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Abstract 

The use of planning for automated and semi-automated 

composition of web services has enormous potential to reduce 

costs and improve quality in inter and intra-enterprise business 

process integration. Composing existing Web services to deliver 

new functionality is a difficult problem as it involves resolving 

semantic, syntactic and structural differences among the 

interfaces of a large number of services. Unlike most planning 

problems, it can not be assumed that web services are described 

using terms from a single domain theory.  While service 

descriptions may be controlled to some extent in restricted 

settings (e.g., intra-enterprise integration), in web-scale open 

integration, lack of common, formalized service descriptions 

prevent the direct application of standard planning methods. In 

this paper, we present a novel algorithm to compose web 

services in the presence of semantic ambiguity by combining 

semantic matching and AI planning algorithms. Specifically, we 

use cues from domain-independent and domain-specific 

ontologies to compute an overall semantic similarity score 

between ambiguous terms. This semantic similarity score is used 

by AI planning algorithms to guide the searching process when 

composing services.  In addition, we integrate semantic and 

ontological matching with an indexing method, which we call 

attribute hashing, to enable fast lookup of semantically related 

concepts. Experimental results indicate that planning with 

semantic matching produces better results than planning or 

semantic matching alone. The solution is suitable for semi-

automated  composition tools or directory browsers.  

 

Introduction   

Enterprise application integration is among the most 

critical issues faced by many companies today. The 

problem is caused by the way systems are developed 

today in large enterprises, i.e., over different periods of 

                                                 

 

time, for different initial purposes, by different 

organizations, and with different structures, interfaces and 

vocabulary. The infrastructure also evolves through 

acquisitions, mergers and spin-offs. This leads to 

substantial heterogeneity in syntax, structure and 

semantics. In this setting, companies are under constant 

pressure to be flexible, to adapt to the changes in the 
market conditions while keeping their IT expenses under 

control, and to implement integration projects without 
delay. An important aspect of quickly implementing new 

integration projects involves the ability to find and reuse 
as much of the existing functionality as possible and 

create new functionality only where needed.  In the 
context of service-oriented architectures, this translates 

into the technical challenges of discovery, reuse and 
composition of services.  

 
In implementing service-oriented architectures, Web 

services are becoming an important technological 
component. Web services offer the promise of easier 

system integration by providing standard protocols for 
data exchange using XML messages and a standard 

interface declaration language such as the Web Service 
Description Language (WSDL 2001).  The loosely 

coupled approach to integration by Web services provides 
encapsulation of service implementations, making them 

suitable for use with legacy systems and for promoting 
reuse by making external interfaces explicitly available 

via a WSDL description. However, this still does not 

address the vexing issue of dealing with heterogeneity in 

service interface definitions. For example, what one 

service interface in one system may encode as itemID, 

dueDate, and quantity may be referred to by another 
service interface in a different system as UPC (Universal 

Part Code), itemDeliveryTime and numItems. At the heart 

of data and process integration is the need to resolve these 
types of similarities and differences among various 

formats, structures, interfaces and ultimately vocabulary. 

Developing tools to help resolve these types of syntactic, 

structural and semantic similarities and differences is key 

to keeping IT expenses in check.  In this paper, we 
address the problem of identifying the appropriate Web 



services for implementing a required function from a large 

collection of available Web services. Specifically, we 

focus on the problem of Web service composition in the 

absence of a common domain model and where the 

functionality of multiple services has to be composed in 

order to achieve a valid implementation. 

 

Web services matching and composition have become a 

topic of increasing interest in the recent years with the 

gaining popularity of Web services. Two main directions 

have emerged. The first direction explored the application 

of information retrieval techniques for identifying suitable 

services in the presence of semantic ambiguity from large 

repositories. The second direction investigated the 

application of AI planning algorithms to compose 

services. In the latter approach, Web services are framed 

as actions that are applicable to states and the inputs and 

outputs of services are modeled as preconditions and 

effects of actions.  However, to the best of our knowledge, 

these two techniques have not been combined to achieve 

compositional matching in the presence of inexact terms, 

and thus improve recall. In this paper, we present a novel 

approach to compose Web services in the presence of 

semantic ambiguity using a combination of semantic 

matching and AI planning algorithms. Specifically, we use 

domain-independent and domain-specific ontologies to 

determine the semantic similarity between ambiguous 

concepts/terms. The domain-independent relationships are 

derived using an English thesaurus after tokenization and 

part-of-speech tagging. The domain-specific ontological 

similarity is derived by inferring the semantic annotations 

associated with Web service descriptions using an 

ontology.  Matches due to the two cues are combined to 

determine an overall similarity score. This semantic 

similarity score is used by AI planning algorithms in 

composing services.  In addition, we integrate semantic 

and ontological matching with an indexing method, which 

we call attribute hashing, to enable fast lookup of 

semantically related concepts. By combining semantic 

scores with planning algorithms we show that better 

results can be achieved than the ones obtained using a 

planner or matching alone. 
The rest of the paper is organized as follows. First, we 

present a scenario to illustrate the need for Web services 

composition in certain business domains and discuss how 
our approach helps in resolving the semantic ambiguities 

better. Second, we present our solution approach and 
discuss the details of our system SEMAPLAN. Third, we 

present our experimental results and discuss the planner 
performance under various conditions. Fourth, we 
compare our work with related work in this area. Finally, 

we present our conclusions and directions for future work. 
  

A Motivating Scenario   

Composing existing Web services to deliver new 

functionality is a requirement in many business domains. 

In this section, we present a scenario from the  knowledge 
management domain to illustrate the need for (semi) 

automatic composition of Web services and exemplarily 

highlight how semantic matching combined with planning 

could yield better results.  

 

The general goal of text analysis is to transform 

unstructured text into structured information, and to use 

this information to support higher-level processes of text 

search, mining, and discovery (Mack, Mukherjea et.al. 

2004). This involves writing annotators or software 

programs that can interpret text documents, parse them, 

identify phrases, grammar, classify text and eventually 

create structure from the unstructured information. 
Research in this area over the years has led to the 
development of several annotators. Some are general 
purpose annotators while the others are specific to various 
application domains all of which could be made available 
as Web services. Some sample general purpose ones 
include annotators such as a Tokenizer, which identifies 
tokens, a LexicalAnalyzer, which identifies parts of 
speech, a NamedEntityRecognizer, which identifies 
references to people and things etc. Sample annotators 
from biological domain include BioAnnotator, which 
identifies biological terms, ChemFrag, which identifies 
biologically significant chemical structuctures, 
DrugDosage, which recognizes drug applications and 
dosages etc. Typically, the functionality of multiple 
annotators needs to be combined to meet a specific 
request. For example, if a user would like to identify 
names of authors in a given document, annotators 
Tokenizer, LexicalAnalyzer and NamedEntityRecognizer 

could be composed to meet the request. Tokenizer 

annotator tokenizes a given document. LexicalAnalyzer 
performs lexical analysis on tokens. Finally, 
NamedEntityRecognizer annotator identifies and classifies 
tokens based on their lexical properties into the names of 

peoples, places and things. Figure 1 summarizes this 
composition flow. Such dynamic composition of 
functionality, that could be represented as Web services, 

saves tedious development time in complex knowledge 

management domains such as life sciences since 
explicating all possible and meaningful combinations of 
annotators in this case is prohibitive. AI Planning 

algorithms are well suited to generate these types of 
compositions. However, as  discussed earlier, unlike most 
planning problems, in business domains often it can not be 
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assumed that web services are described using terms from 

a single domain theory.   

 

 

 

 

 
 

 

 

 
Figure 1. Text Analysis Composition example with semantic 

matching (~= illustrates semantic match) 

 

Just as with any software development process, annotators 
are written by multiple authors at different periods of 
time. These authors could have used different terminology 
to describe the interfaces of their annotators. In addition, 
domain specific annotators could have been acquired from 
external sources (via licensing, acquisition etc). So, it is 
unlikely that they use a common set of terms to name 
services (annotators in this scenario) and parameters. This 
creates semantic ambiguity that, if unresolved, could lead 
to poor management of available applications. For 
example, the term lexemeAttrib may not match with 
lemmaProp unless the word is split into lexeme and Attrib 
and matched separately. Using a domain-dependent 
ontology one can infer that a lemma in linguistic context is 
a canonical form of a lexeme and therefore the term 
lemma could be considered a match to the term lexeme. 
Abbreviation expansion rule can be applied to the terms 
Attrib and Prop to expand them to Attribute and Property. 
Then a consultation with a domain-independent thesaurus 
such as WordNet dictionary can help match the term 
Attribute with Property since they are listed as synonyms. 
Putting both of these cues together, one can match the 
term lexemeAttrib with lemmaProp. In the absence of 
such semantic cues, two services that have the terms 
lexemeAttrib and lemmaProperty as part of their effects 
would go unmatched during planning thereby resulting in 
fewer results which adversely impacts recall. In the next 
section, we explain how we enable a planner to use these 
cues to resolve semantic ambiguities in our system -
SEMAPLAN. 
 

Our Solution Approach 

Figure 2 illustrates the components and the control flow in 

SEMAPLAN system. There are five steps in the system, 
as explained at a high-level below. Details are given in the 

subsections following later in this section. 
 

1. Service Representation: This step involves 

preparing Web Services with semantic annotations 
and readying the domain dependent and 

independent ontologies.  

2. Term Relationship Indexing: In step 2, the 

available Web services in the repository are parsed, 

processed and an index consisting of related 

terms/concepts referred to in the service interface 

descriptions is created for easy lookup. This is 

achieved using the services of a semantic matcher 

which uses both domain-independent and domain-
specific cues to discover similarity between 

application interface concepts. The result of 

indexing is a semantic similarity map. This 

semantic similarity map is capable of returning a 

semantic score for a given pair of concepts by 

combining the individual scores from domain-

dependent and domain-independent sources. This 

map is organized for efficient retrieval of related 

concepts and their scores for a given concept. 

3. Prefiltering: Once indexing of related concepts is 

accomplished, in step 3 we perform prefiltering to 

obtain a list of candidate matching services for a 

given request. This is done by a prefiltering 

module. The job of the prefiltering module is to 
use smart techniques to obtain a candidate set of 
interface descriptions from the given set of 
available interface descriptions from which 
compositions can be created.  

4. Generating Compositions: In step 4, these 
candidate application interfaces are passed to a 
metric planner along with the request interface 
description, and the semantic similarity map. The 
metric planner runs partial order planning 
algorithms and generates a set of alternative 
compositions from the given candidate set for the 
given request interface description. To determine 
which interfaces can be composed with which 
others, metric planner uses the semantic similarity 

map.  

5. Solution Ranking: Finally, in step 5, the alternative 
compositions are ranked by the ranking module.  

 
 
 
 
 
 
 
 

 
 

 
 

Figure 2 SEMAPLAN system and its components 
 

The main benefit of SEMAPLAN is the ability to 

compose plans in the presence of inexact terms. This is 
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expected to improve the recall
1
 of results. We verify this 

hypothesis by running experiments, as presented in 

‘Experimental Results’ section. We now describe each 

step in detail. 

Service Representation 

The functionality of services is represented using the Web 

Services Description Language (WSDL). Domain 

independent dictionaries can be used to match the terms 

used in the WSDL document. However, in order to use 

domain-specific ontological information, references to the 

ontology must be present in the service description. The 

standard WSDL specification does not have a mechanism 

to denote such ontological information and hence must be 

augmented before such information can be used to 

determine matching services. The subject of semantic 

annotation is an active area of research in the semantic 

web community with languages such as OWL-S (OWL-S 

2001), WSMO (WSMO 2003), WSDL-S 
(Shivashanmugham et al 2003, Akkiraju et al 2005), etc. 
In this work, we have adopted the WSDL-S specification 
due to its simplicity.  
 
xmlns:wssem=”http//www.ibm.com/schemas/2004/wssem” 

xmlns:TextAnalysisOntology="http://www.ibm.com/ontologies/TextAn

alysisOntology.owl" >  

<message name="chemicalNameIdentifierRequest"> 

           <part name="named_entity_in" type="xsd:string" 

wssem:modelReference="TextAnalysisOntology#NamedEntity"/> 

   </message> 

   <message name="chemicalNameIdentifierResponse"> 

         <part name="chem_out" type="xsd:string" 

wssem:modelReference="TextAnalysisOntology#ChemicalName"/> 

  </message> 

 

We create domain-specific ontologies using OWL 
(OWL 2002). Using the WSDL-S specification, we 
annotate elements in the WSDL file using the attribute 
wssem:modelReferences. Its value is an OWL ontology 
concept specified by the name of the ontology and the 
relevant ontological term. Such an annotated WSDL file 
corresponding to the text analysis domain is shown above.  
After parsing the WSDL documents, we create a 

generalized schema object internally to capture the service 
definitions, portTypes and other information. 

Term Relationship Indexing 

In this section, we discuss (a) how semantic matching of 

service interface descriptions can be accomplished by 
using both domain-dependent and domain-independent 

cues, (b) how matches due to the two cues (domain-

                                                 
1
 We define Recall as the ratio of the number of relevant 

services (compositions) retrieved to the total number of relevant 

services/compositions in the repository. We express it as a 

percentage. More details can be found in the “Experimental 

Results” section. 

independent and domain-specific) are combined by the 

score combination module to determine an overall 

semantic similarity score, and (c) how efficient indexing is 

performed. In an earlier work, we show that by combining 

multiple cues, better relevancy of results can be obtained 

for service matches from a large repository, than that 

could be obtained using any one cue alone (Syeda-
Mahmood et al 2005).  

 

(a.1) Finding related terms using domain independent 
ontologies. Finding semantic relationship between 

attributes is difficult because (1) Attributes could be 

multi-word terms (e.g. CustomerIdentification, 

PhoneCountry, etc.) which require tokenization. Any 

tokenization must capture naming conventions used by 

programmers to form attribute names; (2) Finding 

meaningful matches might need to account for senses of 

the word as well as their part-of-speech through a 

thesaurus; (3) Multiple matches of attributes must be 

taken into account; and (4) Finally, the structure/type 
information must be exploited so that operations match to 
operations, messages to messages, etc. 

We capture name semantics using a technique 
similar to the one in (Dong X. 2004).  Specifically, multi-
term query attributes are parsed into tokens.  Part-of-
speech tagging and stop-word filtering is performed. 
Abbreviation expansion is done for the retained words if 
necessary, and then a thesaurus is used to find the 
similarity of the tokens based on synonyms. The resulting 
synonyms are assembled back to determine matches to 
candidate multi-term word attributes of the repository 
services after taking into account the tags associated with 
the attributes. For example, customer and client would be 
considered a match because they are synonyms. CustID is 
matched with ClientNum because words such as custID 
get expanded to CustomerIdentifier and ClientNum gets 
expanded to ClientNumber and are matched separately 
(Cust with Client and ID with Num). Stop words such as 
and, the, etc. are filtered out. We used the WordNet 
thesaurus (Miller 1983) to find matching synonyms to 
words.  Each synonym is assigned a similarity score based 

on the sense index, and the order of the synonym in the 
matches returned. The result of this semantic matching 

process is that a given pair of concepts is given a semantic 
score based on these domain-independent cues. That score 

is computed as follows: 
Consider a pair of candidate matching attributes 

(A, B) from the query and repository services 

respectively. These matching attributes could be a pair of 
inputs to be matched from a service request and an 

available service from a repository. Let A, B have m and n 
valid tokens respectively, and let Syi and Syj be their 

expanded synonym lists based on domain-independent 

ontological processing. We consider each token  i  in 
source attribute  A  to match a token  j  in destination 
attribute  B  where i ε Syi and j  ε Syi.  Let us say that h 

tokens have a match. Then, the semantic similarity 



between attributes A and B is then given by: Msem,=  

min{h/n, h/m}.   This use of the ratio of matched to total 

terms allows us to deal with services that have vastly 

different numbers of parameters.   

 

(a.2) Finding related terms using domain-specific 
ontologies. We use a semantic network-based ontology 
management system known as SNoBASE (Lee et al 2003) 

that offers DQL-based (DQL 2003) Java API for querying 

ontologies represented in OWL. The OWL-specified 

ontologies loaded into SNOBASE are parsed to populate 

its internal data store with facts and instances. The engine 

models four different types of relationships: (1,2) 

subClassOf(A,B), subClassOf(B,A) – which is essentially 

superClassOf, (3) type (A,B) – which is instanceOf, and 

(4) equivalenceClass(A,B) are modeled where A and B 

are two given concepts. We use a simple scoring scheme 

to compute distance between related concepts in the 

ontology. subClassOf, typeOf, are given a score of 0.5, 

equivalentClass gets a score of 1 and no relationship gets 
a score of 0. The discretization of the score into three 
values (0, 0.5, 1.0) gives a coarse idea of semantic 
separation between ontological concepts. This score 
between a given two concepts is represented as Mont. 
More refined scoring schemes are possible, but the current 
choice works well in practice without causing a deep 
semantic bias.  Given a domain-specific ontology and a 
query term, the related terms in an ontology are found 
using rule-based inference. In the  SNoBASE system we 
used, IBM’s ABLE (Bigus et al 2001) engine for 
inference. The ABLE library includes rule-based 
inference using Boolean and fuzzy logic, forward 
chaining, backward chaining etc.  The result of this 
domain-dependent ontology based inferencing is that a 
given pair of concepts is given a semantic score based on 
these domain-dependent cues.  
 

(b) Score Combination. Once semantic scores from 
domain-independent and domain-dependent cues are 
obtained, these individual scores are then combined to 
obtain an overall semantic score for a given pair of 

concepts. Several schemes such as winner-takes-all, 
weighted average could be used to combine domain-

specific and domain-independent cues for a given 
attribute. In SEMAPLAN, these schemes are 

configurable. The default scheme is winner-takes-all, 
where the best possible score (ontology-wise or semantic-
matching-wise) is taken as the match score for a given pair 

of attributes. For each potential matching attribute pairs, 
let Msem be the matching score using semantic matching. 
Let Mont be the matching score using ontological 
matching. Then the combined score is: M = max {Msem, 

Mont}  

(c) Indexing. With the approach we have described so far, 
all services attributes would have to be searched for each 
query service to find potential matches and to assemble 

the overall match results. We now present attribute 

hashing, an efficient indexing scheme that achieves the 

desired savings in search time. 

To understand the role of indexing, let us 

consider a service repository of 500 services. If each 

service has about 50 attributes (quite common for 

enterprise-level services), and 2 to 3 tokens per word 
attribute, and about 30 synonyms per token, the semantic 

matching alone would make the search for  a query of 50 

attributes easily around 50 million operations per query! 

Indexing of the repository schemas is, therefore, crucial to 

reducing the complexity of search. Specifically, if the 

candidate attributes of the repository schemas can be 

directly identified for each query attribute without linearly 

searching through all attributes, then significant savings 

can be achieved.   

The key idea in attribute hashing can be 

explained as follows. Let ‘a’ be an entity derived from a 

repository service description. Let F(a) be the set of 

related entities of ‘a’ in the entire service repository (also 
called feature set here).  In the case of domain-
independent semantics ‘a’ refers to a token and F(a) is the 
set of synonyms of ‘a’. In the case of ontological 
matching, ‘a’ refers to an ontological annotation term, and 
F(a) are the ontologically related concepts to a (e.g. terms 
related by subclass, equivalenceClass, is-a, etc. 
relationships) .  Now, given a query entity q derived from 
a query service Q, q is related to a iff q ε  F(a).  Thus 

instead of indexing the set F(a) using the attribute a as a 
key as may be done in normal indexing,  we use the terms 
in the set F(a) as keys to index a hash table and record ‘a’ 
as an entry in the hash table repeatedly for each such key. 
The advantage of this operation is that since q ε  F(a), q 

is indeed one of the keys of the hash function. If this 
operation is repeated for all entities in the service 
repository, then each hash table entry indexed by a key 
records all entities whose related term set includes the 
key. Thus indexing the hash table using the query entity q 

directly identifies all related entities from the service 

repository without further search! This is the key idea of 

attribute hashing. Of course, this is done at the cost of 
redundant storage (the entity ‘a’ is stored repeatedly as an 
entry under each relevant key). However, with the growth 

of computer memory, storage is a relatively inexpensive 
tradeoff. 

Prefiltering 

The prefiltering module selects a set of candidate pool of 
services from which compositions can be accomplished. If 

the number of services in the repository is relatively small 
(of the order of dozens), then prefiltering may not be 

necessary. However, in data warehousing type of 
scenarios or in asset reuse scenarios, there could be 

typically hundreds of interfaces from which suitable 
applications have to be constructed; thus, obtaining a 
manageable set of candidate services via filtering is 



crucial to returning results in reasonable amount of time.  

Of course, as with any filtering process, there is the 

possibility of filtering out some good candidates and 

bringing in bad candidates. However, prefiltering can 

reduce the search space and allow planning algorithms to 

focus on a viable set. We employ a simple backward 

searching algorithm to select candidate services in  the 
prefiltering stage. The algorithm works by, first, collecting 

all services that match at least one of the outputs of the 

request – denoted as S11, S12, S13.. S1n where n is the 

number of services obtained in step 1 and S1 denotes 

services collected in step 1. Let S1i represent a service 

collected from step 1 where 1 ≤ i ≤ n... Then, for each 

service S1i, we collect all those services whose outputs 

match at least one of the inputs of S1i. This results in a set 

of services added to the collection in step 2 – denoted as 

S21, S22, S23.. S2m where m is the number of services 

obtained in step 2. This process of collecting services is 

repeated until either a predefined set of iterations are 

completed or if at any stage no more matches could be 
found.  The criteria for filtering could have significant 
influence on the overall quality of results obtained. One 
can experiment with these criteria to fine-tune the 
prefiltering module to return an optimal set of candidate 
pool of services. The prefiltering module uses the 
semantic similarity map obtained from the indexing stage 
to determine whether a given interface description concept 
is a match to another concept in a different interface 
description. 

Generating Compositions using Metric Planner 

The set of candidate services obtained from the 
prefiltering step are then presented to the planner. A 

planning problem P is a 3-tuple < I, G, A> where I is the 

complete description of the initial state, G is the partial 
description of the goal state, and A is the set of executable 

(primitive) actions (Weld 1999). A state T is a collection 
of literals with the semantics that information 
corresponding to the predicates in the state holds (is true). 

An action Ai is applicable in a state T if its precondition is 

satisfied in T and the resulting state T’ is obtained by 

incorporating the effects of Ai. An action sequence S 

(called a plan) is a solution to P if S can be executed from 

I and the resulting state of the world contains G. Note that 
a plan can contain none, one or more than one occurrence 

of an action Ai from A. A planner finds plans by 

evaluating actions and searching in the space of possible 
world states or the space of partial plans.  
 

The semantic distance represents an uncertainty about the 
matching of two terms and any service (action) composed 

due to their match will also have uncertainty about its 
applicability. However, this uncertainty is not probability 

in the strict sense of a probabilistic event which 
sometimes succeeds and sometimes fails. A service 
composed due to an approximate match of its 

precondition with the terms in the previous state will 

always carry the uncertainty. Hence, probabilistic 

planning (Kushmerick et al. 1995) is not directly 

applicable and we choose to represent this uncertainty as a 

cost measure and apply metric planning to this problem. A 

metric planning problem is a planning problem where 

actions can incur different costs. A metric planner finds 
plans that not only satisfies the goal but also does in lesser 

cost. Note that we can also model probabilistic reasoning 

in this generalized setting. 

 

We now illustrate the changes needed in a standard metric 

planner to support planning with approximate distances. 

Our approach uses planning in the state of world states 

(state space planning) but it is applicable to searching in 

space of plans as well. Table 1 below presents a pseudo-

code template of a standard forward state-space planning 

algorithm, ForwardSearchPlan. The planner creates a 

search node corresponding to the initial state and inserts it 

into a queue. It selects a node at Step 7 from the queue 
guided by a heuristic function. It then tries to apply 
actions at Step 10 whose preconditions are true in the 
corresponding current state. The heuristic function is an 
important measure to focus the search towards completing 
the remainder part of the plan to the goals. 
 

ForwardSearchPlan(I, G, A) 

1.  If I q G 

2.     Return {}  

3.  End-if 

4.  Ninit.sequence = {}; Ninit.state = I 

5.  Q = { Ninit } 

6.  While Q is not empty 

7.  N = Remove an element from Q (heuristic choice) 

8.  Let S = N.sequence; T = N.state 

9.  For each action Ai in A (all actions have to be attempted) 

10.    If precondition of Ai is satisfied in state T 

11.           Create new node N’ with: 

12.              N’.state = Update T with result of effect of Ai and 

13.              N’.sequence = Append(N.sequence, Ai) 

14.   End-if 

15.    If N’.state q G 

16.         Return N’   ;; Return a plan 

17.    End-if 

18.     Q = Q U N’ 

19.   End-for 

20.  End-while 

21. Return FAIL  ;; No plan was found 

Table 1. Pseudo-code for the ForwardSearchPlan algorithm.  

 

To support planning with partial semantic matching, we 
have to make changes at Steps 7 and 10. The heuristic 

function has to be modified to take the cost of the partial 
plans into account in addition to how many literals in the 

goals have been achieved. For Step 10, we have to 
generalize the notion of action applicability. 

Conventionally, an action Ai is applicable in a state T if all 
of its preconditions are true in the state. With semantic 

distances, a precondition is approximately matching the 



literals in the state. We have a number of choices for 

calculating the plan cost: 

a) In matching of an action’s precondition with the 

literals in the state, which semantic distance 

should be selected? We can use the first one, the 

least distance, or any other possibility. 

b) In selecting the semantic cost of the action, how 
is the contribution of the preconditions 

aggregated? We can take the minimum of the 

distances, maximum, or any other aggregate 

measure. 

c) In computing the semantic cost of the plan, how 

is the contribution of each action in the plan 

computed? We can simply add the costs of the 

actions, take their products, or use any other 

function. 

   

We have implemented such a metric planner in the Java-

based Planner4J framework (Biplav et. al 2003). 

Planner4J provides for planners to be built exposing a 
common programmatic interface while they are built with 
well-tested common infrastructure of components and 
patterns so that much of the existing components can be 
reused. Planner4J has been used to build a variety of 
planners in Java and it has eased their upgrade and 
maintenance while facilitating support for multiple 
applications. The planner can be run to get all plans within 
a search limit, different plans by changing the threshold 
for accepting semantic distances and by experimenting 
with various choices of cost computations for the actions 
and plans as outlined above.  

Solution Ranking 

The ranking module can use various criteria to rank the 
solutions. For example, one way to rank the criteria would 
be to sort the compositions in ascending order of the 
overall cost of the plan. Another way is to rank the 
compositions based on the length of the plan (i.e., the 
number of services in the plan). Multidimensional sorting 
approach could be used to sort based on both cost and the 
length of the plan. Multiplying the normalized costs is 

another approach. This approach brings in notions of 
probabilistic planning and enables to take both cost and 
length into account at once. In SEMAPLAN, these 

approaches are configurable. 

Experimental Results 

The goal of our evaluation section is to demonstrate the 

value of combining domain-independent and domain-
dependent semantic scores with a metric planner when 

composing Web services. For this, we ran several 
experiments on a collection of over 100 Web services in 
three domains: (1) Text analysis - 20 WSDLs that provide 

text analysis services, (2) Alphabet – 7 WSDLs manually 
built to test the correctness of the planner when the 

relationships between services are very complex, and (3) 

Telco – 75 WSDLs defined from a real life 

telecommunication scenario. For clarity, we report only 

the results for the first domain, as the other two domains 

presented similar behavior. The planner performance is 

measured through the recall function (R), defined as the 

ratio between the number of direct plans retrieved by the 
planner and the total number of direct plans in the 

database. We define a direct plan as a correct plan (i.e., it 

reaches the goal state, given the initial state) with a 

minimum number of actions (i.e., we discard plans that 

contain loops or redundant actions). Our definition of the 

recall function was due to an interesting observation we 

made when contrasting the results returned by a search 

engine in the information retrieval domain and the ones 

returned by a planner in the Web Services domain. In 

Web search, recall is defined by relevancy. A search 

query that is looking for ‘Soprano’ could find results 

consisting of Sopranos (the HBO show) as well as 

information on sopranos from Wikipedia etc. Depending 
on what the user meant, the user would find one of the two 
categories of search results to be more relevant than the 
others. However, when composing Web services using a 
planner, the notion of relevancy needs to be interpreted 
slightly differently. Since planners are goal directed, and 
the semantic matches are often driven by closely related 
terms in the domain-independent and domain-dependent 
ontologies, all the results obtained were found to be 
relevant. Therefore, we redefined relevancy as the direct 
matches SEMAPLAN is able to find with minimal length 
(fewer number of services composed to meet the request) 
without redundancies in our experiments. For example, in 
the text analysis example, one of the direct plans is the 
sequence of: Tokenizer, Lexical Analyzer and 
NamedEntityRecognizer services. We have noticed that 
depending on the number of states we allow the 
SEMAPLAN system to run, it finds compositions that 
include sequences such as: Tokenizer, LexicalAnalyzer, 

Tokenizer, and NamedEntityRecognizer. In this plan, the 
second Tokenizer is redundant. The total number of direct 

plans in the database was computed by manually 
performing an exhaustive search and counting all plans. 
The number of direct plans retrieved by the planner was 

computed by intersecting the set of planners found by the 
planner with the set of direct plans defined by the 
database. 

The experiments were executed by varying the 
following levers in the SEMAPLAN system and observing 

the planner performance: (a) the semantic threshold (ST) 
allows different levels of semantic ambiguity to be 

resolved (b) the number of state spaces explored (#SS) 

limits the size of the searching space (c) the cost function 

(CF), defined as [w*semantic distance+(1-w)*length of 

the plan] where 0 <= w <= 1, directs SEMAPLAN system 
to consider the semantic scores alone or the length of the 

plan alone or a combination of both in directing the 



search. We ran the following four experiments to measure 

the performance of SEMAPLAN. 

1. Metric Planner alone Vs. SEMAPLAN 

2. SEMAPLAN: f(ST) where CF, and #SS are constants.  

3. SEMAPLAN: f(#SS) where CF, and ST are constants.  

4. SEMAPLAN: f(#CF) where ST, #SS are constants.  
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Figure 3: Comparison of Metric Planner Vs. SEMAPLAN 
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Figure 4. Costs of all plans retrieved by planner 

(threshold=0.6) 

Metric Planner alone Vs. SEMAPLAN: In this 
experiment, our hypothesis was that a planner with 
semantic inferencing would produce more relevant 
compositions than a planner alone. The intuition is that the 
semantic matcher allows concepts such as lexemeAttrib 
and lemmaProp to be considered matches because it 
considers relationships such as word tokenization, 
synonyms, and other closely related concepts (such as 
subClassOf, typeOf, instanceOf, equivalentClass) defined 
by the domain ontologies; such relationships are not 

usually considered by the planner. As Figure 3 shows, 
SEMAPLAN finds more relevant results than a classic 
metric planner, thus confirming our hypothesis. The costs 

of all plans retrieved by SEMAPLAN are shown in Figure 

4. The increased number of solutions is more prevalent 
with certain semantic thresholds. This behavior is 
explained in the context of next experiment. 
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Figure 5: SEMAPLAN performance when varying threshold 

 

SEMAPLAN: f(ST) where CF, and #SS are constants: 

In this experiment, we varied the semantic threshold for a 

given number of state spaces to be explored (1000) and a 

given cost function for each domain (w=0.5). As the 

semantic threshold increases, only those concepts that are 

above the threshold would be considered matches; 

therefore, we expected that the number of results 
produced by the planner would decrease and vice versa. 
While this is confirmed by our results in figure 5, we 
noticed an interesting phenomenon. As the semantic 
threshold decreased, more and more loosely related 
concepts are considered matches by the semantic matcher. 
This increased the number of services available for the 
planner to plan from thereby increasing the search space. 
Therefore, for a given number state spaces to be explored, 
SEMAPLAN could not come up with some of the good 
results that it was able to find at higher semantic 
threshold. Therefore both in figure 3 and figure 4, we can 
notice a drop in the number of plans retrieved by the 
planner at higher threshold. Our observation from this 
experiment is that for a given cost function and for a given 
number of state spaces to be explored, there is an optimal 

threshold. In most domains, this was found to be 0.6. This 
led us to run the third experiment to see if SEMAPLAN 
can discover the missing good plans if the number of state 
spaces explored are increased. 
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Figure 6: SEMAPLAN performance when increasing number of 

state spaces searched 

 

SEMAPLAN: f(#SS) where CF, and ST are constants: 

Based on the insights from the second experiment, we 
varied the number of state spaces by keeping the weight w 



in cost function and semantic threshold at the optimal 

levels (w= 0.5, and ST=0.6).  The results of this 

experiment, as shown in Figure 6, revealed that as the 

number of state spaces explored increases, SEMAPLAN 

finds more plans in general and more direct relevant plans 

than it could at the same ST and w. This is consistent with 

our expectations. 
 

weight direct redundant recall 

0 20 234 1 

0.5 20 374 1 

1 20 423 1 

Table 2: SEMAPLAN performance when changing the cost 

function 

 

SEMAPLAN: f(#CF) where ST, #SS are constants: 

Finally, we varied the weight in the cost function to see 

how the quality of the plans generated get impacted by 
this. As weight approaches 1, the cost function gives less 
preference to length, therefore we expect to see more 
number of longer plans (sometimes with redundancies) 
than those expected at lower weights and vice versa. The 
results illustrated in Table 2 confirm this intuition. 
 

Related Work 

The literature on Web services matching and composition 
has focused on two main directions. One body of work 
explored the application of AI planning algorithms to 
achieve composition while the other investigated the 
application of information retrieval techniques for 
searching and composing of suitable services in the 
presence of semantic ambiguity from large repositories.  
In this section we contrast our approach with those taken 
by these two bodies of work. 
 
First, we consider work that is done on composing Web 

services using planning based on some notion of 
annotations. A general survey of planning based 
approaches for web services composition can be found in 

(Peer 2005). SWORD (Ponnekanti, Fox 2002) was one of 
the initial attempts to use planning to compose web 
services. It does not model service capabilities in an 

ontology but uses rule chaining to composes web services. 
In (McIlraith 2001), a method is presented to compose 

Web services by applying logical inferencing techniques 
on pre-defined plan templates.  The service capabilities 

are annotated in DAML-S/RDF and then manually 
translated into Prolog. Now, given a goal description, the 
logic programming language of Golog (which is 

implemented over Prolog) is used to instantiate the 
appropriate plan for composing the Web services. In 

(Traverso, Pistore 2004), executable BPELs are 
automatically composed from goal specification by 

casting the planning problem as a model checking 

problem on the message specification of partners. The 

approach is promising but presently restricted to logical 

goals and small number of partner services. Sirin et al. 

(Sirin et al 2003) use contextual information to find 

matching services at each step of service composition. 

They further filter the set of matching services by using 
ontological reasoning on the semantic description of the 

services as well as by using user input. Web Services 

Modeling Ontology is a recent effort for modeling 

semantic web services in a markup language (WSML) and 

also defining a web service execution environment 

(WSMX) for it. Our logical composition approach is not 

specific to any particular modeling language and can 

adapt to newer languages. Synthy (Agarwal et al 2005) 

takes an end-to-end view of composition of Web Services 

and combines semantic matching with domain ontologies 

with planning. While these bodies of work use the notion 

of domain annotations and semantic reasoning with 

planning, none of them use domain-independent cues such 
as thesaurus. Moreover, they do not consider text analysis 
techniques such as tokenization, abbreviation expansions, 
and stop word filtering etc. in drawing the semantic 
relationships among the terms referenced in Web services. 
  
 The second body of work looked at composition of Web 
services using domain independent cues alone. Syeda-
Mahmood (Syeda-Mahmood 2004) models Web service 
composition as bipartite graph and solves a maximum 
matching problem while resolving the semantic 
ambiguities using domain-independent ontologies and text 
analysis approaches. This work takes its roots in schema 
matching. However, this work does not use domain-
dependent ontologies which are crucial to resolving the 
differences between domain-specific contextual terms.   
 
SEMAPLAN, to the best of our knowledge, is the first 
attempt at combining semantic matching consisting of 
domain-dependent and domain-independent ontologies 
with AI planning techniques to achieve Web services 

composition.  
 

Conclusions and Future Work 

In this paper, we have presented a novel approach to 

compose Web services in the presence of semantic 
ambiguity using a combination of semantic matching and 

AI planning algorithms. Specifically, we use domain-
independent and domain-specific ontologies to determine 
the semantic similarity between ambiguous 

concepts/terms. Matches due to the two cues are 
combined to determine an overall similarity score. This 

semantic similarity score is used by AI planning 
algorithms in composing services. The experimental 

results confirmed our intuitions: (1) the number of direct 



plans improved by combining semantic matching with 

planning algorithms; thus, SEMAPLAN achieved better 

recall than the metric planner alone, and (2) there is a 

tradeoff between the semantic threshold, the limit on the 

state search space, the cost function, and the quality of 

results obtained. We noticed that there is an optimal 

threshold, which when set, helps focus the planner and at 
the same time provides enough semantic variety to 

improve recall.  

The notion of planning in the presence of semantic 

ambiguity is conceptually similar to planning under 

uncertainty. In the future we intend to investigate the 

application of probabilistic planning techniques to 

consider semantic differences and compare the results.  
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