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Abstract

In our work, we present an analysis of the TimeBank corpus—the only available reference sample of TimeML-compliant annotation—from the point of view
of its utility as a training resource for developing automated TimeML annotators. We are encouraged by experimental results indicative of the potential of
TimeBank; at the same time, closer inspection of causes for some systematic errors shows off certain deficiencies in the corpus, primarily to do with small
size and inconsistent annotation. Our analysis suggests that even a reference resource, developed outside of a rigorous process of training corpus design and
creation, can be extremely valuable for training and development purposes. The analysis also highlights areas of correction and improvement for evolving
the current reference corpus into a community infrastructure resource.

1 INTRODUCTION

The primary focus of this investigation1 is the study of the
characteristics of the TimeBank corpus (Pustejovsky et al.,
2003b) which are intimately connected to its utility as a
training resource for developing automatic TimeML analy-
sis machinery.

TimeML (a Mark-up Language for Time) has been de-
veloped as a ‘transport mechanism’ for temporal informa-
tion, and it reflects an emerging model of staged temporal
analysis where temporal information extraction (IE) from
a text document would be followed by a formalisation by
means of an ontology of time (Hobbs and Pan, 2004).
TimeML (Pustejovsky et al., 2003a) uses the representa-
tional principles of XML markup to annotate the analysis
of the core elements in a temporal framework: time expres-
sions, events, and links among these (additionally moder-
ated by temporal connectives, or signals).

Computational analysis of time is very complex; the
complexity arising from the need to facilitate full mapping
of temporal links among time expressions and events onto
an ontologically-grounded temporal graph (or its equiv-
alent), cf. (Fikes et al., 2003), (Han and Lavie, 2004).
TimeML is thus committed to capture all of the temporal
characteristics in a text document. Consequently, the lan-
guage is considerably more expressive in comparison with
markup schemes for “named entities” in traditional IE en-
deavours.

Herein lies the promise of TimeML: in contrast to
IE markup practices to date, which target relatively sim-
ple phenomena and whose expressive capabilities have not
been designed to capture the variety and complexity of in-
formation required to support reasoning, TimeML annota-
tions can adequately feed a mapping to a time ontology
which, suitably interfaced with an ontology of events, can
be used in formal reasoning contexts (Hobbs and Puste-
jovsky, 2004).

With this promise, however, come challenges. Tempo-
ral information extraction—as defined by TimeML’s rep-
resentational properties (as outlined above2)—is a harder

problem than named entity identification alone. Address-
ing this problem brings to the fore both issues of method
and strategy for TimeML-compliant analysis, and questions
of infrastructure adequate for such analysis.

In our work, we address both such issues. Elsewhere,
we discuss the design, implementation, and performance of
an automatic TimeML annotator, deploying a hybrid ana-
lytical strategy of mixing aggressive finite-state processing
over linguistic annotations with a state-of-the-art machine
learning technique capable of leveraging large amounts of
unannotated data (Boguraev and Ando, 2005b). Here we
will focus primarily on the infrastructure issues.

Our analytical framework leverages the only exist-
ing reference corpus annotated within the TimeML an-
notation guidelines. TimeBank is one of the outcomes
of the TERQAS effort (Temporal & Event Recogni-
tion for QA Systems; see http://www.timeml.org/
terqas/index.html), which over the past 24 months co-
ordinated a series of definitional and follow-up workshops
from which emerged the current set of TimeML annotation
guidelines. The corpus is the only collection, to date, of
“detailed annotations of terms denoting events, temporal
expressions, and temporal signals, and, most importantly,
of links between them denoting temporal relations” (Puste-
jovsky et al., 2003b). It is offered primarily as an “empirical
basis for future research into the way texts actually express
and connect series of events”; additionally, the creators of
TimeBank suggest that it could be regarded as a resource for
“training and evaluating algorithms which determine event
ordering and time-stamping” (ibid.).

At the same time, however, TimeBank was not devel-
oped as a training corpus per se. It is, in fact, almost a ‘side
effect’ of the TERQAS work: it was largely an exercise
in applying the annotation guidelines—as they were being
developed—to real texts in order to assess the need for, and
then the adequacy of, the language representational devices
as they were being designed in the process of TimeML evo-
lution. As such, it was never the subject of rigorous consid-
erations of scope, coverage, size, consistency, double anno-
tation, and inter-annotator agreement.

1This work was supported in part by the ARDA NIMD (Novel Intelligence and Massive Data) program PNWD-SW-6059. Portions of this paper were
presented at a Dagstuhl Seminar on Annotating and Reasoning with Time.

2Some familiarity with TimeML is assumed here. Details of the markup language for time can be found, in particular, in (Saurı́ et al., 2005).



Still, given that TimeBank is the only reference TimeML
corpus in existence, there are certain questions concerning
the extent to which it can, in fact, support the develop-
ment of TimeML-compliant machinery. As long as some
annotated corpus exists, it will undoubtedly be brought into
some training cycle. Indeed, ours is not the only effort in
using TimeBank for such a purpose; recently, the TARSQI
project has been focusing on developing analysis strategies
and heuristics for particular subsets of TimeML components
(Verhagen et al., 2005).

In this work, then, we offer an assessment of size and
consistency of TimeBank, as we observe that these charac-
teristics of the corpus pose certain challenges to the notion
of using it as a training resource. Our findings are informed
by the experiences we had in using TimeBank while devel-
oping the TimeML annotator.

2 A TIMEML ANNOTATOR

A formulation of the problem of TimeML analysis as an
information extraction (IE) task is presented in (Boguraev
and Ando, 2005b). We target the full temporal markup
language—seeking to extract not only temporal expressions
(TIMEX3’s), but also EVENTs; and further looking for tem-
poral relations (TLINKs). It is largely the breadth and rich-
ness of EVENT and LINK types and instances in text that
makes the temporal IE task so challenging.

Our approach crucially relies on using TimeBank as a
training resource. The observation that the corpus is very
small (by any standard; see Section 3) additionally mo-
tivates our strategy to incorporate a learning component
(word profiling) specially developed for leveraging large
volumes of unlabeled data; this is in addition to using a
high-performance classification machinery. The specifics
of the task (e.g. the particulars of time expression normal-
isation), the need for rich syntax-derived features, and fur-
ther considerations of the size of training corpus explain
our choice of synergistically deploying finite-state descrip-
tive devices (for TIMEX3 analysis and syntactic mark-up)
with machine learning techniques.

(Boguraev and Ando, 2005b) and (Boguraev and Ando,
2005a) present some experimental results illustrative of the
performance of the TimeML annotator developed. The ex-
periments are based on modeling some aspects of the task
as classification problems, and look at the individual contri-
bution of feature set definition, finite-state machinery, and
word profiling technique.

At optimal settings, our results (F-score) are at almost
90% in recognising TIMEX3 expressions3, and at the low
80-ies in recognising untyped EVENTs and TLINKs. These
figures drop when typing (see Section 3, and (Saurı́ et al.,
2005)) becomes part of the task. While this is directly re-
lated to the complexity of the typing of TimeML compo-
nents, it is also the case that the relatively ‘ad-hoc’ nature
of the TimeBank corpus is at play here: as we pointed out

earlier, the fact that TimeBank was not developed under the
rigorous process mandated by the production needs of a
community-wide reference resource would almost certainly
lead to some level of noise in the data.

Thus our results are both indicative of the value of
TimeBank as a training resource for TimeML parsing, and
the need for an in-depth study into the nature of existing
noise—with a view of pointing the way for more infrastruc-
ture development work. The next two sections present an
analysis of TimeBank as a training resource for TimeML-
compliant annotation.

3 QUANTITATIVE ANALYSIS OF
TIMEBANK

Practical content analysis of documents relies, broadly, on
a variety of ‘gisting’ approaches, offering surrogate views
into what a document is about. Numerous NLP tech-
nologies and applications are concerned with identifying
text fragments with high information quotient (according
to certain task criteria). Typical of such approaches are,
for instance, efforts to extract mentions of named entities
and broader semantic categories of concepts: in isolation,
chained, or linked in relational structures. These trends
can be observed in the definition of community-wide ef-
forts like the Message Understanding Conferences (MUC)4

and the Automatic Content Extraction (ACE) evaluations. 5.
One of the common characteristics of such efforts is that
they make, from the outset, infrastructural provisions for
the development of a substantial ‘reference’ corpus, which
defines a gold standard (“truth”) for the task. The corpus
contains materials selected to be representative of the phe-
nomenon of interest; sizes of training and testing samples
are carefully considered especially as they depend on the
complexity of the task; experienced annotators are used; the
corpus is not released until a certain level of inter-annotator
agreement is reached. These measures ensure that the ref-
erence corpus is of a certain size and quality.

The TimeBank corpus is small. This need not be sur-
prising, given that the TERQAS effort did not commit to
producing a ‘reference’, training-strength, corpus in the
sense described above. In fact, TimeBank is almost a ‘side
effect’ of the work: it was largely an exercise in applying
the annotation guidelines—as they were being developed—
to real texts (news articles, primarily) in order to assess the
need for, and then the adequacy of, the language represen-
tational devices as they were being designed in the process
of TimeML evolution.

The extent to which TimeBank is small is illustrated by
the following statistics. The corpus has only 186 docu-
ments, with a total of 68.5K words. As there are no sep-
arate training and test portions, it would need partitioning
somehow; if we held out 10% of the corpus as test data, we
have barely over 60K words for training.

To put it into perspective, this is order of magnitude less
3A reminder that TIMEX3 is different from, and requires more detailed analysis than, TIMEX2 (itself popularised most recently by the the Time Expression

Recognition and Normalization program; see http://timex2.mitre.org/tern.html).
4See http://www.itl.nist.gov/iaui/894.02/related projects/tipster/muc.htm.
5See http://www.nist.gov/speech/tests/ace/.
6See http://www.cis.upenn.edu/̃treebank/.



than other standard training corpora in the NLP commu-
nity: the Penn Treebank corpus6 for part-of-speech tagging
(arguably a simpler task than TimeML component analy-
sis) contains more than 1M words—which makes it over 16
times larger than TimeBank; the CoNLL’03 named entity
chunking task7 is defined by means of a training set with
over 200K words. A task closely related to time analysis
is ACE’s TERN (see footnote 2), which only focuses on
TIMEX2. TIMEX3, which extends the TIMEX2 tag (Saurı́ et
al., 2005), is just one of half-a-dozen TimeML components;
even so, the TERN training set is almost 800 documents/
300K words-strong.

Fig. 1 shows a breakdown of the individual TimeML
component distributions in the corpus. Overall, the fig-
ure of just over 29K counts of temporally-related entities
seems to hold some promise, when the task of TimeML
analysis is construed, broadly, to be a named entity extrac-
tion task. However, the perception quickly shifts as we re-
alise that within the inventory of TimeML tags, only three
‘primitive’ elements behave like named entities (TIMEX3,
SIGNAL, and EVENT): this gives us less than 12K marking
(text-consuming) spans in the training data (for 3 different
categories, before we take into account the problem of as-
sociating specific subtypes to these elements; see Fig. 3 be-
low).

The remaining 17.5K TimeML tags in the corpus are
non-marking, and require more complex analytical machin-
ery than that of ‘vanilla’ named entity extraction. The broad
categories of INSTANCE and LINK elements reflect a pro-
jection of an EVENT token to (an) event INSTANCE, and a
relational binding between time expressions and such event
instances. Again, broadly speaking, the task is one of rela-
tion identification; harder than just named entity extraction.

Viewed from such a perspective, counts of 12K and
17.5K training examples for training entity and relation
recognisers, respectively, seem meager. Additionally, we
observe that in the particular set of data encapsulated by
TimeBank, the derivation of event INSTANCEs from the
EVENT tokens is not particularly challenging (non-trivial
EVENT to event INSTANCE mapping becomes an issue in
the analysis of time frequencies (SETs), of which there are
only 7 TIMEX3 annotations in the corpus so typed). Thus,
the 8K INSTANCE tags in the corpus contribute almost noth-
ing to the training cycle, and we are left with less than 10K
examples of relational (LINK) elements.

TimeML tags # occurrences: 29331
marking non-marking

Timex3 1423
Signal 2117
Event 8243
Instance (7966)
ALink 282
SLink 2619
TLink 6681

Total: 11783 (7966) 9582

Fig. 1: Distributions of TimeML components in TimeBank.

Fig. 2 gives counts of TIMEX3 classes in TimeBank. It is
a highly uneven distribution, with clearly not enough TIME
and SET examples. Additionally, adjusting the counts to
take account of time expressions found in document meta-
data (marking, for instance, document creation time, doc-
ument transmittal time, and so forth)—these are of a very
uniform format, and can be found with a trivially simple
regular expression pattern—the total number of examples
drops to 1245. Again, this is considerably less than TERN’s
8K TIMEX2 examples.

TIMEX3 class # occurrences:

date 975
duration 314
time 80
set 7

Total: 1423
(In document body:) (1245)

Fig 2: Distribution of TIMEX3 types in TimeBank.

Further illustration of the extreme paucity of positive
examples over a range of categories in the TimeBank cor-
pus is shown in Fig. 3 .

tlink type # occurrences event type # occurrences
IS INCLUDED 866 OCCURRENCE 4,452

DURING 146 STATE 1,181
ENDS 102 REPORTING 1,010

SIMULTANEOUS 69 I ACTION 668
ENDED BY 52 I STATE 586

AFTER 41 ASPECTUAL 295
BEGINS 37 PERCEPTION 51
BEFORE 35

INCLUDES 29
BEGUN BY 27

IAFTER 5
IDENTITY 5
IBEFORE 1

Total : 1,451 Total : 8,243

Fig 3: Distribution of (some) types of TimeML compo-
nents. Note that the count of 1451 TLINKs, while appar-
ently different from the number of 6681 TLINKs reported
in Fig. 3, refers only to the TLINKs between an event and
a temporal expression, itself in the body of a document.
(TLINKs with TIMEX3’s in metadata are not counted here.)

The numbers reveal some of the variety and complexity
of TimeML annotation: for instance, while Fig. 1 gives
counts per component, it is clear that the extensive typ-
ing of EVENTs, TIMEX3’s and LINKs introduces even more
classes in an operational TimeML typology. Thus an event
recognition and typing task is, in effect, concerned with
partitioning recognised events into 7 categories (a partic-
ular implementation of such a partitioning is realised as
(2k + 1)-way classification task, where k = 7 in our case).
Similarly, for TLINK analysis the relevant comparison is
to consider that in contrast to, for instance, the CoNLL’03

7See http://www.cnts.ua.ac.be/conll2003/ner/.



named entity recognition task—with training data contain-
ing 23K examples of named entities belonging to just 4 cat-
egories, TimeBank offers less than 2K examples of TLINKs,
which, however, range over 13 category types.

The table additionally shows the highly uneven distrib-
ution of both TLINK classes and EVENT types; so much so
as to render some of the data in the corpus almost unusable
for the purposes of a machine learning framework.

4 QUALITATIVE ANALYSIS OF
TIMEBANK

This section makes some observations concerning the types
of errors encountered during our analysis of the TimeBank
corpus. It is important to emphasise that this is an infor-
mal analysis; in particular, there is no quantification of error
types. It is equally important to realise that our observations
are not intended to be critical of the corpus: as we discuss
in Section 1, TimeBank was not instantiated as a reference
training corpus, and rigorous processes and controls such as
double annotation and inter-annotator agreement were not
part of this particular corpus definition cycle.

We are primarily motivated by a desire to understand
how to interpret the performance figures presented in the
previous section: low numbers are typically indicative of
any combination of not enough training data, noisy and in-
consistent data, complex phenomenon to be modeled, and
inappropriate model(s). Our hope is that by highlighting the
kinds of ‘natural’ errors that a ‘casual’ (human) annotator
tends to introduce into the exercise, a more focused effort
to instantiate a larger TimeBank would be able to avoid rep-
etition of these kinds of errors.

There are different types of error, broadly falling into
three categories: errors due to failures in the annotation
infrastructure, errors resulting from broad interpretation of
the guidelines, and errors due to the inherent complexity of
the annotation task (possibly compounded by underspecifi-
cation in the guidelines).

ANNOTATION INFRASTRUCTURE
ERRORS

Consider the (excerpt from an) annotated document illus-
trated in Fig. 4. (For brevity, typing information and ad-
ditional attributes to TIMEX3 and EVENT tags have been
omitted. Apparently an error, most likely in the annotation
software, has caused a systematic shift by a single charac-
ter; the scope of this error is the entire document. Clearly,
there is potential for mismatches between the reference an-
notations above and anything tested against them which has
been generated without knowing of this type of error.

On th<Timex3>e afternoon of Oct. 1 </Timex3>7, after hours
o<Event>f hagglin</Event>g with five insurance-claims adjusters
over <Event> settlin</Event>g a toxic-waste <Event> sui</Event>t,
four lawyers <Event> ha</Event>d an <Event> agreemen</Event>t in hand.

Fig.4: Annotation tool gone wrong.

Equally problematic are situations due to non-linear
markup in the corpus: since the TimeML language does not

allow for embedded or crossing annotations—like the ones
illustrated in Fig. 5—a pre- (or post-) processing cycle (typ-
ically carried out within an XML parser process) will likely
be thrown off by such malformed XML markup.

... <Signal> who <Event> should </Event> </Signal> ...

... <Signal> never <Signal> going </Signal> </Signal> ...

... <Event> lawyers <Signal> went </Signal> </Event> ...

... <Event> the <Signal> settlement </Event> into </Signal> ...

Fig.5: Embedded, overlapping, and crossing annotations.

The first three examples are, arguably ‘harmless’, as there
would be no trace of abnormality after simply stripping the
tags off. However, the semantics of mutually embedded
EVENTs and SIGNALs are clearly dubious, at best. More
problematic, of course, is the last example, where crossing
brackets would confuse a parser. (As it happened in our
case, the XML parser driving the generation of the derived
test corpus actually used in the experiments, used to fail
silently, causing all remaining annotations in the document,
after the point of failure, to be ignored.)

The cause of such errors is most likely a combination of
features of the supporting software. It is certainly the case
that the examples in Fig. 4 and Fig. 5 illustrate a situation
which is no longer true of that software; in particular, fol-
lowing the release of TimeBank, a dedicated effort focused
on developing a special purpose annotation tool, designed
specifically to address the challenges of producing XML-
compliant and internally consistent markup for ‘dense’ an-
notation tasks (of which TimeML is a particularly good ex-
ample) (Pustejovsky et al., 2003c). It is also the case that
this problem is not manifested over many documents.

However, TimeBank is sufficiently small so that any ad-
ditional ‘noise’ introduced from extraneous sources—even
if relatively few documents are impacted—has a noticeable
effect on performance measures.

BROAD INTERPRETATION OF THE
GUIDELINES

This kind of error is manifested in inconsistent and/or miss-
ing markup, as illustrated, for example, in the following
table (Fig. 6), which shows counts of different markup
patterns either for relatively frequent temporal expressions
(such as the first three entries), or for very similar ones (the
last three).

text time date duration signal none

“currently” 2 8 4
“recently” 2 10 1 4
“already” 1 1 13 17

“two-week-old” ∗
“[8-month]-old” ∗
“136-years-old” ∗

Fig.6: Inconsistent/missing markup.



A different kind of inconsistency, also indicative of less
than rigorous application of the guidelines is reflected in
the fluidity of placement of left boundary to TIMEX3 ex-
pressions in particular. Determiners, pre-determiners and
the like tend to float in and out of annotations. In differ-
ent contexts, TimeBank including the determiner in its span.
Similarly, "<timex3>the late 1970s</timex3>" and
"the <timex3>late 1950s</timex3>" are tagged as
time expressions which do, or do not, consume the de-
terminer; a behaviour repeatedly observed in the corpus:
consider "the <timex3> early years</timex3>"
vs. "<timex3>the early 1980s</timex3>" or
"<timex3>the early summer</timex3>".

Clearly, once we become aware of this kind of error, it is
possible to make some provisions to accommodate it (thus
we define a ‘lenient’ regime for admitting TIMEX3’s, for
the purposes of evaluating against TimeBank, (Boguraev
and Ando, 2005a)). However, this phenomenon is not lim-
ited to time expressions alone, nor can it be counteracted
in isolation. For instance, consider the TimeBank analy-
ses of "<timex3>later this afternoon</timex3>"
and "<signal>later</signal> <timex3>this
month</timex3>". Interference is now spread to a dif-
ferent TimeML component analysis; and, arguably, without
a SIGNAL in the stream, a subsequent TLINK derivation
might be compromised—a situation further exemplified by
yet more examples of inconsistent analyses in the corpus:

◦ "at <timex3>this crucial moment</timex3>"
vs. "<timex3>at the moment</timex3>" and
"<signal>at</signal> the <timex3>end of
November</timex3>",

◦ "<signal>at</signal> <timex3>the beginning
of October</timex3>" and "<signal>at</signal>
the end of October".

These are not isolated errors. Fig. 7 shows a subset of a
48-strong list of TIMEX3 expression, typed as TIME.

value in TimeBank covered text

1991-02-24 yesterday
1991-02-25 weekend

1990-08 ast August
1991-02-25 next few days.

1988 last year
1989-11 end of November
1989-Q3 third-quarter
1988-Q3 the year-ago quarter
1989-03 March
1988-Q3 A year earlier

1989 Earlier this year
1990-Q1 early 1990

1989-10-01 earlier this year
1989 now

1989-10 this month

Fig.7: TimeBank markup of TIME expressions, with
values incompatible with TIME normalisation guidelines.

The list was derived by a simple projection, against the
TimeBank corpus, of searching for TIMEs which might have

internal inconsistencies between their TIMEX3 types and
values. Syntactically, at least, these TIME expressions are
in conflict with the annotation guidelines: for instance,
most of their value attributes do not contain the qualifier
"T" (strongly, if not mandatorily, expected in TIME val-
ues); some of them explicitly contain a granularity marker
"Q" (for year-quarter), which does not conform to the de-
finition of TIME that “the expression [should] refer to time
of the day, even if in a very indefinite way”, (Saurı́ et al.,
2005):p. 22); and so forth.

To put this projection further into perspective, there are
63 TIME expressions in the corpus (not counting TIMEs
in metadata): 48 suspect entries constitute approximately
three quarters of the set.

ERRORS IN EVENT AND TLINK
MARKUP

As we observed in Section 2, the event typing task is in-
herently complex. TimeBank exhibits a variety of error in
marking EVENTs. Some are more systematic than others:
for instance, there is pervasive confusion between money
amounts and occurrence events. Some may be due to over-
sight (or fatigue): a number of verbs are not marked as
EVENTs, even if they clearly denote eventualities; the same
verb (“run”, “fall”)—in similar contexts—is marked either
as an occurrence or an i action.

TLINK typing is equally (if not even more so) complex,
and we attributed to the difficulties of this task the relatively
low performance of our TLINK type classifier (Section 2,
and (Boguraev and Ando, 2005b)).

◦ In <timex3> the nine months </timex3>, net
income <event> rose </event> 4.3% to $525.8
...

<tlink type=is included ... />

◦ ... said that its net income <event> rose
</event> 51% in <timex> the third quarter
</timex>

<tlink type=during ... />

Fig.8: Different TLINK type assignment; similar contexts.

The guidelines (and common sense analysis) suggest
that is included type should be assigned if the time point or
duration of EVENT is included in the duration of the associ-
ated TIMEX3. during, on the other hand, should be assigned
as a type if some relation represented by the EVENT holds
during the duration of the TIMEX3. We note that for this
particular typing problem, the subtle distinctions are hard
even for human annotators: the TimeBank corpus displays a
number of occasions where inconsistent tagging is evident,
as Fig. 8 illustrates.

5 CONCLUSION

As we have argued elsewhere (Boguraev and Ando, 2005b),
there is some recourse to the problem of paucity of train-
ing data. Our studies here, however, show that with a very



small corpus, the ‘knock-on’ effects of noise are consid-
erably more impactful. The quantitative analysis of the
TimeBank corpus in Section 3 offers some indication of a
desired size for a training resource for a task with the com-
plexity of TimeML annotation.

The message from our qualitative studies of the cor-
pus is different. As we are primarily motivated by a de-
sire to understand how to interpret the performance figures
characteristic of our TimeML annotator (ibid.), our analy-
sis is more focused than just cataloguing errors of omis-
sion/errors of commission. Instead, we offer a more de-
tailed breakdown of error types, distinguishing among er-
rors caused by certain features of the annotation-making
infrastructure, errors traceable to broader (than intended)
interpretation of the guidelines, errors due to the inherent
complexity of the task (even as human annotators are con-
cerned), and errors affecting different TimeML components
in different—but systematic—ways.

Our position is that understanding the range of cat-
egories of error in the corpus makes for informed deci-
sions with regard to how to improve performance of cer-
tain TimeML analysis sub-tasks: for instance, detecting cer-
tain errors in egregiously wrong annotation (in the corpus)
suggests that offending documents might be removed from
the training data altogether; observing inconsistencies with
a particular subtype of temporal expression might license
the use of supplemental data, outside of TimeBank but still
compatible with the task; and confirming that a certain
TimeML component presents difficulties for consistent de-
tection even to a human annotator is a strong indicator that
ultimately, a larger and more consistent TimeBank is cru-
cially required for high quality TimeML analysis.

This is, in fact, the overall conclusion and message from
our studies. They are by no means to be taken as a criticism
of the corpus, which, as already discussed, was never de-
signed to be a proper training dataset. It is clear that even
a relatively minor effort of cleaning up the existing data
would improve the overall corpus quality. Such cleanup
operation would largely focus on fixing both the errors of
omission and commission in the original TimeBank.

Our argument, however, goes further than this: for rea-
soning engines to function, TimeML analysers need to be
built. This speaks to the need to build a training cor-
pus which is larger, broader, and subject to the rigorous
processes and controls such as double annotation and inter-
annotator agreement, which are by now part of the estab-
lished methodology of linguistic resource instantiation. 8

In such a context, our analysis of the TimeBank corpus
strongly motivates the need for such an effort, especially
in the light of the encouraging performance results of the
TimeML parsing machinery we have developed on the basis
of TimeBank as it stands.
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