.0%

170 220 270
POWER BUDGET

PO
W

ER
 S

A
VI

N
G

S

Priority pullHipushLo MaxBIPS
ammp
mcf
crafty
art

March 15, 2006

 10

Figure 7. Policy curves and power for different policies.

The curves of Figure 7 show, for all the given budgets, MaxBIPS performs significantly superior
for performance—as its target is tailored for throughput. Also all policies fit closely to the assigned
power budgets.

In addition to the policy curves, here we also revisit our initial target of 3:1 ∆Power:∆Performance
ratio. In Figure 8, we show the ∆Power:∆Performance ratios curves for the three described
policies. In each plot, we also show the target 3:1 ratio curve as the dotted straight line. Our DVFS
based power modes and experimented policies all show very good ∆Power:∆Performance ratios,
right on the 3:1 ratio target. In the case of MaxBIPS, GMU actually achieves significantly better
than the 3:1 ratio with DVFS.

Figure 8. Hitting 3:1 ∆Power:∆Performance ratio with GMU policies.

Finally, in Figure 9, we show an example budget case, with the MaxBIPS benchmark,
demonstrating how GMU works to meet power budgets, while optimizing for throughput. At each
explore time, the best mode combination is computed that meets the budget. However, there can be
small regions in each case that can exceed the budget at small locations as the unprecedented

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

0.0% 20.0% 40.0%
POWER SAVING

PE
R

F
D

EG
R

A
D

A
TI

O
N

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

0.0% 20.0% 40.0%

POWER SAVING

PE
R

F
D

EG
R

A
D

A
TI

O
N

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%

0.0% 20.0% 40.0%

POWER SAVING

PE
R

F
D

EG
R

A
D

A
TI

O
N

(a) Priority (b) pullHipushLo (c) MaxBIPS

170

190

210

230

250

270

290

180 200 220 240 260 280 300
POWER BUDGET

PO
W

ER

Priority
BUDGET
pullHi_pushLo
pullLo_pushHi
pullHi_pushHi
pullLo_pushLo
MaxBIPS

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

180 200 220 240 260 280 300
POWER BUDGET

PE
R

FO
R

M
A

N
C

E
D

EG
R

A
D

A
TI

O
N pullHi_pushLo

Priority
pullLo_pushHi
pullHi_pushHi
pullLo_pushLo
MaxBIPS

March 15, 2006

 11

application behavior changes can lead to increased instantaneous system powers, until the next
explore time. In this example, we also see how MaxBIPS favors crafty and penalizes mcf.

Figure 9. Execution timeline of 4 benchmarks and total power with MaxBIPS policy, for a
220W power budget. Right-hand axes represent modes with Turbo=0, Eff1=1 and Eff2 =2.

4.2 Estimating Different Mode Behavior

In the policy discussions of previous section, we have inherently assumed that the GMU has the
knowledge of power/performance behavior of applications in different modes. So that, based on
this information, policies can choose among different mode combinations based on their merits.
However, this knowledge is not directly available to GMU. The general approach in many
dynamic management schemes is to perform small-scale “explorations” of each mode to deduce
the application behavior in these modes, or to somehow predict this behavior from past history. For
a heavy-handed application like DVFS, this exploration approach is essentially prohibitive.
Overheads lead to diminishing returns. The alternative approach is to assume a previously seen
behavior history in a specific mode as the persistent behavior in that mode. However, this has
unreliable outcomes, as there is no guarantee that a mode is previously visited under the given
policies—unless there exist periodic explorations—and since relying on past history can be
dangerously misleading for a strict power budget constraints.

As we have previously shown, DVFS has a very attractive property; different mode behaviors can
be a priori estimated with reasonable accuracy with the analytical relations. Therefore, in all our
analyses, we actually use this computational approach to estimate behavior in different modes.

180

220

260

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

] TOT_PWR

Budget

20

50

80

110

140

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

]

-1

0

1

2

3
PWR(ammp)

Mode(ammp)

20

50

80

110

140

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

]

-1

0

1

2

3
PWR(mcf)

Mode(mcf)

20

50

80

110

140

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

]

-1

0

1

2

3
PWR(crafty)

Mode(crafty)

20

50

80

110

140

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

]

-1

0

1

2

3
PWR(art)

Mode(art)

March 15, 2006

 12

This alleviates any necessity for exploration, and provides good confidence in our mode selection
for budget fitting.

We represent the characteristics of each mode in terms of Power and BIPS Matrices as shown in
Table 3. For an N-core CMP system with three power modes two Nx3 matrices can completely
characterize all mode behaviors. For the Power Matrix, different power behaviors of modes can be
characterized by applying the cubic scaling relation. For the BIPS Matrix, BIPS values can be
computed with a linear scaling.

Power Matrix
 Turbo Eff1 Eff2

Core1 P1T=P1/(0.953) P1 P1T*(0.853)

: : : :

CoreN PNT PNT*(0.953) PNT*(0.853)

BIPS Matrix

 Turbo Eff1 Eff2

Core1 B1T=B1/(0.95) B1 B1T*(0.85)

: : : :

CoreN BNT BNT*(0.95) BNT*(0.85)

Table 3. Power and BIPS Matrices with DVFS.

For our original mode definitions, power and BIPS values of different modes can be estimated by
scaling with 0.95 and 0.85 as shown in Table 3. For example, for if core1 is in Eff1 mode,
corresponding Turbo and Eff2 power and BIPS values can be approximated as shown in the core1
row of the two matrices. As the power modes and number of cores are known in design time, all
these values can be hardwired. Thus, the matrix computation can be done in parallel fashion with
GMU specifying which column propagates to other modes.

Inevitable, these estimations are prone to errors. Over the SPEC suite, this is relatively
insignificant with 0.1-0.3% estimation errors. For BIPS values, the errors are 2-4%. The higher
errors for BIPS are due to asynchronous memory latencies. For powers, the errors stem from
slightly changing utilizations at delta sim cycles in different modes. As the more important
estimate is power—due to budget constraints, this approach works very well in our DVFS
scenario. In our experiments we use this approach to choose appropriate power modes.

March 15, 2006

 13

4.3 Upper Bounds in Policy Efficiency with Oracle Mode Selection
To assess the efficiency of the policies from an optimal throughput perspective, here we describe
the upper bounds to achievable efficiency with “oracular” knowledge. For the oracle based mode
selection, at each explore period, we look at the future execution until the next explore time, i.e.,
500us forward. We generate our oracle BIPS and Power matrices based on this knowledge, and
then choose the maximum performance mode combination that satisfies the power budget.

To be stricter with the oracle behavior, we actually experiment with cases where oracle fits a
power envelope slightly higher than the power budget, we denote this with a SHIFT. For example,
an oracle with SHIFT 5, SemiOracleShft5, tries to fit power into an envelope of
POWER_BUDGET+SHIFT Watts. The reason for this approach is, fitting to budget every 500us
can be more stringent, for overall execution. We demonstrate this with in the power slack plots of
Figure 10. Here, oracles subject to different shifts are compared to the power slack of MaxBIPS.
An oracle with shift 8 exceeds budget for all reasonable budgets, while some other oracles have
actually more slack than MaxBIPS at certain budgets.

Figure 10. Power slack for oracles with different shifts, and for MaxBIPS.

Overall, there is no single shift value,that minimizes the slack for all budgets. Therefore, for the
strict upper bound comparison, we merge these oracles with shifts 0 to 8 such that, at each budget,
we choose the one that minimizes slack, but doesn’t overshoot. We refer to this final representation
as OracleMERGE. In Figure 11, we show the power slack for OracleMERGE, and a few of the
previous policies. In this case, oracle provides a strictly tighter fit to budgets than all policies. In
the figure, we also show the policy curve for the OracleMERGE, together with the previous policy
curves. Although it performs slightly better than all policies, it is easily seen that MaxBIPS lies
within 1% of this strict oracle. This shows, our MaxBIPS policy, with throughput optimized policy
selection and predictive Power and BIPS matrices perform comparably to a strict oracle case in
power management.

-20

-16

-12

-8

-4

0

4

8

12

16

20

180 200 220 240 260 280 300

POWER BUDGET

PO
W

ER
 S

LA
C

K

MaxBIPS SemiOracle
SemiOracleShft8 SemiOracleShft1
SemiOracleShft2 SemiOracleShft3
SemiOracleShft4 SemiOracleShft5
SemiOracleShft6 SemiOracleShft7

March 15, 2006

 14

Figure 11. Power Slack and policy curve for OracleMERGE in comparison to policies.

4.4 Lower Bounds with Static Mode Assignments
One extreme method of the global power management consists in a static power assignment for
each core. This can be explored in two different ways. First, we compare separate static
assignments for each core, still based on ‘oracle’ knowledge and optimal core-benchmark
assignments. We call this, idealized static management. Second, a more realistic scenario is
considering a ‘heterogeneous’ core with different power-mode cores and investigate thread
assignments. We call this realistic static management.

To explore the first scenario, idealized static case, we look at the overall native executions of each
benchmark. Then, for each budget, we choose the mode combinations that maximize throughput,
while satisfying budget requirements. This “idealistic” case relies on several assumptions. It
assumes OS knows how to schedule each to which core for optimized results. We assume the
underlying cores are always available for the optimal mode combination. For example, for one
budget, we assume we have 3 Eff2 and 1 Turbo core, for another budget, we assume we have 3
Turbo and 1 Eff1 core. Inherently, as we schedule based on overall native executions, this
approach entails oracle knowledge of whole application execution behavior.

In Figure 12, we show the policy curve for such an idealistic static case, SafeStatic. We also show,
for each budget, the assumed underlying core configurations. Even under such considerations,
static case performs significantly worse. This shows the impact of dynamic management
potentials.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

180 200 220 240 260 280 300
POWER BUDGET

PE
R

FO
R

M
A

N
C

E
D

EG
R

A
D

A
TI

O
N

pullHi_pushLo
Priority
MaxBIPS
OracleMERGE

0

4

8

12

16

20

180 200 220 240 260 280 300

POWER BUDGET

PO
W

ER
 S

LA
C

K

Priority

pullHi_pushLo

MaxBIPS

OracleMERGE

March 15, 2006

 15

Figure 12. Policy curve for idealistic static management and underlying core configurations

at each budget.

The more realistic static management scenario, on the other hand, operates for a fixed core
configuration for a given set of benchmarks. Therefore, it can operate only on smaller range of
power budgets. The benchmark assignments can be considered as random, or scheduled by OS.
Therefore, such core-benchmark pairings can only change at task switch intervals, on the order of
milliseconds This is a higher level of granularity than GMU, and is considered as part of OS.
Without oracle knowledge, the static benchmark assignments can lead to drastically different
power/performance behavior. In Figure 13, we show an exhaustive case for a 4 core CMP, where
the cores are assigned to [Turbo, Eff1, Eff2]. In this case, the benchmark assignments can cause
varying performance degradation between 2 to 8%.

Figure 13. Effect of task scheduling to different cores on performance degradation.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

180 200 220 240 260 280 300

POWER BUDGET

PE
R

FO
R

M
A

N
C

E
D

EG
R

A
D

A
TI

O
N

ammp_mcf_art_crafty ammp_art_crafty_mcf
ammp_mcf_crafty_art art_crafty_ammp_mcf
art_mcf_ammp_crafty art_mcf_crafty_ammp
crafty_ammp_art_mcf crafty_mcf_ammp_art
crafty_mcf_art_ammp mcf_ammp_art_crafty
mcf_ammp_crafty_art mcf_crafty_art_ammp

BUDGET CORE1(ammp) CORE2(mcf) CORE3(crafty) CORE4(art)
205.0000W: Eff2 Eff2 Eff2 Eff2
210.0000W: Eff2 Eff2 Eff2 Eff2
215.0000W: Eff2 Eff2 Eff1 Eff2
220.0000W: Eff2 Eff2 Eff1 Eff2
225.0000W: Eff2 Eff2 Turbo Eff2
230.0000W: Eff2 Eff2 Turbo Eff2
235.0000W: Eff1 Eff2 Eff1 Eff2
240.0000W: Eff1 Eff2 Eff1 Eff2
245.0000W: Eff1 Eff2 Turbo Eff2
250.0000W: Eff1 Eff2 Turbo Eff2
255.0000W: Turbo Eff2 Turbo Eff2
260.0000W: Turbo Eff2 Turbo Eff2
265.0000W: Turbo Eff2 Turbo Eff2
270.0000W: Turbo Eff2 Turbo Eff2
275.0000W: Turbo Eff2 Turbo Eff1
280.0000W: Turbo Eff2 Turbo Eff1
285.0000W: Turbo Eff2 Turbo Eff1
290.0000W: Turbo Eff2 Turbo Turbo
295.0000W: Turbo Eff2 Turbo Turbo
300.0000W: Turbo Eff2 Turbo Turbo
305.0000W: Turbo Eff1 Turbo Turbo
310.0000W: Turbo Eff1 Turbo Turbo
315.0000W: Turbo Turbo Turbo Turbo

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

180 200 220 240 260 280 300
POWER BUDGET

PE
R

FO
R

M
A

N
C

E
D

EG
R

A
D

A
TI

O
N

MaxBIPS

OracleMERGE

SafeStatic

March 15, 2006

 16

In Figure 13, we see that assigning the memory bound application, mcf, to core1, and cpu-bound
application Crafty, to core4 leads to worst performance degradation (highest line). The opposite of
this (with crafty on core4 and mcf on core4) produces minimal performance degradation (lowest
line). There exists a significant range among different benchmark assignments.

As rescheduling can be done only at OS switching granularities, without oracle knowledge, OS can
realize a bad assignment at the end of a switching interval, and can switch tasks or reconfigure
cores. This leads to higher time penalties compared to 500us GMU time granularity. As an
approach like MaxBIPS is indifferent to benchmark-core pairings, initial scheduling decisions do
not affect the management outcomes.

4.5 Chip-Wide DVFS
Last, we compare our results with a chip-wide DVFS scenario. Chip-wide DVFS has very
appealing features for implementation, as there is no synchronization problem across cores which
simplifies both software and hardware implementation. For this case, all cores transition together
into Turbo, Eff1 or Eff2 modes at each explore time based on budget constraints.

In Figure 14, we show the application of chip-wide DVFS for a 250W budget on a 4-core CMP
with ammp, mcf, crafty and art. In Figure 15, we show the same experiment with ammp, crafty, art
and sixtrack.

180

220

260

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

] TOT_PWR

Budget

-1

0

1

2

3

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

M
O

D
ES

Figure 14. Chip-wide DVFS for 250W budget with ammp, mcf, crafty, art.

180

220

260

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

] TOT_PWR

Budget

-1

0

1

2

3

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

M
O

D
ES

Figure 15. Chip-wide DVFS for 250W budget with ammp, crafty, art, sixtrack.

March 15, 2006

 17

As seen in Figures 14 and 15, chip-wide DVFS has completely different implications for different
set of benchmarks. For the first case, it fits the power envelop really well, as the total chip power
meets around 250W for the first set of benchmarks when they run in Eff1 mode. In the second
case, same budget results in a drastically reduced power/performance behavior, with one change in
the benchmark set. In the second case, as chip power is usually slightly higher than 250W, all
cores are penalized tremendously to run in Eff2 mode. In both cases, the downside of chip-wide
DVFS is clearly conveyed, with CMP systems, you pay a huge penalty for small budget
overshoots. Obviously this kind of monolithic global management has linearly growing negative
impact with more aggressive scale-out scenarios. Also a comparison of the two figures shows,
global DVFS cannot guarantee generic good performance for a budget with varying workload
combinations. This effect is also emphasized with scale-out due to more combinations of
variations.

Finally, in Figure 16, we show how the policy curve with chip-wide DVFS compares to previous
cases, for the ammp, mcf, crafty, art workload combination. In the policy curve and budget plots,
both the increased performance degradation and power slack are clearly demonstrated.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

180 200 220 240 260 280 300
POWER BUDGET

PE
R

FO
R

M
A

N
C

E
D

EG
R

A
D

A
TI

O
N MaxBIPS

OracleMERGE
SafeStatic
ChipWideDVFS

170

190

210

230

250

270

290

180 200 220 240 260 280 300

POWER BUDGET

PO
W

ER
BUDGET

MaxBIPS

OracleMERGE

SafeStatic

ChipWideDVFS

Figure 16. Policy and power budget curves for chip-wide DVFS.

Note that, despite the unpromising results for the presented cases, chip-wide DVFS has certain
advantages in terms of implementation simplicity. Especially for small scale-out cases such as a 2
way CMP chip, it might be possible to get comparable results with this approach, probably by
introducing more power modes. Further research is needed to characterize these benefits and to
evaluate the feasibility of having more voltage and frequency domains.

4.6 Incorporating Transition Overheads
In our previous analyses, we have not discussed the overheads of mode-transitions. Although the
overheads do not overwhelm the benefits for our large scale 500us explore times, they have
observable effects in the power/performance behavior. Here, we describe the overheads and refine
our methods to incorporate their effects.

March 15, 2006

 18

Based on specifications from previous products and research, we choose a realistic DVFS
transition rate of 10mV/us. Thus, the transition overheads for our three power modes are computed
as shown in Table 4.

Eff2 Vdd
(f=0.935GHz)

Eff1 Vdd
(f=1.045GHz)

Turbo Vdd
(f=1.1GHz)

∆=130mV 13 Us

∆=195mV 19.5(20) Us

∆=65mV 6.5(7) Us

1.3*0.85=1.105V1.3*0.95=1.235V1.3V

Eff2 Vdd
(f=0.935GHz)

Eff1 Vdd
(f=1.045GHz)

Turbo Vdd
(f=1.1GHz)

∆=130mV 13 Us

∆=195mV 19.5(20) Us

∆=65mV 6.5(7) Us

1.3*0.85=1.105V1.3*0.95=1.235V1.3V

Table 4. DVFS transition overheads for the three power modes.

Table 4 shows, the transition overheads for the three modes are on the order of 10us. Therefore,
compared to our 500us explore times, these have relatively low overheads ranging from 1 to 4 %.
However, despite the small magnitude of overheads, they can still inhibit the improvements with
our policies. For example, for the greedy case of MaxBIPS, a possible scenario is as follows.
Assume current mode combination is [Turbo Eff1 Eff2 Eff1] with a throughput of 3.6 BIPS. At the
explore time, MaxBIPS decides to switch to a new combination [Eff2 Turbo Turbo Eff2] with a
predicted throughput of 3.7 BIPS. However, considering the overheads of transitioning the actual
observed BIPS goes down to 3.56, thus overriding projected benefits.

To accurately account for this effect, we devise a new policy, BestCostBIPS, which incorporates
the overheads into optimization objective. The flow for this policy is depicted in Figure 17.

Figure 17. BestCostBIPS policy description.

The implementation of BestCostBIPS is not significantly different from MaxBIPS. Following from
similar arguments, at design time, the cost of switching among modes is well known as well as the
BIPS and Power Matrix scalings. Therefore, same parallel BIPS matrix computation can be
performed, only with additional scaling factors for BIPS values such as 500/507, 500/513 and
500/520 for our choice of parameters. For example, referring to Table 3, instead of scaling P1T
with 0.85 for BIPS matrix, Eff2 estimate, we scale with 0.85*(500/520).

BestCostBIPS:
(Maximize Throughput under transitions)

For all CORE(MODE) combinations:
 Find [Mode(Core1),…, Mode(CoreN)] N-tuples that meet budget

For all [Mode(Core1),…, Mode(CoreN)] N-tuples that meet budget:
 Find the BIGGEST mode transition
 Add its transition cost to the predicted BIPS from BIPS matrix
 Find the actual BIPS for that transition
 Choose modes for each core that maximize actual BIPS

March 15, 2006

 19

To evaluate the effect of overheads and the efficiency of BestCostBIPS policy, we consider a
conservative transition scenario. At each explore time, if there is a mode transition, we find the
longest transition cost among all cores and assume all cores are stalled during this period. We
assume chip produces 0 BIPS—attributed to benchmark execution—during transitions, while
power remains the same. Such a power assumption is more realistic to avoid swings that can lead
to di/dt hazards. Penalizing all cores with the largest penalty is not the most efficient approach, but
much more beneficial to keep cores synchronized for explorations.

Figure 18. Policy curves and ∆Power:∆Performance curve under transition costs.

In Figure 18, we show the policy curves for MaxBIPS and BestCostBIPS with transition costs. We
also include the original zero overhead policy for reference. Overall, we see the impact of
transitions on performance degradation with two MaxBIPS curves. In comparison, BestCostBIPS
consistently performs better than the costed MaxBIPS, and it comes within 1% of the zero
overhead MaxBIPS. In addition to these, we also show the 3:1 ∆Power:∆Performance ratio with
the BestCostBIPS policy, which shows we still over-achieve 3:1 ratio with DVFS based power
management with GMU These results show, first, the impact of transition costs is not drastic, and
our GMU power management methods still perform well; second, our new policy, BestCostBIPS
performs superior under realistic transition overheads.

5. Conclusion

Our presented research describes a new perspective to dynamic power management for CMP
systems, under the context of a global power management unit (GMU). The GMU is exposed to
the activity of all cores in a system, and therefore, can decide upon per-core actions to meet global
chip constraints and for both local and global objectives.

Our experiments investigate different power management implementations, and demonstrate a
DVFS approach achieves a 3:1 ∆Power:∆Performance ratio for power savings and performance
degradation. We describe a fast and scalable CMP power/performance analysis tool to investigate
global power management policies. Our analyses show, global management with GMU provides a
good balance between power/performance under varying workload behavior. Such dynamic global

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

0.0% 20.0% 40.0%
POWER SAVING

PE
R

F
D

EG
R

A
D

A
TI

O
N

Perf_Degr

PWR_saving/3

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

180 200 220 240 260 280 300
POWER BUDGET

PE
R

FO
R

M
A

N
C

E
D

EG
R

A
D

A
TI

O
N

MaxBIPS
MaxBIPS_withCOSTS
BestCostBIPS

March 15, 2006

 20

power management can avoid the inefficiency of worst-case designs by reducing power envelopes
or increasing on chip core integration, with reasonable single-threaded performance sacrifice. Our
policy experiments show the different trade-offs between fairness and throughput. Our best
performing policy, MaxBIPS, achieves performance degradations within 1% of a conservative
oracle, exceeding 3:1 ∆Power:∆Performance ratio in most operating regions. We show, dynamic
management policies perform significantly better than static power management or chip-wide
DVFS. Under transition overhead considerations, our best performing policy, BestCostBIPS,
comes within 1% of MaxBIPS without costs, showing the feasibility of GMU actions under
realistic overhead constraints. In all the policies experimented, the predictability of DVFS based
techniques alleviate any overheads related to mode explorations. Our mode predictor structures,
Power and BIPS Matrices can estimate the behavior across different modes of an application with
.2% and 3% errors respectively.

Overall, this research investigates dynamic management possibilities with a dedicated GMU
architecture. Our results show the potentials and applicability of such a method. We believe as
more aggressive chip- and system-level scale-out strategies are followed, the benefits of global
power management will be correspondingly emphasized, encouraging the incorporation of such
global management techniques in the next generation systems.

6. Future Research Directions

There exist several additional avenues of research that will enlarge the depth and breadth of our
presented research. First, for the power mode explorations, an important alternative is to consider
core-wide resource scaling. In such a case, all possible array structures, functional units and queues
can be scaled for Eff1 and Eff2 mode definitions. In such a case, it might be compulsory to
integrate Vdd gating to baseline to achieve 3:1 ∆Power:∆Performance ratios.

Second, an alternative can be explored by considering fixed, heterogeneous cores. These can be
developed as similar cores with different voltage and frequency islands, or with different size
cores. One fundamental difference with this approach is, as the cores are fixed, global management
can be done by shifting threads. For this purpose, GMU functionality might have to be shifted to
OS, but due to granularity differences, a smaller scale solution might evolve that can be
implemented via GMU.

Third, besides described experiments, a global controller can also participate in dynamic reliability
management. Under today’s process variability, there exist significant probabilities that certain
modes of a core can be non-functional at given (V,f) setting. That is, a certain core might not work
at Turbo for a given frequency. In such case GMU can be configured to avoid those mode
combinations and can help binning of yield into different available-modes categories. The
implementation and evaluation of such a scenario is straightforward with GPAT and our Power
and BIPS Matrices. Simply, an unachievable mode results in reducing initial mode combinations to
an available subset, and our policies can base their decision based on both budget and mode
constraints.

March 15, 2006

 21

Finally, a further progressive step in extending this research is to implement the presented
scenarios on a dynamic CMP simulation environment. In such a case, further policy evolutions can
emerge by considering also various address and bus conflict constraints.

REFERENCES

1. A Method and System of Reducing and Limiting Maximum and Average Power in a Chip
Through a Power and Performance Control Unit. A. Buyuktosunoglu, P. Bose, C. Cher, P. Kudva.
IBM Pending Patent, dated as 02/04/2005.

