
RC23902 (W0603-038) March 3, 2006
Computer Science

IBM Research Report

Lossless Compression for Large Scale Cluster Logs

Raju Balakrishnan
IBM India Software Laboratory

Koramangala Ring Road
Bangalore, India 560071

 Ramendra K. Sahoo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Lossless Compression for Large Scale Cluster Logs

Raju Balakrishnan1, Ramendra K. Sahoo2

1India Software Laboratory, IBM
Koramangala Ring Road,
Bangalore, India-560071

rajubala@in.ibm.com

2IBM T J Watson Research Center
19 Skyline Drive, Hawthorne

New York, USA-10532.
rsahoo@us.ibm.com

Abstract

 The growing computational and storage needs of several
scientific applications mandate the deployment of
extreme-scale parallel machines, such as IBM’s Blue
Gene/L which can accommodate as many as 128K
processors. One of the biggest challenges these systems
face, is to manage generated system logs while deploying
in production environments. Large amount of log data is
created over extended period of time, across thousands of
processors. These logs generated can be voluminous
because of the large temporal and spatial dimensions,
and containing records which are repeatedly entered to
the log archive. Storing and transferring such large
amount of log data is a challenging problem. Commonly
used generic compression utilities are not optimal for
such large amount of data considering a number of
performance requirements. In this paper we propose a
compression algorithm which preprocesses these logs
before trying out any standard compression utilities. The
compression ratios and times for the combination shows
28.3% improvement in compression ratio and 43.4%
improvement in compression time on average over
different generic compression utilities. The test data used
is log data produced by 64 racks, 65536 processor Blue
Gene/L installation at Lawrence Livermore National
Laboratory.

1. Introduction
Recently developed massively parallel systems far

exceed the computational power and data handling
capabilities of systems available before. High
performance systems running many applications may
require to transfer and store petabytes of data [21]. In
addition to high performance network and storage
subsystems to handle such large amount of data, fast data
compression schemes with high compression ratios can
help data handling without incurring hardware cost and
additional network bandwidth. IBM Blue Gene/L [3] is a
recently developed large scale cluster to meet the
computational and data handling demands of the scientific

and industrial applications. The Blue Gene/L system
installed in Lawrence Livermore National Laboratory has
128 K processors and 280 teraflops of peak computing
power, which is going to be doubled in size and
computing power by the end of the year 2005. The system
is capable of running hundreds of parallel jobs in spatial
partitions [20] and transferring many gigabytes of data per
second.

A supercomputer of this scale will produce large
amount of system logs. There are many alternatives to
manage large volumes of system logs generated at a very
non-uniform rate. Redundant log filtering is one of the
popular methods [1]. Filtering is removal of records
containing redundant or unimportant information which
can be distracters rather than information providers during
analysis. Filtering may cause a good reduction in log size
by removing majority of the records in system logs. The
other alternative is to use event compression and
decompression techniques which has no requirement of
analyzing the characteristics of the events even before
they are archived.

The filtering and compression works in different
levels. Lossless compression facilitates storage, archiving
and network transfer of log data, saving storage space and
network bandwidth. Whereas filtering facilitates analysis,
and problem determination over the logs even before the
logs are archived. One of the biggest disadvantages of
filtering technique is the loss of as much as 99% of the
data from the original logs. Records in the original
records are being removed from the system logs, and can
not be retrieved from the filtered logs. The filtering
method is dependent on analysis to be performed on the
logs, and records not important for a particular task will
be important for another analysis. Hence it is not possible
to perform filtering on logs and remove some records
before archiving since lost information may prove to be
important for other analysis.

On the other hand, the compression technique
proposed in this paper is lossless. On passing the
compressed data through the decompression algorithm

mailto:rajubala@in.ibm.com
mailto:rsahoo@us.ibm.com

reproduces the original data, with zero information loss.
Data compression can help both storing and transferring
such large amount of data. Considering the storage
problem, efficient compression schemes can compress the
data before storing, hence saving lots of storage space.
Real-time streaming compression will also help to
transfer such large amount of data through the network
after compression, which can be decompressed at the
receiving end, if required. If data is stored in a
compressed format the received data can be stored as
such, without decompressing. The compressed data can
be processed and analyzed in compressed domain [10,
11], or can be decompressed and analyzed depending on
the purpose.

This paper describes a lossless compression scheme for
log data produced by Blue Gene/L prototype. The
compression ratio and time of execution are compared
with other popular compression utilities using generic
compression algorithms. Our new compression algorithm
provides 35.5% improvement in compression ratio and
76.6% improvement in compression time over bzip2 [13]
and 21% in compression ratio and 72.5% in compression
time over LZMA level 9 compression by 7zip [17].

2. Related work

Data compression is a matured area, and a number of
generic and special purpose compression algorithm and
utilities are available resulting good compression ratios
and timings. General purpose compression utilities like
bzip, bzip2[13], gzip [16] use generalized compression
algorithms like Burrows-Wheeler Transform [4], Lmlpel
Ziv algorithm [14] to name a few. These utilities can
provide good compression schemes for large scale cluster
event logs. However, the performance of log
compression can be further improved, by leveraging
specific attributes commonly observed within these large
scale cluster logs. 7zip [17] compression utility, available
on windows and UNIX platforms, implements many
compression algorithms including one PPM(Prediction
by Partial Matching)[15] which is one of the best
performing algorithm on English text, and LZMA which
generally gives good compression ratios than bzip2 [13].

Apart from these generic compression utilities,
Bal´azs, Andr´as[2] discuss the log compression for web
servers. Sahoo et al [1] discusses the filtering of failure
logs of large scale clusters tested on Blue Gene/L data
which can be used as a lossy compression technique.
Pzip compression [18] proposes a better compression
scheme for tabular data with fixed length records and
fixed column widths. To the best of our knowledge, no
work is done specifically to manage large amount of

event logs in a lossless manner for large scale clusters
while improving the compression ratio and timings.

3. Blue Gene/L architecture

Blue Gene/L compute node is made up of PPC 440
cores and two such cores are packaged in a compute chip.
Each core has 32KB L1 cache, a 2 KB L2 (for pre-
fetching), and share a 4MB EDRAM L3 cache. In
addition, a shared fast SRAM array is used for
communication between the two cores. The L1 caches
including the internal buses in the core are parity
protected., The L2 caches and EDRAM are ECC
protected. Each chip has a total of four network
interfaces such as ….(1) 3-D torus network, (2) a tree
interface for global operations, (3) a gigabit Ethernet
interface supporting I/O and host interface, while (4) a
control network supports booting, monitoring and
diagnostics through JTAG access.

A compute card contains two PPC 440 cores, and
houses a 256MB or 512MB DRAM for each chip on the
card. A node card contains 16 such compute cards, and a
midplane holds 16 node cards (a total of 512 compute
chips or 1K processors). I/O cards, each containing two
chips and some amount of memory (usually larger than
that of compute nodes), are also housed on each
midplane. There are 4 such I/O cards (i.e., 8 I/O chips) for
each midplane, i.e. one I/O chip for every 64 compute
chips. All compute nodes are connected through a
Gigabit ethernet interface to these I/O chips for their I/O
needs. In addition, a midplane also contains 24 midplane
switches to connect with other midplanes. When crossing
a midplane boundary, the torus, global combining tree and
global interrupt signals pass through these link chips. A
midplane also has one service card that performs system
management services such as monitoring errors and
verifying the heart beat of the nodes. In most cases, a
midplane is the granularity of job allocation, i.e., a job is
assigned to an integral number of midplanes. Compute
cards are normally shut down when they are not running
any job. When a job is assigned, the card is reset and the
network is configured before any execution begins.

4. Logging mechanism and log format

In case of Blue Gene/L, error events are logged
through the Machine Monitoring and Control System
(MMCS). There is one MMCS process per midplane,
running on the service node. However, there is a polling
agent that runs on each compute chip. Errors detected by
a chip are recorded in its local SRAM via an interrupt.
The polling agent at some later point pick up the error
records from this SRAM and ship them to the service
node using a JTAG-mailbox protocol. After procuring the
events from the individual chips of that midplane, the
service node records them through a DB2 database

engine. These events include both hardware and software
errors at individual chips/compute nodes, errors occurring
within one of the networks for inter-processor
communication, and even errors such as high temperature
and fan speed problems are reported through an
environmental monitoring process in the backplane. An
event record has a number of fields such as Record ID,
Event ID, Event Type, Facility and Location. Details of
each field and possible options are as described below.

Record ID is the sequence number for an error entry,
which is incremented upon each new entry being
appended to the logs. These records are sequence of
integers in ascending order.

Event time is the time stamp associated with the event.
Time stamp format is YYYY-MoMo-DD
HH:MM:ss.mmmiii (where Y representing Year, Mo, D,
M, s, m, and i representing Month, Day, Minute, second,
millisecond and microsecond respectively.)

Event type specifies the mechanism through which the
event is recorded, with most of them being through RAS
[10].

Event Severity can be one of the following five levels
1. INFO events are more informative in nature on

overall system reliability, than problem or error
reports, such as “a torus problem has been
detected and corrected”, “the card status has
changed”, “the kernel is generating the core”, etc.

2. WARNING events are usually associated with
node-card/link-card/service-card not being
functional.

3. SEVERE events give more details on why these
cards may not be functional (e.g. “link-card is not
accessible”, “problem while initializing
link/node/service card”, “error getting assembly
information from the node card”, etc.).

4. ERROR events report problems which are more
persistent and further focusing on their causes
(“Fan module serial number appears to be
invalid”, “cable x is present but the corresponding
reverse cable is missing”, “Bad cables going into
the linkcard” etc) All of these above events are
either informative in nature, or are related more to
initial configuration errors, and are thus relatively
transparent to the applications/runtime
environment.

5. FATAL or FAILURE events (such as
“uncorrectable torus error”, “memory error”, etc.)
are more severe, and usually lead to
application/software crashes.

Facility attribute denotes the component where the
event has occurred, which can be one of the following:
LINKCARD, APP, KERNEL, DISCOVERY, MMCS, or
MONITOR. The LINKCARD events report problems
with midplane switches, which are related to

communication between midplanes. APP events are those
flagged in the application domain of the compute chips.
Many of these are due to the application being killed by
certain signals from the console. In addition, APP events
also include network problems captured in the application
code. Events with KERNEL facility are those reported by
the OS kernel domain of the compute chips, which are
usually in the memory and network subsystems. These
could include memory parity/ECC errors in the hardware,
bus errors due to wrong addresses being generated by the
software, torus errors due to links failing, etc. Events with
DISCOVERY facility are usually related to resource
discovery and initial configurations within the machine
(e.g. “service card is not fully functional”, “fan module is
missing”, etc), with most of these being at the INFO or
WARNING severity levels. MMCS facility errors are
again mostly at the INFO level, which report events in the
operation of the MMCS. Finally, events with MONITOR
facility are usually related to the
power/temperature/wiring issues of linkcard/node-
card/service-card. Nearly all MONITOR events are in the
FATAL or FAILURE severity levels.

Location of an event (i.e., which chip/node-
card/service-card/link-card experiences the error), can be
specified in two ways. It can either be specified as (a) a
combination of job ID, processor, node, and block, or (b)
through a separate location field. We mainly use the latter
approach (location attribute) to determine where an error
takes place.

5. Compression utilities

This section gives a brief description of compression
algorithms used by popular generic compression utilities.
The intention is to provide an overview of features of the
compression algorithms used by these utilities for better
understanding of the paper. References are provided for
readers interested in details.

gZip. Gzip is based on a variant of LZ77 [6]

algorithm. The occurrences of a string are replaced by
pointer to the previous occurrence of the string. If the
previous occurrence is not found, the string is coded as
such. The literals and references are coded using Huffman
coding [5] after LZ77. The algorithm can compress
streaming data.

Bzip2. bzip2 compresses files using the Burrows-

Wheeler block sorting text compression algorithm[4], and
Huffman coding[5]. Compression is generally
considerably better than that achieved by more
conventional LZ77/LZ78-based compressors[14], and
approaches the performance of the PPM family of

statistical compressors[15] for text. Bzip2 can not work
on streaming data as compression involves a sorting step.

7Zip. 7zip supports a number of compression formats

including LZMA, ZIP, CAB, RAR, ARJ, LZH, GZIP,
BZIP2, Z, TAR, CPIO, RPM and DEB. Default
compression scheme for 7zip is LZMA (Lampalle Ziv
Markov Chain Algorithm), which provides better
compression than bzip but slow.

PPM. PPM stands for Prediction by Partial Matching

[18]. PPM is a adaptive statistical data compression based
on context modeling and prediction. PPM models use a
set of previous symbols in the uncompressed symbol
stream to predict the next symbol. Recent PPM
implementation are among the best performing lossless
compression programs for english text.

6. Compression mechanism and system
details

6.1 Problem Background

The compression work had started before Blue Gene/L
system was operational. The idea was to address the
Reliability, Accessibility and Serviceability issues of
particular clusters architectures parallel to hardware and
software development, to address these issues in
commercial offerings with zero time to market after the
hardware is available for commercial offerings. Earlier
work was performed using the log date from a smaller
prototype of Blue Gene/L in IBM Rochester, rather than
on the full scale 64 rack Blue Gene installation in
Lawrence Livermore National Labs [22]. The mechanism
of logging and nature of log data in both systems are the
same, though the log data rates are much higher in 64 rack
LLNL systems than that in 2 racks IBM Rochester
prototype. As described earlier the main goals of
designing a custom compression algorithm are (1) To
save the storage space and (2) compress the log data sent
across the network to reduce the bandwidth requirements.

Blue Gene/L logs contain large fraction of redundant
information. Similar problems are one of the common
issues while addressing error events for large-scale
clusters as reported in literature [1]. Most of these
redundant log records form adjacent records in the output
logs with majority information being repeated either due
to different software or hardware retries until the time out
period.

The compression is achieved by implementing a
compression pipeline, with different compression
algorithm used in each stage. The idea was to use mix and
match of different compression algorithm in different
stages to achieve better compression ratios, compression

time and ability to handle streaming data. For example,
using Burrows-Wheeler [4] as a stage in the pipeline
gives better compression than LZ, but streaming data can
not be handled by such a pipeline. Hence we can use LZ
instead of Burrows-Wheeler in a pipeline compressing
streaming data. Similarly, the combination of algorithms
in the pipeline can be changed to meet other constraints
imposed upon overall compression step.

The custom compression algorithm was designed to
use only specific characteristics of Blue Gene/L logs
rather than generic characteristics of English text. This is
important, since if the custom compression algorithm is
utilizing any generic characteristics of text the algorithms
down the stream may be depending on the same
characteristics for compression. Since the data is already
compressed using this feature, the combined compression
ratio will not improve, even though the custom
compression algorithm will give better stand alone
compression ratio, which is not the target.

Decompression is also faster than the standalone
standard compression algorithms for most of the
compression pipelines. The custom algorithm does not
use a dictionary for compression. This evades the use of
transferring a dictionary in case compressed data is
transferred over a network.

6.2 Dataset
For final testing, log data collected for 103 days from

64-Node (65536 processors) LLNL Blue Gene/L
installation, which currently tops the top500 list [3] with
137 teraflop of peak computing power, was used. For
initial development and testing logs collected from a
8192-processor Blue Gene/L DD1 at IBM Rochester,
which is currently ranked 16 in the Top 500 list of
supercomputers [3]. The machine has been up since May,
2004, and has been primarily running parallel scientific
applications. Results in this paper are based on the LLNL
log data compression. The uncompressed log data was
195Megabytes in total and contained 1184010 log
records. Please note that the amount of log data produced
can be much more since log generated depends on
machine utilization and logging behavior of applications
running.

6.3 Compression method

We implemented a compression pipeline with different
encoding methods as stages in the pipeline. This pipeline
approach allows us to use combination of different
encodings to achieve required characteristics such as
higher compression ratios, ability to handle streaming
compression etc. Irrespective of algorithms used later
stages, we use the custom encoding scheme proposed in
this paper as the first stage in the pipeline.

First step for designing the custom compression was to
identify specific characteristics of Blue Gene/L logs
which may aid a better compression. Most of the errors in
BG/L event logs are reported by the thousands of
different hardware components with same entry data,
severity, and facility, but differing in record id, time
stamp, and resource serial number (Please see the section
describing log format). For example, failure to find a
program image is reported by APP facility associated with
all compute chips running the job. After careful
observation and experimentation, we decided to leverage
on following trends in the Blue Gene/L logs to design
custom compression algorithm.

1. Most of the columns in the adjacent records tend
to be same.

2. Record Ids are ascending integers in sequence.
3. The columns differing in most of the adjacent

records are record ids, time stamps, serial
number of the device, and location identifier.

4. For these fields(mentioned in 3 above) higher
order bytes in the columns in the adjacent
records tends to be the same, lower order bytes
are differing from each other.

5. If a byte differs in a column for two adjacent
records, the lower order bytes-bytes to the right
to the differing byte-also tend to be different.

Let us examine the reasons for above trends in log data
briefly. Trend 1 and 3 are due to the same error being
reported by multiple devices. Trend 2 is the way logging
is implemented. Reason for trend 4 is the temporal
locality of adjacent records and spatial locality of the
devices creating them. As noted in trend 3, columns
differing in most of the adjacent records are record ids,
time stamps, serial number of the device, and location
identifier. Record ids are incrementing sequentially. For
time stamps the higher order bytes recording date, hour,
minute and second and even millisecond tend to remain
the same, but microsecond part is generally differing from
each other due to temporal locality, hence the lower order
bytes will be differing (Note the time stamp format given
in section above.). For location identifier, due to spatial
locality, the rack, midplane and mostly node card of the
processors producing records tends to be same, which
comes as higher order part of the location identifier. For
serial number of the devices, trend 4 is less evident, but
first two leftmost bytes tend to be same for adjacent
records.

Also we noticed that many of the generic compression
utilities are taking more than linear compression time,
hence reduction in input data size results more than linear
improve in the compression time. For example: if a
generic compression algorithm takes O(n2) time for
compression reduction in size of the input by 50% in

earlier stages in compression pipeline will reduce the
compression times to 75% of the original time.

Based on these observations we decided to use a
modified incremental encoding, which is a variant of delta
encoding, for ordered text [23]. The basic compression
strategy is to compare the given record with the previous
record and encode only the difference. If the column in
current record is same as the corresponding column in
previous record proceed to the next column and nothing is
encoded into the output. If there is a difference, continue
after encoding current token as described below.

The encoding scheme for the differences is as follows.
If there is difference at a byte for a token, the rest of the
token is written as such in the encoded stream along with
the offset from the last difference in the same record. For
the first difference in each record, the offset from the
beginning of the record is encoded instead of offset from
the last difference. One difference is encoded as separator
tab, offset, separator tab, and the difference. Hence
encoding takes one or two bytes offset, two bytes for tabs,
and the differing data bytes.

Percentage of increase in size is high for small runs of
byte differences. For example, assuming a single byte
offset, to encode a single byte difference we need to write
1 byte offset, two bytes for two tabs, and one byte
difference to output compressed stream. This causes an
encoding overhead of 300%. (The probability of decrease
in size for next offset due to this difference is not
considered here). But consider we are encoding a
difference 10 bytes in a run, total size in output stream
will be 13 bytes, or 30% of increase in size due to
encoding. So it is desirable to keep the runs of differences
to be encoded as lengthy as possible. Hence, based on
Trend 5 above, if we encounter a difference of single byte
in a column, the rest of the column is encoded as a single
run of difference in without checking rest of the column
and algorithm proceeds with encoding the next column.
The tabs are used as separators for encoding since tabs are
not used in log data.

As an example of encoding, let columns in two
adjacent log records be,

First Record: FATAL 2004-12-14 22:52:46.714244
Second record: FATAL 2004-12-14 22:52:46.715247
Since FATAL is same for two lines nothing goes into

output. For the time stamp everything till 2004-12-14
22:52:46.71 is same so nothing is encoded.

On encountering first difference, i.e. 4 and 5, the rest
of the column is encoded as offTAB5247TAB and
proceed to next column, where off is offset from last
difference and ‘TAB’ stands for tab character. For next
difference offset will be difference from position of the
character 5 in the second record above. After doing
encoding of each record, the length of the encoded record
is compared with that of the original record, and if the

Table 1: The compression ratios, compression time, and decompression time for different
compression schemes. The execution environment was Red Hat Linux 3.2.2-5 on an Intel Xenon 2.4 GHz
with 4 GHz RAM. “custom” stands for algorithm proposed in this paper, 1 > 2 means output of 1 is
given as input of 2 for compression. File based communication was used for testing combination of
utilities; hence it incurs additional I/O operation time, though this is small compared to overall timings.

Compression Scheme Compression
Ratio x 100

Compression time
(In seconds)

decompression Time (In
seconds)

Custom 37.47 5.79 7.25
bzip2 6.45 192.72 22.42
Gzip 11.17 11.07 2.33
7zip PPM 6.42 36.61 38.49
7zip LZMA 5.35 222.05 7.64
7zip LZMA level 9 4.48 1324.29 7.15
custom > bzip2 4.17 5.79 + 58.77=64.56 7.25+13.47 = 20.72
custom > gzip 7.10 5.79+8.12=13.91 7.25 + 2.33 = 9.58
custom > 7zip LZMA 4.03 5.79 +93.76=99.55 7.25+4.01 =11.26
custom > 7zip PPM 4.47 5.79 + 19.46 = 25.25 7.25+20.12 = 27.37
custom > 7zip LZMA level 9 3.61 5.79+ 358.13 = 363.92 7.25+3.92 =11.17
Gzip > 7zip LZMA level 9 10.19 36.10+11.07 = 47.17 5.19+7.25 = 12.44
Gzip > bzip2 10.53 17.05+11.07=28.12 7.26 +2.33 = 9.59

encoded length is greater than that of the compressed
record the original record is kept as such. This condition
is always true for first record in log data, since the
previous record is null and encoding increases size. The
first record gives the starting record id for the records
which can be incremented for each record and restored.
We used a new line character to separate record; the
original record is kept as such records in compressed
format. This allows the compression to omit record ids
from compressed files.

For decompression, the reverse process is performed
on encoded data. Till the first offset, bytes are copied
from previous record in sequence. Then the bytes from
the encoded line are copied to the output line. After this,
copying from the reference record line continues for the
next token till the next difference. As mentioned above,
first line is always kept as such in encoded file. Record
ids are incremented for each record and recreated in the
output record. If we see an uncompressed line, which is
marked by the long record id as the first token, it is copied
as such to the output record. Having the n-1th record, the
nth record can be decoded; hence the decompression can
handle streaming data.

6. Results and discussion

The combination of preprocessing and different
popular compression algorithm is tested on log data, and
compression ratios, compression and decompression
timings are tabulated in Table 1.

The compression ratio of standalone custom encoding
is low, as shown in row 1 in the Table 1. However, the
combination of custom compression algorithm with all
other compression utility gives 28.3% better compression

ratios and 43.4% of improvement in compression time on
average than stand alone compression utilities. Combined
compression time also shows a decrease except for
combination with gzip. The best compression ratio is for
the combination of custom and LZMA level 9 in 7zip,
which shows 21% improvement in compression ratio and
in 72.5% reduction in time over the standalone LZMA.
The combination of gzip and custom algorithm shows
36% improvement in compression ratio though
compression time shows an increase, but combination as
such is faster than other schemes and can handle
streaming data. The combination with bzip2 shows 35.5%
improvement in compression ratio and 76.6% reduction in
compression time. The last two rows show the
combination of gzip used as a preprocessor for with
bunzip2 and LZMA, which gives less compression than
the standalone versions of bunzip2 and LZMA.

Decompression shows an increase in time for some
combinations. But decompression time is less important,
as decompression is performed offline and only on parts
of data need to be analyzed.

7. Summary and future work

The compression algorithm is effective to achieve
higher compression ratios and less compression timings,
and fast enough to handle data rate of Blue Gene/L LLNL
installation logging. Since the custom compression can
operate on streaming data, in combinations with a
compression utility which can handle streaming data such
as gzip, it can be used for compression prior to network
transmission of log data in order for reduced bandwidth
requirement. Similar approach can be followed for other
kind of data also.

One notable feature is that the preprocessing step is a
simple one, and achieves only small standalone
compression, but very effective in combination with
generic compression utilities. The idea of preprocessing
data with a custom scheme before passing to a generic
compression utility is an effective method for better
compression incurring least implementation overhead.
Also it shows that cascading generic compression utilities
which can give good standalone compressions is not an
effective method, as it sometimes increases compressed
sizes.

As a future work, compression ratios and timings for
the method on generic tabular data can be tested, as this
method or a variant may be effective for this purpose.
Also applicability of method for data compression for
logs of other kind, like loosely coupled clusters and
architectures other than Blue Gene/L need to be tested.
There is scope for optimizing the decompression
algorithm implementation, since not much care was taken
to optimize decompression, since running time is much
less compared to the compression times and not very
crucial for our work in hand.

References

[1]Y. Liang, Y. Y. Zhang et al. Filtering Failure Logs for a Blue
Gene/L Prototype. In Proceedings of IEEE International
Conference on Dependable Systems and Networks , 2005.
[2] Bal´azs R´ACZ, A. Luk ´acs. High density compression of
log files. In Proceedings of Data Compression Conference
(DCC'04), IEEE Page 557, 2004.
[3] Top 500 Supercomputers in world list, for June, 2005.
http://www.top500.org.
[4] M. Nelson. Data Compression with the Burrows-Wheeler
Transform. In Dr. Dobbs Journal September 1996.
[5] D. A Huffman. A Method for the Construction of Minimum-
Redundancy Codes. In Proceedings of the IERE, vol. 40, Pages
1098--1101, 1952.
[6] J. Ziv, A. Lampel. A Universal Algorithm for Sequential
Data Compression. In IEEE Transactions on Information
Theory, May 1997.
[7] J. C. Mogul, Fred Douglis. A. Feldman, B. Krishnamurthy.
Potential benefits of delta encoding and data compression for

HTTP. In ACM SIGCOMM Computer Communication Review,
Volume 27, Issue 4, Pages 181-194, October1997.
[8] The Blue Gene/L Team, IBM and Lawrence Livermore
National Laboratory. An Overview of the Blue Gene/L
Supercomputer. In IEEE Supercomputing 2002 Technical
Papers, 2002.
[9] G Almasi, L Bachega et al. System Management in the Blue
Gene/L Supercomputer. In Proceedings of the International
Parallel and Distributed Processing Symposium, 2003.
[10] B. C. Smith, L. A. Rowe, Algorithms for Manipulating
Compressed Images. In Proceedings of IEEE Computer
Graphics and Applications, vol.13, No 5, Pages 34-42.
September 1993.
[11] S. Acharya, B. Smith. Compressed Domain Transcoding of
MPEG. In Proceeding of IEEE Multimedia, 1998
[12] S.J. O’Connell, N. Winterbottom. Performing Joins without
Decompression in a Compressed Database System. In SIGMOD
Record, Vol. 32, No. 1, March 2003.
[13] Bzip2 and libbzip2 project official home page,
http://www.bzip.org/ .
[14] J. Ziv, A. Lamapel. A Universal Algorithm for Sequential
Data Compression. In IEEE Transactions on Information
Theory, May 1977
[15] M. Drini´c, D. Kirovski et al. PPMexe: PPM for
Compressing Software. In Proceedings of the Data
Compression Conference, IEEE, 2002.
[16] gzip official home page, algorithm description,
http://www.gzip.org/algorithm.txt.
[17] 7 zip project official home page, http://www.7-zip.org.
[18] J. G. Clary, I. H. Witten. Data Compression Using
Adaptive Coding and Partial String Matching. IEEE
Transactions on communication, April 1984
[19] IBM Research, Blue Gene Project page,
http://www.research.ibm.com/bluegene/
[20] A.J.Oliner, R.K.Sahoo, J.E.Moreira, M.Gupta, A
Sivasubramanium. Fault-Aware Job Scheduling of Blue Gene/L
System. 18th International Parallel and Distributed Processing
Symposium proceedings, 2004.
[21] T. C. Kramer, A. Shoshani, D. A. Agarwal, B. R. Draney,
G. Jin, G. F. Butler, and J. A. Hules. Deep Scientific Computing
Requires Deep Data. In IBM Systems Journal, Volume 42,
Number 2, Pages 209-233, 2004.
[22] Blue Gene Home, Lawrence Livermore National Labs,
http://www.llnl.gov/asci/platforms/bluegenel/
bluegene_home.html
[23] Delta encoding in HTTP, RFC3229, http://www.ie
f.org/rfrfc3229.txt

http://www.research.ibm.com/journal/rd/482/krameaut.html
http://www.research.ibm.com/journal/rd/482/krameaut.html
http://www.research.ibm.com/journal/rd/482/krameaut.html

	Lossless Compression for Large Scale Cluster Logs
	1. Introduction
	Related work
	Blue Gene/L architecture
	Logging mechanism and log format

	Compression utilities
	Compression mechanism and system details
	Problem Background
	Dataset
	Compression method

	Results and discussion
	Summary and future work
	References

