
RC23897 (W0603-017) March 1, 2006
Computer Science

IBM Research Report

SEMAPLAN: Combining Planning with Semantic Matching to
Achieve Web Service Composition

Rama Akkiraju1, Biplav Srivastava2, Anca-Andreea Ivan1,
Richard Goodwin1, Tanveer Syeda-Mahmood3

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

2IBM Research Division
India Research Laboratory

Block 1, IIT Campus, Hauz Khaus
New Delhi, 11016

India

3IBM Research Division
Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

SEMAPLAN: Combining Planning with Semantic Matching to Achieve Web

Service Composition

Rama Akkiraju1, Biplav Srivastava2, Anca-Andreea Ivan1, Richard Goodwin1, Tanveer Syeda-Mahmood3

1
IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY, 10532, USA

2
IBM India Research Laboratory, Block 1, IIT Campus, Hauz Khaus, New Delhi, 11016, India

3
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA

{akkiraju@us, sbiplav@in, ancaivan@us, rgoodwin@us, stf@almaden}.ibm.com

Abstract

The use of planning for automated and semi-automated

composition of web services has enormous potential to reduce

costs and improve quality in inter and intra-enterprise business

process integration. Composing existing Web services to deliver

new functionality is a difficult problem as it involves resolving

semantic, syntactic and structural differences among the

interfaces of a large number of services. Unlike most planning

problems, it can not be assumed that web services are described

using terms from a single domain theory. While service

descriptions may be controlled to some extent in restricted

settings (e.g., intra-enterprise integration), in web-scale open

integration, lack of common, formalized service descriptions

prevent the direct application of standard planning methods. In

this paper, we present a novel algorithm to compose web

services in the presence of semantic ambiguity by combining

semantic matching and AI planning algorithms. Specifically, we

use cues from domain-independent and domain-specific

ontologies to compute an overall semantic similarity score

between ambiguous terms. This semantic similarity score is used

by AI planning algorithms to guide the searching process when

composing services. In addition, we integrate semantic and

ontological matching with an indexing method, which we call

attribute hashing, to enable fast lookup of semantically related

concepts. Experimental results indicate that planning with

semantic matching produces better results than planning or

semantic matching alone. The solution is suitable for semi-

automated composition tools or directory browsers.

Introduction

Enterprise application integration is among the most

critical issues faced by many companies today. The

problem is caused by the way systems are developed

today in large enterprises, i.e., over different periods of

time, for different initial purposes, by different

organizations, and with different structures, interfaces and

vocabulary. The infrastructure also evolves through

acquisitions, mergers and spin-offs. This leads to

substantial heterogeneity in syntax, structure and

semantics. In this setting, companies are under constant

pressure to be flexible, to adapt to the changes in the
market conditions while keeping their IT expenses under

control, and to implement integration projects without
delay. An important aspect of quickly implementing new

integration projects involves the ability to find and reuse
as much of the existing functionality as possible and

create new functionality only where needed. In the
context of service-oriented architectures, this translates

into the technical challenges of discovery, reuse and
composition of services.

In implementing service-oriented architectures, Web

services are becoming an important technological
component. Web services offer the promise of easier

system integration by providing standard protocols for
data exchange using XML messages and a standard

interface declaration language such as the Web Service
Description Language (WSDL 2001). The loosely

coupled approach to integration by Web services provides
encapsulation of service implementations, making them

suitable for use with legacy systems and for promoting
reuse by making external interfaces explicitly available

via a WSDL description. However, this still does not

address the vexing issue of dealing with heterogeneity in

service interface definitions. For example, what one

service interface in one system may encode as itemID,

dueDate, and quantity may be referred to by another
service interface in a different system as UPC (Universal

Part Code), itemDeliveryTime and numItems. At the heart

of data and process integration is the need to resolve these
types of similarities and differences among various

formats, structures, interfaces and ultimately vocabulary.

Developing tools to help resolve these types of syntactic,

structural and semantic similarities and differences is key

to keeping IT expenses in check. In this paper, we
address the problem of identifying the appropriate Web

services for implementing a required function from a large

collection of available Web services. Specifically, we

focus on the problem of Web service composition in the

absence of a common domain model and where the

functionality of multiple services has to be composed in

order to achieve a valid implementation.

Web services matching and composition have become a

topic of increasing interest in the recent years with the

gaining popularity of Web services. Two main directions

have emerged. The first direction explored the application

of information retrieval techniques for identifying suitable

services in the presence of semantic ambiguity from large

repositories. The second direction investigated the

application of AI planning algorithms to compose

services. In the latter approach, Web services are framed

as actions that are applicable to states and the inputs and

outputs of services are modeled as preconditions and

effects of actions. However, to the best of our knowledge,

these two techniques have not been combined to achieve

compositional matching in the presence of inexact terms,

and thus improve recall. In this paper, we present a novel

approach to compose Web services in the presence of

semantic ambiguity using a combination of semantic

matching and AI planning algorithms. Specifically, we use

domain-independent and domain-specific ontologies to

determine the semantic similarity between ambiguous

concepts/terms. The domain-independent relationships are

derived using an English thesaurus after tokenization and

part-of-speech tagging. The domain-specific ontological

similarity is derived by inferring the semantic annotations

associated with Web service descriptions using an

ontology. Matches due to the two cues are combined to

determine an overall similarity score. This semantic

similarity score is used by AI planning algorithms in

composing services. In addition, we integrate semantic

and ontological matching with an indexing method, which

we call attribute hashing, to enable fast lookup of

semantically related concepts. By combining semantic

scores with planning algorithms we show that better

results can be achieved than the ones obtained using a

planner or matching alone.
The rest of the paper is organized as follows. First, we

present a scenario to illustrate the need for Web services

composition in certain business domains and discuss how
our approach helps in resolving the semantic ambiguities

better. Second, we present our solution approach and
discuss the details of our system SEMAPLAN. Third, we

present our experimental results and discuss the planner
performance under various conditions. Fourth, we
compare our work with related work in this area. Finally,

we present our conclusions and directions for future work.

A Motivating Scenario

Composing existing Web services to deliver new

functionality is a requirement in many business domains.

In this section, we present a scenario from the knowledge
management domain to illustrate the need for (semi)

automatic composition of Web services and exemplarily

highlight how semantic matching combined with planning

could yield better results.

The general goal of text analysis is to transform

unstructured text into structured information, and to use

this information to support higher-level processes of text

search, mining, and discovery (Mack, Mukherjea et.al.

2004). This involves writing annotators or software

programs that can interpret text documents, parse them,

identify phrases, grammar, classify text and eventually

create structure from the unstructured information.
Research in this area over the years has led to the
development of several annotators. Some are general
purpose annotators while the others are specific to various
application domains all of which could be made available
as Web services. Some sample general purpose ones
include annotators such as a Tokenizer, which identifies
tokens, a LexicalAnalyzer, which identifies parts of
speech, a NamedEntityRecognizer, which identifies
references to people and things etc. Sample annotators
from biological domain include BioAnnotator, which
identifies biological terms, ChemFrag, which identifies
biologically significant chemical structuctures,
DrugDosage, which recognizes drug applications and
dosages etc. Typically, the functionality of multiple
annotators needs to be combined to meet a specific
request. For example, if a user would like to identify
names of authors in a given document, annotators
Tokenizer, LexicalAnalyzer and NamedEntityRecognizer

could be composed to meet the request. Tokenizer

annotator tokenizes a given document. LexicalAnalyzer
performs lexical analysis on tokens. Finally,
NamedEntityRecognizer annotator identifies and classifies
tokens based on their lexical properties into the names of

peoples, places and things. Figure 1 summarizes this
composition flow. Such dynamic composition of
functionality, that could be represented as Web services,

saves tedious development time in complex knowledge

management domains such as life sciences since
explicating all possible and meaningful combinations of
annotators in this case is prohibitive. AI Planning

algorithms are well suited to generate these types of
compositions. However, as discussed earlier, unlike most
planning problems, in business domains often it can not be

Copyright © 2005 American Association for Artificial Intelligence

 (www.aaai.org). All rights reserved.

assumed that web services are described using terms from

a single domain theory.

Figure 1. Text Analysis Composition example with semantic

matching (~= illustrates semantic match)

Just as with any software development process, annotators
are written by multiple authors at different periods of
time. These authors could have used different terminology
to describe the interfaces of their annotators. In addition,
domain specific annotators could have been acquired from
external sources (via licensing, acquisition etc). So, it is
unlikely that they use a common set of terms to name
services (annotators in this scenario) and parameters. This
creates semantic ambiguity that, if unresolved, could lead
to poor management of available applications. For
example, the term lexemeAttrib may not match with
lemmaProp unless the word is split into lexeme and Attrib
and matched separately. Using a domain-dependent
ontology one can infer that a lemma in linguistic context is
a canonical form of a lexeme and therefore the term
lemma could be considered a match to the term lexeme.
Abbreviation expansion rule can be applied to the terms
Attrib and Prop to expand them to Attribute and Property.
Then a consultation with a domain-independent thesaurus
such as WordNet dictionary can help match the term
Attribute with Property since they are listed as synonyms.
Putting both of these cues together, one can match the
term lexemeAttrib with lemmaProp. In the absence of
such semantic cues, two services that have the terms
lexemeAttrib and lemmaProperty as part of their effects
would go unmatched during planning thereby resulting in
fewer results which adversely impacts recall. In the next
section, we explain how we enable a planner to use these
cues to resolve semantic ambiguities in our system -
SEMAPLAN.

Our Solution Approach

Figure 2 illustrates the components and the control flow in

SEMAPLAN system. There are five steps in the system,
as explained at a high-level below. Details are given in the

subsections following later in this section.

1. Service Representation: This step involves

preparing Web Services with semantic annotations
and readying the domain dependent and

independent ontologies.

2. Term Relationship Indexing: In step 2, the

available Web services in the repository are parsed,

processed and an index consisting of related

terms/concepts referred to in the service interface

descriptions is created for easy lookup. This is

achieved using the services of a semantic matcher

which uses both domain-independent and domain-
specific cues to discover similarity between

application interface concepts. The result of

indexing is a semantic similarity map. This

semantic similarity map is capable of returning a

semantic score for a given pair of concepts by

combining the individual scores from domain-

dependent and domain-independent sources. This

map is organized for efficient retrieval of related

concepts and their scores for a given concept.

3. Prefiltering: Once indexing of related concepts is

accomplished, in step 3 we perform prefiltering to

obtain a list of candidate matching services for a

given request. This is done by a prefiltering

module. The job of the prefiltering module is to
use smart techniques to obtain a candidate set of
interface descriptions from the given set of
available interface descriptions from which
compositions can be created.

4. Generating Compositions: In step 4, these
candidate application interfaces are passed to a
metric planner along with the request interface
description, and the semantic similarity map. The
metric planner runs partial order planning
algorithms and generates a set of alternative
compositions from the given candidate set for the
given request interface description. To determine
which interfaces can be composed with which
others, metric planner uses the semantic similarity

map.

5. Solution Ranking: Finally, in step 5, the alternative
compositions are ranked by the ranking module.

Figure 2 SEMAPLAN system and its components

The main benefit of SEMAPLAN is the ability to

compose plans in the presence of inexact terms. This is

Metric Planner

Indexing Module

Prefiltering Module

Request
Interface

Description

Semantic
Similarity

Map

Candidate

Compositions

Application
Compositions

Score Combination Module

Thesaurus

Domain
Ontology

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

T
o
k
e
n

iz
e

r

Ontology Matcher

Semantic Matcher

Semantic Similarity

Matching Using
Domain Independent

Cues

Semantic Similarity
Matching Using Domain

Dependent Cues

Application
Interface

Descriptions

Solution Ranker

Ranked
Application

CompositionsMetric Planner

Indexing Module

Prefiltering Module

Request
Interface

Description

Semantic
Similarity

Map

Candidate

Compositions

Application
Compositions

Score Combination Module

Thesaurus

Domain
Ontology

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

T
o
k
e
n

iz
e

r

Ontology Matcher

Semantic Matcher

Semantic Similarity

Matching Using
Domain Independent

Cues

Semantic Similarity
Matching Using Domain

Dependent Cues

Score Combination Module

Thesaurus

Domain
Ontology

Lexical Matcher

Thesaurus Matcher

Expansion List Matcher

T
o
k
e
n

iz
e

r

Ontology Matcher

Semantic Matcher

Semantic Similarity

Matching Using
Domain Independent

Cues

Semantic Similarity
Matching Using Domain

Dependent Cues

Application
Interface

Descriptions

Solution Ranker

Ranked
Application

Compositions

Matched Services

Request

Any

Service or Service

Combinations

Text Named Entity

Tokenizer Lexical

Analyzer

Named Entity

Recognizer

Document Tokens
LemmaProp

Canonical

String

Canonical

Category

Named Entity
subClassOf

Text

subClassOf

LexemeAttr~=

CanStr~=

Matched Services

Request

Any

Service or Service

Combinations

Text Named Entity

TokenizerTokenizer Lexical

Analyzer

Lexical

Analyzer

Named Entity

Recognizer

Named Entity

Recognizer

Document Tokens
LemmaProp

Canonical

String

Canonical

Category

Named Entity
subClassOf

Text

subClassOf

LexemeAttr~=

CanStr~=

expected to improve the recall
1
 of results. We verify this

hypothesis by running experiments, as presented in

‘Experimental Results’ section. We now describe each

step in detail.

Service Representation

The functionality of services is represented using the Web

Services Description Language (WSDL). Domain

independent dictionaries can be used to match the terms

used in the WSDL document. However, in order to use

domain-specific ontological information, references to the

ontology must be present in the service description. The

standard WSDL specification does not have a mechanism

to denote such ontological information and hence must be

augmented before such information can be used to

determine matching services. The subject of semantic

annotation is an active area of research in the semantic

web community with languages such as OWL-S (OWL-S

2001), WSMO (WSMO 2003), WSDL-S
(Shivashanmugham et al 2003, Akkiraju et al 2005), etc.
In this work, we have adopted the WSDL-S specification
due to its simplicity.

xmlns:wssem=”http//www.ibm.com/schemas/2004/wssem”

xmlns:TextAnalysisOntology="http://www.ibm.com/ontologies/TextAn

alysisOntology.owl" >

<message name="chemicalNameIdentifierRequest">

 <part name="named_entity_in" type="xsd:string"

wssem:modelReference="TextAnalysisOntology#NamedEntity"/>

 </message>

 <message name="chemicalNameIdentifierResponse">

 <part name="chem_out" type="xsd:string"

wssem:modelReference="TextAnalysisOntology#ChemicalName"/>

 </message>

We create domain-specific ontologies using OWL
(OWL 2002). Using the WSDL-S specification, we
annotate elements in the WSDL file using the attribute
wssem:modelReferences. Its value is an OWL ontology
concept specified by the name of the ontology and the
relevant ontological term. Such an annotated WSDL file
corresponding to the text analysis domain is shown above.
After parsing the WSDL documents, we create a

generalized schema object internally to capture the service
definitions, portTypes and other information.

Term Relationship Indexing

In this section, we discuss (a) how semantic matching of

service interface descriptions can be accomplished by
using both domain-dependent and domain-independent

cues, (b) how matches due to the two cues (domain-

1
 We define Recall as the ratio of the number of relevant

services (compositions) retrieved to the total number of relevant

services/compositions in the repository. We express it as a

percentage. More details can be found in the “Experimental

Results” section.

independent and domain-specific) are combined by the

score combination module to determine an overall

semantic similarity score, and (c) how efficient indexing is

performed. In an earlier work, we show that by combining

multiple cues, better relevancy of results can be obtained

for service matches from a large repository, than that

could be obtained using any one cue alone (Syeda-
Mahmood et al 2005).

(a.1) Finding related terms using domain independent
ontologies. Finding semantic relationship between

attributes is difficult because (1) Attributes could be

multi-word terms (e.g. CustomerIdentification,

PhoneCountry, etc.) which require tokenization. Any

tokenization must capture naming conventions used by

programmers to form attribute names; (2) Finding

meaningful matches might need to account for senses of

the word as well as their part-of-speech through a

thesaurus; (3) Multiple matches of attributes must be

taken into account; and (4) Finally, the structure/type
information must be exploited so that operations match to
operations, messages to messages, etc.

We capture name semantics using a technique
similar to the one in (Dong X. 2004). Specifically, multi-
term query attributes are parsed into tokens. Part-of-
speech tagging and stop-word filtering is performed.
Abbreviation expansion is done for the retained words if
necessary, and then a thesaurus is used to find the
similarity of the tokens based on synonyms. The resulting
synonyms are assembled back to determine matches to
candidate multi-term word attributes of the repository
services after taking into account the tags associated with
the attributes. For example, customer and client would be
considered a match because they are synonyms. CustID is
matched with ClientNum because words such as custID
get expanded to CustomerIdentifier and ClientNum gets
expanded to ClientNumber and are matched separately
(Cust with Client and ID with Num). Stop words such as
and, the, etc. are filtered out. We used the WordNet
thesaurus (Miller 1983) to find matching synonyms to
words. Each synonym is assigned a similarity score based

on the sense index, and the order of the synonym in the
matches returned. The result of this semantic matching

process is that a given pair of concepts is given a semantic
score based on these domain-independent cues. That score

is computed as follows:
Consider a pair of candidate matching attributes

(A, B) from the query and repository services

respectively. These matching attributes could be a pair of
inputs to be matched from a service request and an

available service from a repository. Let A, B have m and n
valid tokens respectively, and let Syi and Syj be their

expanded synonym lists based on domain-independent

ontological processing. We consider each token i in
source attribute A to match a token j in destination
attribute B where i ε Syi and j ε Syi. Let us say that h

tokens have a match. Then, the semantic similarity

between attributes A and B is then given by: Msem,=

min{h/n, h/m}. This use of the ratio of matched to total

terms allows us to deal with services that have vastly

different numbers of parameters.

(a.2) Finding related terms using domain-specific
ontologies. We use a semantic network-based ontology
management system known as SNoBASE (Lee et al 2003)

that offers DQL-based (DQL 2003) Java API for querying

ontologies represented in OWL. The OWL-specified

ontologies loaded into SNOBASE are parsed to populate

its internal data store with facts and instances. The engine

models four different types of relationships: (1,2)

subClassOf(A,B), subClassOf(B,A) – which is essentially

superClassOf, (3) type (A,B) – which is instanceOf, and

(4) equivalenceClass(A,B) are modeled where A and B

are two given concepts. We use a simple scoring scheme

to compute distance between related concepts in the

ontology. subClassOf, typeOf, are given a score of 0.5,

equivalentClass gets a score of 1 and no relationship gets
a score of 0. The discretization of the score into three
values (0, 0.5, 1.0) gives a coarse idea of semantic
separation between ontological concepts. This score
between a given two concepts is represented as Mont.
More refined scoring schemes are possible, but the current
choice works well in practice without causing a deep
semantic bias. Given a domain-specific ontology and a
query term, the related terms in an ontology are found
using rule-based inference. In the SNoBASE system we
used, IBM’s ABLE (Bigus et al 2001) engine for
inference. The ABLE library includes rule-based
inference using Boolean and fuzzy logic, forward
chaining, backward chaining etc. The result of this
domain-dependent ontology based inferencing is that a
given pair of concepts is given a semantic score based on
these domain-dependent cues.

(b) Score Combination. Once semantic scores from
domain-independent and domain-dependent cues are
obtained, these individual scores are then combined to
obtain an overall semantic score for a given pair of

concepts. Several schemes such as winner-takes-all,
weighted average could be used to combine domain-

specific and domain-independent cues for a given
attribute. In SEMAPLAN, these schemes are

configurable. The default scheme is winner-takes-all,
where the best possible score (ontology-wise or semantic-
matching-wise) is taken as the match score for a given pair

of attributes. For each potential matching attribute pairs,
let Msem be the matching score using semantic matching.
Let Mont be the matching score using ontological
matching. Then the combined score is: M = max {Msem,

Mont}

(c) Indexing. With the approach we have described so far,
all services attributes would have to be searched for each
query service to find potential matches and to assemble

the overall match results. We now present attribute

hashing, an efficient indexing scheme that achieves the

desired savings in search time.

To understand the role of indexing, let us

consider a service repository of 500 services. If each

service has about 50 attributes (quite common for

enterprise-level services), and 2 to 3 tokens per word
attribute, and about 30 synonyms per token, the semantic

matching alone would make the search for a query of 50

attributes easily around 50 million operations per query!

Indexing of the repository schemas is, therefore, crucial to

reducing the complexity of search. Specifically, if the

candidate attributes of the repository schemas can be

directly identified for each query attribute without linearly

searching through all attributes, then significant savings

can be achieved.

The key idea in attribute hashing can be

explained as follows. Let ‘a’ be an entity derived from a

repository service description. Let F(a) be the set of

related entities of ‘a’ in the entire service repository (also
called feature set here). In the case of domain-
independent semantics ‘a’ refers to a token and F(a) is the
set of synonyms of ‘a’. In the case of ontological
matching, ‘a’ refers to an ontological annotation term, and
F(a) are the ontologically related concepts to a (e.g. terms
related by subclass, equivalenceClass, is-a, etc.
relationships) . Now, given a query entity q derived from
a query service Q, q is related to a iff q ε F(a). Thus

instead of indexing the set F(a) using the attribute a as a
key as may be done in normal indexing, we use the terms
in the set F(a) as keys to index a hash table and record ‘a’
as an entry in the hash table repeatedly for each such key.
The advantage of this operation is that since q ε F(a), q

is indeed one of the keys of the hash function. If this
operation is repeated for all entities in the service
repository, then each hash table entry indexed by a key
records all entities whose related term set includes the
key. Thus indexing the hash table using the query entity q

directly identifies all related entities from the service

repository without further search! This is the key idea of

attribute hashing. Of course, this is done at the cost of
redundant storage (the entity ‘a’ is stored repeatedly as an
entry under each relevant key). However, with the growth

of computer memory, storage is a relatively inexpensive
tradeoff.

Prefiltering

The prefiltering module selects a set of candidate pool of
services from which compositions can be accomplished. If

the number of services in the repository is relatively small
(of the order of dozens), then prefiltering may not be

necessary. However, in data warehousing type of
scenarios or in asset reuse scenarios, there could be

typically hundreds of interfaces from which suitable
applications have to be constructed; thus, obtaining a
manageable set of candidate services via filtering is

crucial to returning results in reasonable amount of time.

Of course, as with any filtering process, there is the

possibility of filtering out some good candidates and

bringing in bad candidates. However, prefiltering can

reduce the search space and allow planning algorithms to

focus on a viable set. We employ a simple backward

searching algorithm to select candidate services in the
prefiltering stage. The algorithm works by, first, collecting

all services that match at least one of the outputs of the

request – denoted as S11, S12, S13.. S1n where n is the

number of services obtained in step 1 and S1 denotes

services collected in step 1. Let S1i represent a service

collected from step 1 where 1 ≤ i ≤ n... Then, for each

service S1i, we collect all those services whose outputs

match at least one of the inputs of S1i. This results in a set

of services added to the collection in step 2 – denoted as

S21, S22, S23.. S2m where m is the number of services

obtained in step 2. This process of collecting services is

repeated until either a predefined set of iterations are

completed or if at any stage no more matches could be
found. The criteria for filtering could have significant
influence on the overall quality of results obtained. One
can experiment with these criteria to fine-tune the
prefiltering module to return an optimal set of candidate
pool of services. The prefiltering module uses the
semantic similarity map obtained from the indexing stage
to determine whether a given interface description concept
is a match to another concept in a different interface
description.

Generating Compositions using Metric Planner

The set of candidate services obtained from the
prefiltering step are then presented to the planner. A

planning problem P is a 3-tuple < I, G, A> where I is the

complete description of the initial state, G is the partial
description of the goal state, and A is the set of executable

(primitive) actions (Weld 1999). A state T is a collection
of literals with the semantics that information
corresponding to the predicates in the state holds (is true).

An action Ai is applicable in a state T if its precondition is

satisfied in T and the resulting state T’ is obtained by

incorporating the effects of Ai. An action sequence S

(called a plan) is a solution to P if S can be executed from

I and the resulting state of the world contains G. Note that
a plan can contain none, one or more than one occurrence

of an action Ai from A. A planner finds plans by

evaluating actions and searching in the space of possible
world states or the space of partial plans.

The semantic distance represents an uncertainty about the
matching of two terms and any service (action) composed

due to their match will also have uncertainty about its
applicability. However, this uncertainty is not probability

in the strict sense of a probabilistic event which
sometimes succeeds and sometimes fails. A service
composed due to an approximate match of its

precondition with the terms in the previous state will

always carry the uncertainty. Hence, probabilistic

planning (Kushmerick et al. 1995) is not directly

applicable and we choose to represent this uncertainty as a

cost measure and apply metric planning to this problem. A

metric planning problem is a planning problem where

actions can incur different costs. A metric planner finds
plans that not only satisfies the goal but also does in lesser

cost. Note that we can also model probabilistic reasoning

in this generalized setting.

We now illustrate the changes needed in a standard metric

planner to support planning with approximate distances.

Our approach uses planning in the state of world states

(state space planning) but it is applicable to searching in

space of plans as well. Table 1 below presents a pseudo-

code template of a standard forward state-space planning

algorithm, ForwardSearchPlan. The planner creates a

search node corresponding to the initial state and inserts it

into a queue. It selects a node at Step 7 from the queue
guided by a heuristic function. It then tries to apply
actions at Step 10 whose preconditions are true in the
corresponding current state. The heuristic function is an
important measure to focus the search towards completing
the remainder part of the plan to the goals.

ForwardSearchPlan(I, G, A)

1. If I q G

2. Return {}

3. End-if

4. Ninit.sequence = {}; Ninit.state = I

5. Q = { Ninit }

6. While Q is not empty

7. N = Remove an element from Q (heuristic choice)

8. Let S = N.sequence; T = N.state

9. For each action Ai in A (all actions have to be attempted)

10. If precondition of Ai is satisfied in state T

11. Create new node N’ with:

12. N’.state = Update T with result of effect of Ai and

13. N’.sequence = Append(N.sequence, Ai)

14. End-if

15. If N’.state q G

16. Return N’ ;; Return a plan

17. End-if

18. Q = Q U N’

19. End-for

20. End-while

21. Return FAIL ;; No plan was found

Table 1. Pseudo-code for the ForwardSearchPlan algorithm.

To support planning with partial semantic matching, we
have to make changes at Steps 7 and 10. The heuristic

function has to be modified to take the cost of the partial
plans into account in addition to how many literals in the

goals have been achieved. For Step 10, we have to
generalize the notion of action applicability.

Conventionally, an action Ai is applicable in a state T if all
of its preconditions are true in the state. With semantic

distances, a precondition is approximately matching the

literals in the state. We have a number of choices for

calculating the plan cost:

a) In matching of an action’s precondition with the

literals in the state, which semantic distance

should be selected? We can use the first one, the

least distance, or any other possibility.

b) In selecting the semantic cost of the action, how
is the contribution of the preconditions

aggregated? We can take the minimum of the

distances, maximum, or any other aggregate

measure.

c) In computing the semantic cost of the plan, how

is the contribution of each action in the plan

computed? We can simply add the costs of the

actions, take their products, or use any other

function.

We have implemented such a metric planner in the Java-

based Planner4J framework (Biplav et. al 2003).

Planner4J provides for planners to be built exposing a
common programmatic interface while they are built with
well-tested common infrastructure of components and
patterns so that much of the existing components can be
reused. Planner4J has been used to build a variety of
planners in Java and it has eased their upgrade and
maintenance while facilitating support for multiple
applications. The planner can be run to get all plans within
a search limit, different plans by changing the threshold
for accepting semantic distances and by experimenting
with various choices of cost computations for the actions
and plans as outlined above.

Solution Ranking

The ranking module can use various criteria to rank the
solutions. For example, one way to rank the criteria would
be to sort the compositions in ascending order of the
overall cost of the plan. Another way is to rank the
compositions based on the length of the plan (i.e., the
number of services in the plan). Multidimensional sorting
approach could be used to sort based on both cost and the
length of the plan. Multiplying the normalized costs is

another approach. This approach brings in notions of
probabilistic planning and enables to take both cost and
length into account at once. In SEMAPLAN, these

approaches are configurable.

Experimental Results

The goal of our evaluation section is to demonstrate the

value of combining domain-independent and domain-
dependent semantic scores with a metric planner when

composing Web services. For this, we ran several
experiments on a collection of over 100 Web services in
three domains: (1) Text analysis - 20 WSDLs that provide

text analysis services, (2) Alphabet – 7 WSDLs manually
built to test the correctness of the planner when the

relationships between services are very complex, and (3)

Telco – 75 WSDLs defined from a real life

telecommunication scenario. For clarity, we report only

the results for the first domain, as the other two domains

presented similar behavior. The planner performance is

measured through the recall function (R), defined as the

ratio between the number of direct plans retrieved by the
planner and the total number of direct plans in the

database. We define a direct plan as a correct plan (i.e., it

reaches the goal state, given the initial state) with a

minimum number of actions (i.e., we discard plans that

contain loops or redundant actions). Our definition of the

recall function was due to an interesting observation we

made when contrasting the results returned by a search

engine in the information retrieval domain and the ones

returned by a planner in the Web Services domain. In

Web search, recall is defined by relevancy. A search

query that is looking for ‘Soprano’ could find results

consisting of Sopranos (the HBO show) as well as

information on sopranos from Wikipedia etc. Depending
on what the user meant, the user would find one of the two
categories of search results to be more relevant than the
others. However, when composing Web services using a
planner, the notion of relevancy needs to be interpreted
slightly differently. Since planners are goal directed, and
the semantic matches are often driven by closely related
terms in the domain-independent and domain-dependent
ontologies, all the results obtained were found to be
relevant. Therefore, we redefined relevancy as the direct
matches SEMAPLAN is able to find with minimal length
(fewer number of services composed to meet the request)
without redundancies in our experiments. For example, in
the text analysis example, one of the direct plans is the
sequence of: Tokenizer, Lexical Analyzer and
NamedEntityRecognizer services. We have noticed that
depending on the number of states we allow the
SEMAPLAN system to run, it finds compositions that
include sequences such as: Tokenizer, LexicalAnalyzer,

Tokenizer, and NamedEntityRecognizer. In this plan, the
second Tokenizer is redundant. The total number of direct

plans in the database was computed by manually
performing an exhaustive search and counting all plans.
The number of direct plans retrieved by the planner was

computed by intersecting the set of planners found by the
planner with the set of direct plans defined by the
database.

The experiments were executed by varying the
following levers in the SEMAPLAN system and observing

the planner performance: (a) the semantic threshold (ST)
allows different levels of semantic ambiguity to be

resolved (b) the number of state spaces explored (#SS)

limits the size of the searching space (c) the cost function

(CF), defined as [w*semantic distance+(1-w)*length of

the plan] where 0 <= w <= 1, directs SEMAPLAN system
to consider the semantic scores alone or the length of the

plan alone or a combination of both in directing the

search. We ran the following four experiments to measure

the performance of SEMAPLAN.

1. Metric Planner alone Vs. SEMAPLAN

2. SEMAPLAN: f(ST) where CF, and #SS are constants.

3. SEMAPLAN: f(#SS) where CF, and ST are constants.

4. SEMAPLAN: f(#CF) where ST, #SS are constants.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

N
u

m
b

e
r

o
f

s
e
rv

ic
e
s
 r

e
tr

ie
v
e
d

 b
y

p
la

n
n

e
r

Planner with inferencing (SEMAPLAN) Planner without inferencing

Figure 3: Comparison of Metric Planner Vs. SEMAPLAN

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
la

n
 1

P
la

n
 2

P
la

n
 3

P
la

n
 4

P
la

n
 5

P
la

n
 6

P
la

n
 7

P
la

n
 8

P
la

n
 9

P
la

n
 1

0

P
la

n
 1

1

P
la

n
 1

2

P
la

n
 1

3

P
la

n
 1

4

P
la

n
 1

5

P
la

n
 1

6

P
la

n
 1

7

P
la

n
 1

8

P
la

n
 1

9

P
la

n
 2

0

Plans

C
o

s
t

Figure 4. Costs of all plans retrieved by planner

(threshold=0.6)

Metric Planner alone Vs. SEMAPLAN: In this
experiment, our hypothesis was that a planner with
semantic inferencing would produce more relevant
compositions than a planner alone. The intuition is that the
semantic matcher allows concepts such as lexemeAttrib
and lemmaProp to be considered matches because it
considers relationships such as word tokenization,
synonyms, and other closely related concepts (such as
subClassOf, typeOf, instanceOf, equivalentClass) defined
by the domain ontologies; such relationships are not

usually considered by the planner. As Figure 3 shows,
SEMAPLAN finds more relevant results than a classic
metric planner, thus confirming our hypothesis. The costs

of all plans retrieved by SEMAPLAN are shown in Figure

4. The increased number of solutions is more prevalent
with certain semantic thresholds. This behavior is
explained in the context of next experiment.

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

R
e
c
a
ll

Figure 5: SEMAPLAN performance when varying threshold

SEMAPLAN: f(ST) where CF, and #SS are constants:

In this experiment, we varied the semantic threshold for a

given number of state spaces to be explored (1000) and a

given cost function for each domain (w=0.5). As the

semantic threshold increases, only those concepts that are

above the threshold would be considered matches;

therefore, we expected that the number of results
produced by the planner would decrease and vice versa.
While this is confirmed by our results in figure 5, we
noticed an interesting phenomenon. As the semantic
threshold decreased, more and more loosely related
concepts are considered matches by the semantic matcher.
This increased the number of services available for the
planner to plan from thereby increasing the search space.
Therefore, for a given number state spaces to be explored,
SEMAPLAN could not come up with some of the good
results that it was able to find at higher semantic
threshold. Therefore both in figure 3 and figure 4, we can
notice a drop in the number of plans retrieved by the
planner at higher threshold. Our observation from this
experiment is that for a given cost function and for a given
number of state spaces to be explored, there is an optimal

threshold. In most domains, this was found to be 0.6. This
led us to run the third experiment to see if SEMAPLAN
can discover the missing good plans if the number of state
spaces explored are increased.

1

10

100

1000

50 100 500 1000 2500 5000 10000

Number of states

N
u

m
b

e
r

o
f

p
la

n
s

Direct plans Redundant

Figure 6: SEMAPLAN performance when increasing number of

state spaces searched

SEMAPLAN: f(#SS) where CF, and ST are constants:

Based on the insights from the second experiment, we
varied the number of state spaces by keeping the weight w

in cost function and semantic threshold at the optimal

levels (w= 0.5, and ST=0.6). The results of this

experiment, as shown in Figure 6, revealed that as the

number of state spaces explored increases, SEMAPLAN

finds more plans in general and more direct relevant plans

than it could at the same ST and w. This is consistent with

our expectations.

weight direct redundant recall

0 20 234 1

0.5 20 374 1

1 20 423 1

Table 2: SEMAPLAN performance when changing the cost

function

SEMAPLAN: f(#CF) where ST, #SS are constants:

Finally, we varied the weight in the cost function to see

how the quality of the plans generated get impacted by
this. As weight approaches 1, the cost function gives less
preference to length, therefore we expect to see more
number of longer plans (sometimes with redundancies)
than those expected at lower weights and vice versa. The
results illustrated in Table 2 confirm this intuition.

Related Work

The literature on Web services matching and composition
has focused on two main directions. One body of work
explored the application of AI planning algorithms to
achieve composition while the other investigated the
application of information retrieval techniques for
searching and composing of suitable services in the
presence of semantic ambiguity from large repositories.
In this section we contrast our approach with those taken
by these two bodies of work.

First, we consider work that is done on composing Web

services using planning based on some notion of
annotations. A general survey of planning based
approaches for web services composition can be found in

(Peer 2005). SWORD (Ponnekanti, Fox 2002) was one of
the initial attempts to use planning to compose web
services. It does not model service capabilities in an

ontology but uses rule chaining to composes web services.
In (McIlraith 2001), a method is presented to compose

Web services by applying logical inferencing techniques
on pre-defined plan templates. The service capabilities

are annotated in DAML-S/RDF and then manually
translated into Prolog. Now, given a goal description, the
logic programming language of Golog (which is

implemented over Prolog) is used to instantiate the
appropriate plan for composing the Web services. In

(Traverso, Pistore 2004), executable BPELs are
automatically composed from goal specification by

casting the planning problem as a model checking

problem on the message specification of partners. The

approach is promising but presently restricted to logical

goals and small number of partner services. Sirin et al.

(Sirin et al 2003) use contextual information to find

matching services at each step of service composition.

They further filter the set of matching services by using
ontological reasoning on the semantic description of the

services as well as by using user input. Web Services

Modeling Ontology is a recent effort for modeling

semantic web services in a markup language (WSML) and

also defining a web service execution environment

(WSMX) for it. Our logical composition approach is not

specific to any particular modeling language and can

adapt to newer languages. Synthy (Agarwal et al 2005)

takes an end-to-end view of composition of Web Services

and combines semantic matching with domain ontologies

with planning. While these bodies of work use the notion

of domain annotations and semantic reasoning with

planning, none of them use domain-independent cues such
as thesaurus. Moreover, they do not consider text analysis
techniques such as tokenization, abbreviation expansions,
and stop word filtering etc. in drawing the semantic
relationships among the terms referenced in Web services.

 The second body of work looked at composition of Web
services using domain independent cues alone. Syeda-
Mahmood (Syeda-Mahmood 2004) models Web service
composition as bipartite graph and solves a maximum
matching problem while resolving the semantic
ambiguities using domain-independent ontologies and text
analysis approaches. This work takes its roots in schema
matching. However, this work does not use domain-
dependent ontologies which are crucial to resolving the
differences between domain-specific contextual terms.

SEMAPLAN, to the best of our knowledge, is the first
attempt at combining semantic matching consisting of
domain-dependent and domain-independent ontologies
with AI planning techniques to achieve Web services

composition.

Conclusions and Future Work

In this paper, we have presented a novel approach to

compose Web services in the presence of semantic
ambiguity using a combination of semantic matching and

AI planning algorithms. Specifically, we use domain-
independent and domain-specific ontologies to determine
the semantic similarity between ambiguous

concepts/terms. Matches due to the two cues are
combined to determine an overall similarity score. This

semantic similarity score is used by AI planning
algorithms in composing services. The experimental

results confirmed our intuitions: (1) the number of direct

plans improved by combining semantic matching with

planning algorithms; thus, SEMAPLAN achieved better

recall than the metric planner alone, and (2) there is a

tradeoff between the semantic threshold, the limit on the

state search space, the cost function, and the quality of

results obtained. We noticed that there is an optimal

threshold, which when set, helps focus the planner and at
the same time provides enough semantic variety to

improve recall.

The notion of planning in the presence of semantic

ambiguity is conceptually similar to planning under

uncertainty. In the future we intend to investigate the

application of probabilistic planning techniques to

consider semantic differences and compare the results.

References

Akkiraju R, Farrell J, Miller, J. Nagarajan M, Sheth A,

Verma K. 2005 Web Services Semantics - WSDL-S. A

W3C submission.

Ankolekar A., Burstein M., Hobbs J. J., et al. 2001.
DAML-S/OWL-S: Semantic Markup for Web Services. In
Proceedings of the International Semantic Web Working

Symposium (SWWS)

Agarwal V. Chafle G, Dasgupta K. et al 2004. Synthy. A
System for End to End Composition of Web Services.

http://www.research.ibm.com/people/b/biplav/areas.html

Bigus J., and Schlosnagle D. 2001. Agent Building and
Learning Environment Project: ABLE.
http://www.research.ibm.com/able/

Biplav S. 2004. A Framework for Building Planners. In
the Proc. Knowledge Based Computer Systems

Christenson E., Curbera F., Meredith G., and
Weerawarana S.. “Web services Description Language”
(WSDL) 2001. www.w3.org/TR/wsdl

Dong X. et al. 2004. Similarity search for Web services.
In Proc. VLDB, pp.372-283, Toronto, CA.

DQL Technical Committee 2003. DAML Query

Language (DQL) http://www.daml.org/dql

Lee J., Goodwin R. T., Akkiraju R., Doshi P., Ye Y.

2003. SNoBASE: A Semantic Network-based Ontology
Ontology Management.
http://alphaWorks.ibm.com/tech/snobase.

Mack. R, Mukherjea S., Soffer A., Uramoto N. et. al.

2004. Text Analytics for Life sciences using the
Unstructured Information Management Architecture

(UIMA). IBM Systems Journal. Volume 43. Number 3.

Mandel, D., McIIraith S., 2003 Adapting PBEL4WS for
the semantic web: The bottom up approach to web service

interoperation Second International Semantic Web

Conference (ISWC2003), Sanibel Island, Florida.

McIlraith S. and Son T.C and Zeng H. 2001. Semantic

Web Services. IEEE Intelligent Systems, Special Issue on

the Semantic Web. March/April. Number 2, Pages

46-53 Volume 16.

Melnik S. et al, “Similarity flooding: A versatile graph

matching algorithm and its application to schema
matching,” in Proc. ICDE, 2002.

Miller G.A 1983. WordNet: A lexical database for the

English language, in Comm. ACM 1983.

Nicholas Kushmerick and Steve Hanks and Daniel S.

Weld 1995. An Algorithm for Probabilistic Planning,

Artificial Intelligence, volume 76 number 1-2, pages

239-286.

OWL Technical Committee. “Web Ontology Language

(OWL)”. 2002. http://www.w3.org/TR/2002/WD-owl-ref-
20021112/

Peer J. 2005. Web Service Composition as a Planning

Problem – a survey.
http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf

Ponnekanti S. Fox A. 2002. SWORD: A Developer
Toolkit for Web Service Composition. Proc. Of the 11

th

International World Wide Web Conference.

Sirin E., Hendler J., and Parsia B. 2003. Semi-automatic
composition of web services using semantic descriptions.
Web Services: Modeling, Architecture and Infrastructure

workshop in conjunction with ICEIS2003, April 2003.

Shivashanmugam K., Verma K., Sheth A., Miller J..

Adding Semantics to Web Services Standards. In the

proceedings of The 2003 International Conference on

Web Services (ICWS'03), Las Vegas, NV, June 23 - 26,

2003,, pp. 395-401.

Syeda-Mahmood T., Shah G., Akkiraju R., Ivan A., and
Goodwin R.. 2005 Searching Service Repositories by
Combining Semantic and Ontological Matching. Third

International Conference on Web Services (ICWS),

Florida.

Syeda-Mahmood 2004. Minelink: Automatic Composition
of Web Services through Schema Matching. Poster paper
World Wide Web Conference. 2004.

Traverso P. and Pistore M., 2004. Automated

Composition of Semantic Web Services into Executable
Processes. 3rd Int. Semantic Web Conf., November.

Weld D. 1999. Recent Advances in AI Planning. AI
Magazine, 20:2.

WSMO Technical Committee Web Services Modeling
Ontology 2003, http://www.wsmo.org

