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Global Power Management Policies for Multi-Core Processors 

 
 

1. Introduction 
 
Chip-level power dissipation limits constitute a fundamental design constraint in future high-
performance microprocessors. Recently, there has been an industry-wide trend of shifting towards 
lower frequencies and multiple cores to meet next generation performance targets at affordable 
power. Nonetheless, even with reduced per-core frequency, the chip-level performance targets for 
such a multi-core processor are aggressive, and meeting the power budget at those performance 
levels continues to present a major design challenge. On-chip, dynamic power management is 
therefore a design feature that is likely to be an integral part of the overall architecture. Initial 
analysis has shown that clock-gating alone is not enough to meet the chip-level power budget for a 
high-end multi-core design. Both average and maximum power must be managed to remain within 
acceptable limits, dictated by power-related maintenance cost budgets and cooling/packaging 
solution cost limits.  

 
Previous research and our own specific power analysis studies  have shown that individual 
techniques for dynamic management of power (be it of the active, passive or both kinds), 
invariably have the following characteristics: (a) the average power savings is a strong function of 
the input workload; in fact in some cases, the net power savings may even be zero or negative; (b) 
depending on the technique, there is usually an associated performance penalty – either in terms of 
cycle time (frequency) or cycles per instruction (CPI); (c) there is an area overhead that is paid as a 
price for any expected power reduction; (d) there is no direct or easy way to bound the worst-case 
power that is consumed: usually, the only way is an empirical pre-silicon evaluation using an 
assumed worst-case workload.  

 
As such, given a “bag of tricks” to reduce power, it is clear that ideally, one would like to invoke a 
subset of those tricks, depending on the workload or the particular phase of the workload. This 
implies the need for some kind of a “monitor-and-control” facility that would sense the workload 
demand and microarchitectural activity and dynamically invoke particular mechanisms from 
within the full repertoire of architected techniques for power reduction and control. A detailed 
description of a hierarchical power-performance monitor-and-control architecture that can be used 
to ensure adherence to stipulated power budgets, while maximizing chip-level performance, has 
been documented elsewhere [1]. In general terms, such a hierarchical controller consists of 
distributed monitor-and-control units local to each core and non-core storage and interconnect 
resource, with direct communication paths to a global on-chip controller. The latter (global) 
controller is responsible for assigning appropriate power optimization modes to each monitored 
core (or other non-core resource), such that chip-level power budget is not exceeded. Of course, 
the objective is to maximize performance, while adhering to chip-level power budgets. 
 
In this report, we focus on the problem of devising efficient algorithms for the global controller in 
such a hierarchical monitor-and-control structure. We limit our attention to the core processors in 
the multi-core chip. Briefly stated, the problem at hand is: given a total chip power budget, and an 
input set of application programs, how to (dynamically) assign power modes to each processor 
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core, such that the chip-level performance is maximized, without violating the total chip power 
budget. The rest of the report is organized as follows. In Section 2, we present a brief overview of 
the assumptions and objectives governing the global controller function. In Section 3, we describe 
a fast static global power management analysis tool, GPAT, to evaluate different power saving 
techniques. In Section 4, we describe the global power management policies, with variations for 
different objectives such as prioritization, fairness and optimized throughput. We perform 
experiments including transition overhead costs.  
 

 
2. Global Power-Performance Management: Basic Function and Objectives 
 
For the purposes of this report, let us consider a global on-chip hardware controller, that manages 
power consumption across multiple cores in the processor chip. We shall call the global power-
performance management unit (GMU). In its most general form, such a GMU could be architected 
to cross-optimize across various different metrics, like power, performance, temperature, 
reliability, and perhaps even be used to enhance effective chip yield through setting each core to 
operate nominally at the “right” voltage and frequency (in the face of process variability). But, for 
this report, we limit the function of the GMU to one of managing power and performance only. 
The basic objective is to maximize chip-level performance while adhering to a preset chip power 
budget. Depending on the operating environment, the performance metric to be optimized may be 
different, and one or more issues like thread (task) priority, fairness, single-thread latency or net 
chip throughput may be the dominant criteria.  
 
2.1 Power Modes  
 
The GMU optimizes chip power/performance by assigning power modes for each core, based on 
application behavior. Therefore, a first step in the design of GMU control policies relies on the 
definition of these power modes.  
 
Specifically, for the purposes of this report we consider three power modes for each processor 
core: Turbo, Eff1 and Eff2, corresponding to three different speed settings. Our target in each 
power saving mode is to achieve a ∆Power Savings : ∆Performance Degradation ratio of 3:1. 
Under this target, Eff1 represents a conservative power savings mode with relatively small 
performance degradation; Eff2 represents high power saving significant performance degradation. 
In Table 1, we summarize the design targets for the three modes. 
 

Mode Power Savings Performance Degradation 
Turbo NONE NONE 
Eff1 15%0 5% 
Eff2 45% 15% 
General Target 3X 1X 
Table 1. Target ∆Power:∆Performance ratios for the three modes. 

 
For this report, we consider dynamic voltage and frequency scaling (DVFS) as the basic method 
for defining modes. In our exploration, we choose a linear DVFS scenario, where both voltage and 



March 15, 2006 

 3

frequency are scaled linearly. This choice falls within the range of previous product and circuit 
analysis datasets. For linear DVFS, we define our modes as follows: 
 

- Turbo: NO DVFS (Vdd,f) 
- Eff1: 95% Vdd and 95% f 
- Eff2: 85% Vdd and 85% f 

 
A very useful property of DVFS is, power and performance behavior can be approximately 
estimated with simple calculations. Note that this simplifies the design of the power/performance 
tradeoff table. Power consumption follows the CV2f equation, and therefore has a cubic relation to 
DVFS scaling, under our assumption of linear dependence between voltage and frequency.  (The 
presence of leakage power, which also depends on V, does not cause major perturbation to the 
cubic law governing power and performance). The upper bounds for power and performance, 
based on these estimations, for our mode choices are shown in Table 2. Note that, actual 
performance behavior is expected to be better, as asynchronous memory latencies are not scaled 
with DVFS.  
 

Power Saving Performance Degradation 
Turbo Eff1 Eff2 Turbo Eff1 Eff2 

0 ~14% ~38% 0 <5.3% <17.7% 
Table 2. Computed power savings and performance  

degradation upper bounds 
 

In these analyses we determine performance degradation from increases in execution time. 
Overall, these initial estimates look very promising in terms of achieving 3:1 
∆Power:∆Performance ratio. We show in Figure 1, the average power saving and performance 
degradation for the whole SPEC suite, for each mode. In our experiments with Turandot, we use a 
nominal frequency of 1.1GHZ and Vdd of 1.3V. In the figure, we also show the IPC in different 
modes. This shows an increase in IPC as frequency is scaled down, due to asynchronous memory 
latencies.  
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Figure 1.  Power and performance of different modes defined by DVFS. (power shown in a.u. 

arbitrary units) 
 
 

 
In Figure 2, we show the aggregate power/performance behavior for the whole SPEC suite. In both 
plots, ideal represents the computed values, without latency scaling. The leftmost bars show the 
actual values obtained from Turandot simulations. These results show, DVFS is a good candidate 
for achieving the 3:1 ratio, and the computations for power/performance estimates at different 
modes track very closely with actual behavior. We make use of this fact later in our global power 
management policy designs. 
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Figure 2. Aggregate SPEC results for power and performance under DVFS. 

 
In the remainder of our work, we use DVFS modes for our power mode definitions, and build upon 
these for GMU-driven power management. We consider nominal Vdd of 1.3V and frequency of 
1.1GHz. We consider leakage as 33% of total unconstrained power and no Vdd gating applied.  
 
3. GPAT: Global Power-Performance Analysis Tool 
 
In order to evaluate GMU-driven power management techniques under a multi-core (CMP) 
environment, we developed a static analysis tool, GPAT. GPAT simulates different CMP 
constructs with a loose integration with Turandot. It provides a very fast, perfectly scalable 
interface to develop and evaluate different policies for GMU, as well as providing benchmark 
statistics for single threaded and static mode definitions. It also enables us efficiently explore 
different design objectives such as increasing cores per chip or considering yield improvement 
with asymmetric mode processors.  
 
GPAT simulation environment uses single threaded Turandot results for each benchmark as input, 
and performs a CMP simulation by simultaneously progressing over Turandot traces for different 
benchmarks assigned to different cores. Figure 3 depicts the general data flow for GPAT. For each 
benchmark, we use Turandot to generate three traces for the three power modes: Turbo, Eff1, Eff2. 
These traces are based on fixed instruction granularities. Therefore, when a core switches its power 
mode, GPAT identifies the instruction number for that switch and switches to the input trace that 
corresponds to the new mode for that benchmark. The mode switches are performed 
simultaneously at each core, at execution points we refer to as explore times. After an explore time, 
all mode switches are performed and GPAT continues CMP simulation until next explore time. 
During this period it simply evaluates the power/performance statistics based on the current input 
trace. GPAT updates its simulation stats every delta sim time. That is, at each delta sim time, it 
reevaluates per core and overall chip statistics. These statistics change, as GPAT progresses 
through a delta instruction sample and moves to next sample on an input trace. As the output, 
GPAT produces a single combined trace with delta sim time steps, showing the 
power/performance behavior of each core and overall chip. It also produces the track of which core 
operates at which mode.  
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Figure 3. GPAT data flow. 
 
In addition to the simulation timeline, GPAT also produces a large number of statistics, including 
native execution statistics for each benchmark, power savings and performance degradations with 
respect to baseline Turbo execution, mode transition statistics, time distributions of modes and 
transition overhead computations. 
 
GPAT can explore a large number of cores from 2 to 64, with different power budgets, simulation 
termination conditions. Policy descriptions and different design constraints can easily be modified, 
added and evaluated under GPAT structure. Inevitably, as GPAT is a static evaluation, it does not 
include shared L2 bus and address conflicts. Although this should not have significant effect when 
the most of the chosen applications are not highly L2 and memory intensive, further research is 
needed for a quantitative evaluation. The major advantage of GPAT is, it provides a fast interface 
to policy and design evaluation. Although the values may differ between dynamic and static cases, 
the inter-relations are mostly consistent. 
 
Here we provide a brief example to GPAT utilization with an evaluation of higher on chip 
integration with DVFS power modes. (one of the possible GMU objectives) In Figure 4, we show 
the evaluation of a higher core integration for a fixed power budget. In the figure, we show a single 
chip with 4,5 and 6 cores respectively. For each case, as we include a new core, we also introduce 
a new highly cpu-bound benchmark. While introduction of each new core/benchmark incurs 
performance penalties per core, overall system throughput is improved for the same budget. In this 
example we use a simple, fair policy that tries to balance power consumption of each core. As 
most of these benchmarks—except for mcf, art and parts of ammp—are cpu-bound, we expect 
similar conclusions with a dynamic CMP evaluation. 
 

Inputs 

GPAT

Turbo Trace 
∆ins – IPC – PWR 
∆ins – IPC – PWR 

: 
Eff1 Trace 

∆ins – IPC – PWR 
∆ins – IPC – PWR 

: 
Eff2 Trace 

∆ins – IPC – PWR 
∆ins – IPC – PWR 

: 

Turbo Trace 
∆ins – IPC – PWR 
∆ins – IPC – PWR 

: 
Eff1 Trace 

∆ins – IPC – PWR 
∆ins – IPC – PWR 

: 
Eff2 Trace

∆ins – IPC – PWR
∆ins – IPC – PWR 

: 

Output 

Joint Exec-n Trace 
Time       Modes           Power 
∆t       mode1

… modeN   PWR 
∆t       mode1

… modeN   PWR 
    :            :           :            : For Each 

Benchmark 
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Figure 4. Evaluation of more cores/chip with DVFS modes using GPAT. 

 
 
4. Power Management Policies for Global Controller  
 
In this section we discuss different GMU policies with a common constraint. We devise policies 
that are subject to meeting a specific global power budget by adjusting power modes of individual 
cores. Besides this common constraint, different policies target different objectives such as core 
prioritization of cores/benchmarks, fairness, power balancing among cores and optimizing system 
throughput. We assume that each core reports monitored power and performance information for 
each core to the GMU. The latter delivers global power management actions to cores based on the 
global constraint and derived policies. In the analysis with GPAT, we use the same parameters 
throughout the experiments. We use delta sim times of 50us and explore times at 500us. GPAT 
input traces are generated from Turandot with 100K instruction samples. We experiment with 
budgets from 150W to 300W  for a 4 core CMP, and 300W to 600W  for an 8 core case. (The watt 
value limits assumed are somewhat arbitrary, and do not necessarily reflect any real chip designs). 
The termination condition is, set when one of the benchmarks reach completion. Thus, all cores are 
utilized for the experimented regions. 
 
In our evaluations, we use accounting based on (global) time sampling, since, under the multiple 
frequency domains, synchronization should be based on a global clock or wall clock. Similarly, for 
performance metrics, we use BIPS instead of IPC. 
 
 
 
 

(ammp) 
PWR: 71W 
BIPS: 1.02 

4 Cores: 

(mcf) 
PWR: 64W 
BIPS: 0.43 

(crafty) 
PWR: 74W 
BIPS: 1.79 

(art) 
PWR: 74W 
BIPS: 0.76 

Throughput: 4.10 BIPS 

(ammp) 
PWR: 61W
BIPS: 0.97 

5 Cores:

(mcf) 
PWR: 55W
BIPS: 0.42 

(crafty) 
PWR: 59W
BIPS: 1.67 

(art) 
PWR: 53W
BIPS: 0.72 

(ammp) 
PWR: 47W 
BIPS: 0.90 

6 Cores:

(mcf) 
PWR: 54W
BIPS: 0.42 

(crafty) 
PWR: 46W 
BIPS: 1.55 

(art) 
PWR: 49W
BIPS: 0.71 

(sixtrack) 
PWR: 63W
BIPS: 1.59 

(sixtrack) 
PWR: 46W 
BIPS: 1.44 

(parser) 
PWR: 54W
BIPS: 1.01 

Throughput: 5.37 BIPS Throughput: 6.03 BIPS
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4. 1 Experimented Policies 
Here, we introduce three of the experimented policies for different objectives. The first policy, 
labeled priority, assigns different priorities to different tasks. In our implementation, core4 has the 
highest priority and core1 has the lowest priority (in a 4-core chip). Therefore, in policy 
implementation, it tries to run the last core as fast as possible, while preferring to slow down core1 
first in case of a budget overshoot. Second policy, pullHipushLo, tries to balance the power 
consumption of each core, by slowing down the core that has the highest power in case of a budget 
overshoot and vice versa. Last, MaxBIPS, targets at optimizing the system throughput, by 
predicting and choosing the power mode combination that maximizes the throughput at each  

                                        Figure 5. GMU power management policies 
 
explore time. In Figure 5, we summarize the algorithmic implementations of the three policies. 
 
In Figure 6, we show the power/performance behavior of different benchmarks for a 4 core CMP 
with the three described policies. The top figures plot average performance degradation for each 
benchmark for several power budget targets. The bottom plots show the average power saving for 
the same range of budgets. As the target budget is increased towards the worst case corner, all 
benchmarks converge to zero performance degradation and power saving, as they all can operate 
safely in Turbo mode. In all these experiments, core1 to core4 execute ammp, mcf, art and crafty. 
Spanning a range of execution behavior, mcf is highly memory bound, followed by art. Ammp is 
an average scale benchmark, with both cpu bound and memory bound regions. Finally crafty is a 
highly cpu bound benchmark.  
 

Priority:  
(Prioritize cores) 
 
IF Chip PWR > Budget   

Push Core1 Turbo Eff1 Eff2 
  : 
Push CoreN Turbo Eff1 Eff2 

 <Until budget is met!> 
 
IF Chip PWR < Budget   

Push CoreN Eff2 Eff1 Turbo 
  : 
Push Core1 Eff2 Eff1 Turbo 

 <Until before budget is exceeded!> 

pullHipushLo:  
(Penalize cores fairly) 
 
IF Chip PWR > Budget   

Find MaxPWR core X 
  Pull Down core X 

 <Until budget is met!> 
 
IF Chip PWR < Budget   

Find MinPWR core X 
  Push Up core X 

 <Until before budget is exceeded!> 

MaxBIPS:  
(Maximize Throughput) 
 
For all CORE(MODE) combinations: 
 Find [Mode(Core1),…, Mode(CoreN)]  N-tuples  

that meet budget 
 
Among all [Mode(Core1),…, Mode(CoreN)] N-tuples 
that meet budget: 
 Choose modes for each core that maximize BIPS 
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  Figure 6. Power/performance results for the three policies for a 4 way CMP. 
 
In Figure 6, in the plots on the left side, we see the straightforward interpretation of priority 
(prioritization in this example is set as: ammp < mcf < crafty < art). As the power budget is 
increased, first core4 (art) then core3 (crafty) is released from Eff2 to Turbo, until all cores can 
execute in Turbo mode. In this scheme, priority pushes down mcf to Eff2, as it has the smallest 
delta power to fit the budget, then as a higher budget is used, the benchmark in the priority order 
can actually find enough slack to move to Eff1. In the middle plots, pullHipushLo tries to balance 
the power of each core, therefore the benchmarks move somewhat closer together as the budget is 
increased. However, to have fair power distribution, pullHipushLo actually employs kind of a 
prioritization as well, where benchmarks are preferred in their memory boundness order (mcf > art 
> ammp > crafty). Moreover, once again this policy can choose non-monotonic behavior with 
different budgets, as for different budgets different amounts of slack can enable different choices 
that satisfy better power balancing. On the right-hand side, we show the MaxBIPS policy, which 
actually optimizes for throughput. In this case, we once again see fairly regular behavior, but once 
again, this policy inherently assumes a priority. It actually prefers the benchmarks in the order of 
their cpu-boundness (crafty > ammp > art > mcf). Therefore, it performs in an almost completely 
inverse way to pullHipushLo. 
 
In Figure 7, we show a final overall comparison of all the experimented policies. We show these in 
terms of policy curves, where for each policy we draw the overall system performance 
degradation—with respect to all Turbo execution—vs. different power budgets. Therefore, the 
policy which leads to least degradation for a given budget works better in that budget scenario. In 
addition to the policy curves, we also show the total powers for each budget in comparison to the 
target budget to fit (dotted straight line). This serves as a ‘sanity check’ to confirm the policies 
actually fit into the given power budget. 
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Figure 7. Policy curves and power for different policies. 

 
The curves of Figure 7 show, for all the given budgets, MaxBIPS performs significantly superior 
for performance—as its target is tailored for throughput. Also all policies fit closely to the assigned 
power budgets.  
 
In addition to the policy curves, here we also revisit our initial target of 3:1 ∆Power:∆Performance 
ratio. In Figure 8, we show the ∆Power:∆Performance ratios curves for the three described 
policies. In each plot, we also show the target 3:1 ratio curve as the dotted straight line. Our DVFS 
based power modes and experimented policies all show very good ∆Power:∆Performance ratios, 
right on the 3:1 ratio target. In the case of MaxBIPS, GMU actually achieves significantly better 
than the 3:1 ratio with DVFS. 
 

 
Figure 8. Hitting 3:1 ∆Power:∆Performance ratio with GMU policies. 

 
Finally, in Figure 9, we show an example budget case, with the MaxBIPS benchmark, 
demonstrating how GMU works to meet power budgets, while optimizing for throughput. At each 
explore time, the best mode combination is computed that meets the budget. However, there can be 
small regions in each case that can exceed the budget at small locations as the unprecedented 
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application behavior changes can lead to increased instantaneous system powers, until the next 
explore time. In this example, we also see how MaxBIPS favors crafty and penalizes mcf. 

 
Figure 9. Execution timeline of 4 benchmarks and total power with MaxBIPS policy, for a 
220W power budget. Right-hand axes represent modes with Turbo=0, Eff1=1 and Eff2 =2. 

 
4.2 Estimating Different Mode Behavior 
 
In the policy discussions of previous section, we have inherently assumed that the GMU has the 
knowledge of power/performance behavior of applications in different modes. So that, based on 
this information, policies can choose among different mode combinations based on their merits. 
However, this knowledge is not directly available to GMU. The general approach in many 
dynamic management schemes is to perform small-scale “explorations” of each mode to deduce 
the application behavior in these modes, or to somehow predict this behavior from past history. For 
a heavy-handed application like DVFS, this exploration approach is essentially prohibitive. 
Overheads lead to diminishing returns. The alternative approach is to assume a previously seen 
behavior history in a specific mode as the persistent behavior in that mode. However, this has 
unreliable outcomes, as there is no guarantee that a mode is previously visited under the given 
policies—unless there exist periodic explorations—and since relying on past history can be 
dangerously misleading for a strict power budget constraints. 
 
As we have previously shown, DVFS has a very attractive property; different mode behaviors can 
be a priori estimated with reasonable accuracy with the analytical relations. Therefore, in all our 
analyses, we actually use this computational approach to estimate behavior in different modes. 
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This alleviates any necessity for exploration, and provides good confidence in our mode selection 
for budget fitting. 
 
We represent the characteristics of each mode in terms of Power and BIPS Matrices as shown in 
Table 3. For an N-core CMP system with three power modes two Nx3 matrices can completely 
characterize all mode behaviors. For the Power Matrix, different power behaviors of modes can be 
characterized by applying the cubic scaling relation. For the BIPS Matrix, BIPS values can be 
computed with a linear scaling. 
 

Power Matrix 
  Turbo Eff1 Eff2 

Core1 P1T=P1/(0.953) P1 P1T*(0.853) 

: : : : 

CoreN PNT PNT*(0.953) PNT*(0.853) 

 
BIPS Matrix 

  Turbo Eff1 Eff2 

Core1 B1T=B1/(0.95) B1 B1T*(0.85) 

: : : : 

CoreN BNT BNT*(0.95) BNT*(0.85) 

Table 3. Power and BIPS Matrices with DVFS. 
 
For our original mode definitions, power and BIPS values of different modes can be estimated by 
scaling with 0.95 and 0.85 as shown in Table 3. For example, for if core1 is in Eff1 mode, 
corresponding Turbo and Eff2 power and BIPS values can be approximated as shown in the core1 
row of the two matrices. As the power modes and number of cores are known in design time, all 
these values can be hardwired. Thus, the matrix computation can be done in parallel fashion with 
GMU specifying which column propagates to other modes. 
 
Inevitable, these estimations are prone to errors. Over the SPEC suite, this is relatively 
insignificant with 0.1-0.3% estimation errors. For BIPS values, the errors are 2-4%. The higher 
errors for BIPS are due to asynchronous memory latencies. For powers, the errors stem from 
slightly changing utilizations at delta sim cycles in different modes. As the more important 
estimate is power—due to budget constraints, this approach works very well in our DVFS 
scenario. In our experiments we use this approach to choose appropriate power modes. 
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4.3 Upper Bounds in Policy Efficiency with Oracle Mode Selection 
To assess the efficiency of the policies from an optimal throughput perspective, here we describe 
the upper bounds to achievable efficiency with “oracular” knowledge. For the oracle based mode 
selection, at each explore period, we look at the future execution until the next explore time, i.e., 
500us forward. We generate our oracle BIPS and Power matrices based on this knowledge, and 
then choose the maximum performance mode combination that satisfies the power budget. 
 
To be stricter with the oracle behavior, we actually experiment with cases where oracle fits a 
power envelope slightly higher than the power budget, we denote this with a SHIFT. For example, 
an oracle with SHIFT 5, SemiOracleShft5, tries to fit power into an envelope of 
POWER_BUDGET+SHIFT Watts. The reason for this approach is, fitting to budget every 500us 
can be more stringent, for overall execution. We demonstrate this with in the power slack plots of 
Figure 10. Here, oracles subject to different shifts are compared to the power slack of MaxBIPS. 
An oracle with shift 8 exceeds budget for all reasonable budgets, while some other oracles have 
actually more slack than MaxBIPS at certain budgets. 
 

 
Figure 10. Power slack for oracles with different shifts, and for MaxBIPS. 

 
Overall, there is no single shift value,that minimizes the slack for all budgets. Therefore, for the 
strict upper bound comparison, we merge these oracles with shifts 0 to 8 such that, at each budget, 
we choose the one that minimizes slack, but doesn’t overshoot. We refer to this final representation 
as OracleMERGE. In Figure 11, we show the power slack for OracleMERGE, and a few of the 
previous policies. In this case, oracle provides a strictly tighter fit to budgets than all policies. In 
the figure, we also show the policy curve for the OracleMERGE, together with the previous policy 
curves. Although it performs slightly better than all policies, it is easily seen that MaxBIPS lies 
within 1% of this strict oracle. This shows, our MaxBIPS policy, with throughput optimized policy 
selection and predictive Power and BIPS matrices perform comparably to a strict oracle case in 
power management.  
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Figure 11. Power Slack and policy curve for OracleMERGE in comparison to policies. 

 
 
4.4 Lower Bounds with Static Mode Assignments 
One extreme method of the global power management consists in a static power assignment for 
each core. This can be explored in two different ways. First, we compare separate static 
assignments for each core, still based on ‘oracle’ knowledge and optimal core-benchmark 
assignments. We call this, idealized static management. Second, a more realistic scenario is 
considering a ‘heterogeneous’ core with different power-mode cores and investigate thread 
assignments. We call this realistic static management. 
 
To explore the first scenario, idealized static case, we look at the overall native executions of each 
benchmark. Then, for each budget, we choose the mode combinations that maximize throughput, 
while satisfying budget requirements. This “idealistic” case relies on several assumptions. It 
assumes OS knows how to schedule each to which core for optimized results. We assume the 
underlying cores are always available for the optimal mode combination. For example, for one 
budget, we assume we have 3 Eff2 and 1 Turbo core, for another budget, we assume we have 3 
Turbo and 1 Eff1 core. Inherently, as we schedule based on overall native executions, this 
approach entails oracle knowledge of whole application execution behavior. 
 
In Figure 12, we show the policy curve for such an idealistic static case, SafeStatic. We also show, 
for each budget, the assumed underlying core configurations. Even under such considerations, 
static case performs significantly worse. This shows the impact of dynamic management 
potentials. 
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Figure 12. Policy curve for idealistic static management and underlying core configurations 

at each budget. 
 
The more realistic static management scenario, on the other hand, operates for a fixed core 
configuration for a given set of benchmarks. Therefore, it can operate only on smaller range of 
power budgets. The benchmark assignments can be considered as random, or scheduled by OS. 
Therefore, such core-benchmark pairings can only change at task switch intervals, on the order of 
milliseconds This is a higher level of granularity than GMU, and is considered as part of OS. 
Without oracle knowledge, the static benchmark assignments can lead to drastically different 
power/performance behavior. In Figure 13, we show an exhaustive case for a 4 core CMP, where 
the cores are assigned to [Turbo, Eff1, Eff2]. In this case, the benchmark assignments can cause 
varying performance degradation between 2 to 8%. 
 

 
Figure 13. Effect of task scheduling to different cores on performance degradation. 
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In Figure 13, we see that assigning the memory bound application, mcf, to core1, and cpu-bound 
application Crafty, to core4 leads to worst performance degradation (highest line). The opposite of 
this (with crafty on core4 and mcf on core4) produces minimal performance degradation (lowest 
line). There exists a significant range among different benchmark assignments. 
 
As rescheduling can be done only at OS switching granularities, without oracle knowledge, OS can 
realize a bad assignment at the end of a switching interval, and can switch tasks or reconfigure 
cores. This leads to higher time penalties compared to 500us GMU time granularity. As an 
approach like MaxBIPS is indifferent to benchmark-core pairings, initial scheduling decisions do 
not affect the management outcomes. 
 
4.5 Chip-Wide DVFS 
Last, we compare our results with a chip-wide DVFS scenario. Chip-wide DVFS has very 
appealing features for implementation, as there is no synchronization problem across cores which 
simplifies both software and hardware implementation. For this case, all cores transition together 
into Turbo, Eff1 or Eff2 modes at each explore time based on budget constraints. 
 
In Figure 14, we show the application of chip-wide DVFS for a 250W budget on a 4-core CMP 
with ammp, mcf, crafty and art. In Figure 15, we show the same experiment with ammp, crafty, art 
and sixtrack. 

180

220

260

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

] TOT_PWR

Budget

-1

0

1

2

3

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

M
O

D
ES

 
Figure 14. Chip-wide DVFS for 250W budget with ammp, mcf, crafty, art. 

180

220

260

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

PO
W

ER
 [W

] TOT_PWR

Budget

-1

0

1

2

3

0 10000 20000 30000 40000 50000 60000 70000
Time [Us]

M
O

D
ES

 
Figure 15. Chip-wide DVFS for 250W  budget with ammp, crafty, art, sixtrack. 
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As seen in Figures 14 and 15, chip-wide DVFS has completely different implications for different 
set of benchmarks. For the first case, it fits the power envelop really well, as the total chip power 
meets around 250W for the first set of benchmarks when they run in Eff1 mode. In the second 
case, same budget results in a drastically reduced power/performance behavior, with one change in 
the benchmark set. In the second case, as chip power is usually slightly higher than 250W, all 
cores are penalized tremendously to run in Eff2 mode. In both cases, the downside of chip-wide 
DVFS is clearly conveyed, with CMP systems, you pay a huge penalty for small budget 
overshoots. Obviously this kind of monolithic global management has linearly growing negative 
impact with more aggressive scale-out scenarios. Also a comparison of the two figures shows, 
global DVFS cannot guarantee generic good performance for a budget with varying workload 
combinations. This effect is also emphasized with scale-out due to more combinations of 
variations.  
 
Finally, in Figure 16, we show how the policy curve with chip-wide DVFS compares to previous 
cases, for the ammp, mcf, crafty, art workload combination. In the policy curve and budget plots, 
both the increased performance degradation and power slack are clearly demonstrated. 
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Figure 16. Policy and power budget curves for chip-wide DVFS. 

 
Note that, despite the unpromising results for the presented cases, chip-wide DVFS has certain 
advantages  in terms of implementation simplicity. Especially for small scale-out cases such as a 2 
way CMP chip, it might be possible to get comparable results with this approach, probably by 
introducing more power modes. Further research is needed to characterize these benefits and to 
evaluate the feasibility of having more voltage and frequency domains. 
 
4.6  Incorporating Transition Overheads 
In our previous analyses, we have not discussed the overheads of mode-transitions. Although the 
overheads do not overwhelm the benefits for our large scale 500us explore times, they have 
observable effects in the power/performance behavior. Here, we describe the overheads and refine 
our methods to incorporate their effects. 
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Based on specifications from previous products and research, we choose a realistic DVFS 
transition rate of 10mV/us. Thus, the transition overheads for our three power modes are computed 
as shown in Table 4.  

Eff2 Vdd
(f=0.935GHz)

Eff1 Vdd
(f=1.045GHz)

Turbo Vdd
(f=1.1GHz)

∆=130mV 13 Us

∆=195mV 19.5(20) Us

∆=65mV 6.5(7) Us

1.3*0.85=1.105V1.3*0.95=1.235V1.3V

Eff2 Vdd
(f=0.935GHz)

Eff1 Vdd
(f=1.045GHz)

Turbo Vdd
(f=1.1GHz)

∆=130mV 13 Us

∆=195mV 19.5(20) Us

∆=65mV 6.5(7) Us

1.3*0.85=1.105V1.3*0.95=1.235V1.3V

 
Table 4. DVFS transition overheads for the three power modes. 

 
 
Table 4 shows, the transition overheads for the three modes are on the order of 10us. Therefore, 
compared to our 500us explore times, these have relatively low overheads ranging from 1 to 4 %. 
However, despite the small magnitude of overheads, they can still inhibit the improvements with 
our policies. For example, for the greedy case of MaxBIPS, a possible scenario is as follows. 
Assume current mode combination is [Turbo Eff1 Eff2 Eff1] with a throughput of 3.6 BIPS. At the 
explore time, MaxBIPS decides to switch to a new combination [Eff2 Turbo Turbo Eff2] with a 
predicted throughput of 3.7 BIPS. However, considering the overheads of transitioning the actual 
observed BIPS goes down to 3.56, thus overriding projected benefits. 
 
To accurately account for this effect, we devise a new policy, BestCostBIPS, which incorporates 
the overheads into optimization objective. The flow for this policy is depicted in Figure 17. 
 

 
Figure 17. BestCostBIPS policy description. 

 
The implementation of BestCostBIPS is not significantly different from MaxBIPS. Following from 
similar arguments, at design time, the cost of switching among modes is well known as well as the 
BIPS and Power Matrix scalings. Therefore, same parallel BIPS matrix computation can be 
performed, only with additional scaling factors for BIPS values such as 500/507, 500/513 and 
500/520 for our choice of parameters. For example, referring to Table 3, instead of scaling P1T 
with 0.85 for BIPS matrix, Eff2 estimate, we scale with 0.85*(500/520). 
 

BestCostBIPS:  
(Maximize Throughput under transitions) 
 
For all CORE(MODE) combinations: 
 Find [Mode(Core1),…, Mode(CoreN)]  N-tuples that meet budget 
 
For all [Mode(Core1),…, Mode(CoreN)] N-tuples that meet budget: 
 Find the BIGGEST mode transition 
 Add its transition cost to the predicted BIPS from BIPS matrix 
 Find the actual BIPS for that transition 
 Choose modes for each core that maximize actual BIPS 
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To evaluate the effect of overheads and the efficiency of BestCostBIPS policy, we consider a 
conservative transition scenario. At each explore time, if there is a mode transition, we find the 
longest transition cost among all cores and assume all cores are stalled during this period. We 
assume chip produces 0 BIPS—attributed to benchmark execution—during transitions, while 
power remains the same. Such a power assumption is more realistic to avoid swings that can lead 
to di/dt hazards. Penalizing all cores with the largest penalty is not the most efficient approach, but 
much more beneficial to keep cores synchronized for explorations. 
 

 
Figure 18. Policy curves and ∆Power:∆Performance curve under transition costs. 

 
In Figure 18, we show the policy curves for MaxBIPS and BestCostBIPS with transition costs. We 
also include the original zero overhead policy for reference. Overall, we see the impact of 
transitions on performance degradation with two MaxBIPS curves. In comparison, BestCostBIPS 
consistently performs better than the costed MaxBIPS, and it comes within 1% of the zero 
overhead MaxBIPS. In addition to these, we also show the 3:1 ∆Power:∆Performance ratio with 
the BestCostBIPS policy, which shows we still over-achieve 3:1 ratio with DVFS based power 
management with GMU These results show, first, the impact of transition costs is not drastic, and 
our GMU power management methods still perform well; second, our new policy, BestCostBIPS 
performs superior under realistic transition overheads. 
 
5. Conclusion 
 
Our presented research describes a new perspective to dynamic power management for CMP 
systems, under the context of a global power management unit (GMU). The GMU is exposed to 
the activity of all cores in a system, and therefore, can decide upon per-core actions to meet global 
chip constraints and for both local and global objectives. 
 
Our experiments investigate different power management implementations, and demonstrate a 
DVFS approach achieves a 3:1 ∆Power:∆Performance ratio for power savings and performance 
degradation. We describe a fast and scalable CMP power/performance analysis tool to investigate 
global power management policies. Our analyses show, global management with GMU provides a 
good balance between power/performance under varying workload behavior. Such dynamic global 
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power management can avoid the inefficiency of worst-case designs by reducing power envelopes 
or increasing on chip core integration, with reasonable single-threaded performance sacrifice. Our 
policy experiments show the different trade-offs between fairness and throughput. Our best 
performing policy, MaxBIPS, achieves performance degradations within 1% of a conservative 
oracle, exceeding 3:1 ∆Power:∆Performance ratio in most operating regions. We show, dynamic 
management policies perform significantly better than static power management or chip-wide 
DVFS. Under transition overhead considerations, our best performing policy, BestCostBIPS, 
comes within 1% of MaxBIPS without costs, showing the feasibility of GMU actions under 
realistic overhead constraints. In all the policies experimented, the predictability of DVFS based 
techniques alleviate any overheads related to mode explorations. Our mode predictor structures, 
Power and BIPS Matrices can estimate the behavior across different modes of an application with 
.2% and 3% errors respectively. 
 
Overall, this research investigates dynamic management possibilities with a dedicated GMU 
architecture. Our results show the potentials and applicability of such a method. We believe as 
more aggressive chip- and system-level scale-out strategies are followed, the benefits of global 
power management will be correspondingly emphasized, encouraging the incorporation of such 
global management techniques in the next generation systems. 
 
6. Future Research Directions 
 
There exist several additional avenues of research that will enlarge the depth and breadth of our 
presented research. First, for the power mode explorations, an important alternative is to consider 
core-wide resource scaling. In such a case, all possible array structures, functional units and queues 
can be scaled for Eff1 and Eff2 mode definitions. In such a case, it might be compulsory to 
integrate Vdd gating to baseline to achieve 3:1 ∆Power:∆Performance ratios. 
 
Second, an alternative can be explored by considering fixed, heterogeneous cores. These can be 
developed as similar cores with different voltage and frequency islands, or with different size 
cores. One fundamental difference with this approach is, as the cores are fixed, global management 
can be done by shifting threads. For this purpose, GMU functionality might have to be shifted to 
OS, but due to granularity differences, a smaller scale solution might evolve that can be 
implemented via GMU. 
 
Third, besides described experiments, a global controller can also participate in dynamic reliability 
management.  Under today’s process variability, there exist significant probabilities that certain 
modes of a core can be non-functional at given (V,f) setting. That is, a certain core might not work 
at Turbo for a given frequency. In such case GMU can be configured to avoid those mode 
combinations and can help binning of yield into different available-modes categories. The 
implementation and evaluation of such a scenario is straightforward with GPAT and our Power 
and BIPS Matrices. Simply, an unachievable mode results in reducing initial mode combinations to 
an available subset, and our policies can base their decision based on both budget and mode 
constraints. 
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Finally, a further progressive step in extending this research is to implement the presented 
scenarios on a dynamic CMP simulation environment. In such a case, further policy evolutions can 
emerge by considering also various address and bus conflict constraints. 
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