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Abstract 
 

 The growing computational and storage needs of several 
scientific applications mandate the deployment of 
extreme-scale parallel machines, such as IBM’s Blue 
Gene/L which can accommodate as many as 128K 
processors. One of the biggest challenges these systems 
face, is to manage generated system logs while deploying 
in production environments. Large amount of log data is 
created over extended period of time, across thousands of 
processors. These logs generated can be voluminous 
because of the large temporal and spatial dimensions, 
and containing records which are repeatedly entered to 
the log archive. Storing and transferring such large 
amount of log data is a challenging problem. Commonly 
used generic compression utilities are not optimal for 
such large amount of data considering a number of 
performance requirements. In this paper we propose a 
compression algorithm which preprocesses these logs 
before trying out any standard compression utilities. The 
compression ratios and times for the combination shows  
28.3% improvement in compression ratio and 43.4% 
improvement in compression time on average over 
different generic compression utilities. The test data used 
is log data produced by 64 racks, 65536 processor Blue 
Gene/L installation at Lawrence Livermore National 
Laboratory. 

 

1.  Introduction  
Recently developed massively parallel systems far 

exceed the computational power and data handling 
capabilities of systems available before. High 
performance systems running many applications may 
require to transfer and store petabytes of data [21]. In 
addition to high performance network and storage 
subsystems to handle such large amount of data, fast data 
compression schemes with high compression ratios can 
help data handling without incurring hardware cost and 
additional network bandwidth. IBM Blue Gene/L [3] is a 
recently developed large scale cluster to meet the 
computational and data handling demands of the scientific 

and industrial applications. The Blue Gene/L system 
installed in Lawrence Livermore National Laboratory has 
128 K processors and 280 teraflops of peak computing 
power, which is going to be doubled in size and 
computing power by the end of the year 2005. The system 
is capable of running hundreds of parallel jobs in spatial 
partitions [20] and transferring many gigabytes of data per 
second. 

A supercomputer of this scale will produce large 
amount of system logs. There are many alternatives to 
manage large volumes of system logs generated at a very 
non-uniform rate. Redundant log filtering is one of the 
popular methods [1]. Filtering is removal of records 
containing redundant or unimportant information which 
can be distracters rather than information providers during 
analysis. Filtering may cause a good reduction in log size 
by removing majority of the records in system logs. The 
other alternative is to use event compression and 
decompression techniques which has no requirement of 
analyzing the characteristics of the events even before 
they are archived. 

The filtering and compression works in different 
levels. Lossless compression facilitates storage, archiving 
and network transfer of log data, saving storage space and 
network bandwidth. Whereas filtering facilitates analysis, 
and problem determination over the logs even before the 
logs are archived. One of the biggest disadvantages of 
filtering technique is the loss of as much as 99% of the 
data from the original logs. Records in the original 
records are being removed from the system logs, and can 
not be retrieved from the filtered logs. The filtering 
method is dependent on analysis to be performed on the 
logs, and records not important for a particular task will 
be important for another analysis. Hence it is not possible 
to perform filtering on logs and remove some records 
before archiving since lost information may prove to be 
important for other analysis.  

On the other hand, the compression technique 
proposed in this paper is lossless. On passing the 
compressed data through the decompression algorithm 
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reproduces the original data, with zero information loss. 
Data compression can help both storing and transferring 
such large amount of data. Considering the storage 
problem, efficient compression schemes can compress the 
data before storing, hence saving lots of storage space. 
Real-time streaming compression will also help to 
transfer such large amount of data through the network 
after compression, which can be decompressed at the 
receiving end, if required. If data is stored in a 
compressed format the received data can be stored as 
such, without decompressing. The compressed data can 
be processed and analyzed in compressed domain [10, 
11], or can be decompressed and analyzed depending on 
the purpose.  

This paper describes a lossless compression scheme for 
log data produced by Blue Gene/L prototype. The 
compression ratio and time of execution are compared 
with other popular compression utilities using generic 
compression algorithms. Our new compression algorithm 
provides 35.5% improvement in compression ratio and 
76.6% improvement in compression time over bzip2 [13] 
and 21% in compression ratio and 72.5% in compression 
time over LZMA level 9 compression by 7zip [17]. 

 

2. Related work  
 

Data compression is a matured area, and a number of 
generic and special purpose compression algorithm and 
utilities are available resulting good compression ratios 
and timings. General purpose compression utilities like 
bzip, bzip2[13], gzip [16]  use generalized compression 
algorithms like Burrows-Wheeler Transform [4], Lmlpel 
Ziv algorithm [14] to name a few.  These utilities can 
provide good compression schemes for large scale cluster  
event logs. However,  the performance of log 
compression  can be further improved, by leveraging 
specific attributes  commonly observed within these  large 
scale cluster logs. 7zip [17]  compression utility, available 
on windows and UNIX platforms, implements many 
compression algorithms including one PPM( Prediction 
by Partial Matching )[15] which is one of the best 
performing algorithm on English text,  and LZMA  which  
generally gives good compression ratios than bzip2 [13].  

Apart from these generic compression utilities, 
Bal´azs, Andr´as[2]  discuss the log compression for web 
servers. Sahoo et al [1] discusses the filtering of failure 
logs of large scale clusters tested on Blue Gene/L data 
which can be used as a lossy compression technique.  
Pzip compression [18] proposes a better compression 
scheme for tabular data with fixed length records and 
fixed column widths. To the best of our  knowledge, no 
work is done specifically to manage large amount of 

event logs in a lossless manner  for large scale clusters 
while improving the compression ratio and timings.  

3. Blue Gene/L architecture  
 

Blue Gene/L compute node is made up of PPC 440 
cores and two such cores are packaged in a compute chip. 
Each core has 32KB L1 cache, a 2 KB L2 (for pre-
fetching), and share a 4MB EDRAM L3 cache. In 
addition, a shared fast SRAM array is used for 
communication between the two cores.  The L1 caches 
including the internal buses in the core are parity 
protected., The L2 caches and EDRAM are ECC 
protected. Each chip has  a total of four  network 
interfaces  such as ….(1) 3-D torus network,  (2) a tree 
interface for global operations, (3) a gigabit Ethernet 
interface supporting I/O and host interface, while (4) a 
control network supports booting, monitoring and 
diagnostics through JTAG access. 

A compute card contains two PPC 440 cores, and  
houses a 256MB or 512MB DRAM for each chip on the 
card. A node card contains 16 such compute cards, and a 
midplane holds 16 node cards (a total of 512 compute 
chips or 1K processors). I/O cards, each containing two 
chips and some amount of memory (usually larger than 
that of compute nodes), are also housed on each 
midplane. There are 4 such I/O cards (i.e., 8 I/O chips) for 
each midplane, i.e. one I/O chip for every 64 compute 
chips. All compute nodes are connected  through a  
Gigabit ethernet interface to these I/O chips for their I/O 
needs. In addition, a midplane also contains 24 midplane 
switches to connect with other midplanes. When crossing 
a midplane boundary, the torus, global combining tree and 
global interrupt signals pass through these link chips. A 
midplane also has one  service card that performs system 
management services such as monitoring errors and 
verifying the heart beat of the nodes. In most cases, a 
midplane is the granularity of job allocation, i.e., a job is 
assigned to an integral number of midplanes. Compute 
cards are normally shut down when they are not running 
any job. When a job is assigned, the card is reset and the 
network is configured before any execution begins. 

4. Logging mechanism and log format  
 

In case of Blue Gene/L, error events are logged 
through the Machine Monitoring and Control System 
(MMCS). There is one MMCS process per midplane, 
running on the service node. However, there is a polling 
agent that runs on each compute chip. Errors detected by 
a chip are recorded in its local SRAM via an interrupt. 
The polling agent at some later point pick up the error 
records from this SRAM and ship them to the service 
node using a JTAG-mailbox protocol. After procuring the 
events from the individual chips of that midplane, the 
service node records them through a DB2 database 



engine. These events include both hardware and software 
errors at individual chips/compute nodes, errors occurring 
within one of the networks for inter-processor 
communication, and even errors such as high temperature 
and fan speed problems  are reported through an 
environmental monitoring process in the backplane. An 
event record has a number of fields such as Record ID, 
Event ID, Event Type, Facility and Location.  Details of 
each field and possible options are as described below.
  

Record ID is the sequence number for an error entry, 
which is incremented upon each new entry being 
appended to the logs. These records are sequence of 
integers in  ascending order.  

Event time is the time stamp associated with the event. 
Time stamp format is YYYY-MoMo-DD 
HH:MM:ss.mmmiii  ( where Y representing Year, Mo, D, 
M, s, m, and i representing Month, Day, Minute, second, 
millisecond and microsecond  respectively.) 

Event type specifies the mechanism through which the 
event is recorded, with most of them being through RAS 
[10]. 

Event Severity can be one of the following five levels  
1. INFO events are more informative in nature on 

overall system reliability, than problem or error 
reports, such as “a torus problem has been 
detected and corrected”, “the card status has 
changed”, “the kernel is generating the core”, etc.  

2. WARNING events are usually associated with 
node-card/link-card/service-card not being 
functional.  

3. SEVERE events give more details on why these 
cards may not be functional (e.g. “link-card is not 
accessible”, “problem while initializing 
link/node/service card”, “error getting assembly 
information from the node card”, etc.).  

4. ERROR events report problems which are more 
persistent and further focusing on  their causes 
(“Fan module serial number appears to be 
invalid”, “cable x is present but the corresponding 
reverse cable is missing”, “Bad cables going into 
the linkcard” etc) All of these above events are 
either informative in nature, or are related more to 
initial configuration errors, and are thus relatively 
transparent to the applications/runtime 
environment.  

5. FATAL or FAILURE events (such as 
“uncorrectable torus error”, “memory error”, etc.) 
are more severe, and usually lead to 
application/software crashes.  

Facility attribute denotes the component where the 
event has occurred, which can be one of the following: 
LINKCARD, APP, KERNEL, DISCOVERY, MMCS, or 
MONITOR. The LINKCARD events report problems 
with midplane switches, which are related to 

communication between midplanes. APP events are those 
flagged in the application domain of the compute chips. 
Many of these are due to the application being killed by 
certain signals from the console. In addition, APP events 
also include network problems captured in the application 
code. Events with KERNEL facility are those reported by 
the OS kernel domain of the compute chips, which are 
usually in the memory and network subsystems. These 
could include memory parity/ECC errors in the hardware, 
bus errors due to wrong addresses being generated by the 
software, torus errors due to links failing, etc. Events with 
DISCOVERY facility are usually related to resource 
discovery and initial configurations within the machine 
(e.g. “service card is not fully functional”, “fan module is 
missing”, etc), with most of these being at the INFO or 
WARNING severity levels. MMCS facility errors are 
again mostly at the INFO level, which report events in the 
operation of the MMCS. Finally, events with MONITOR 
facility are usually related to the 
power/temperature/wiring issues of linkcard/node-
card/service-card. Nearly all MONITOR events are in the 
FATAL or FAILURE severity levels. 

Location of an event (i.e., which chip/node-
card/service-card/link-card experiences the error), can be 
specified in two ways. It can either be specified as (a) a 
combination of job ID, processor, node, and block, or (b) 
through a separate location field. We mainly use the latter 
approach (location attribute) to determine where an error 
takes place. 

 

5. Compression utilities  
 

This section gives a brief description of compression 
algorithms used by popular generic compression utilities. 
The intention is to provide an overview of features of the 
compression algorithms used by these utilities for better 
understanding of the paper. References are provided for 
readers interested in details. 

 
gZip. Gzip is based on a variant of LZ77 [6] 

algorithm.  The occurrences of a string are replaced by 
pointer to the previous occurrence of the string. If the 
previous occurrence is not found, the string is coded as 
such. The literals and references are coded using Huffman 
coding [5] after LZ77. The algorithm can compress 
streaming data.     

 
Bzip2. bzip2 compresses files using the Burrows-

Wheeler block sorting text compression algorithm[4], and 
Huffman coding[5]. Compression is generally 
considerably better than that achieved by more 
conventional LZ77/LZ78-based compressors[14], and 
approaches the performance of the PPM family of 



statistical compressors[15] for text.  Bzip2 can not work 
on streaming data as compression involves a sorting step.  

 
7Zip. 7zip supports a number of compression formats 

including LZMA, ZIP, CAB, RAR, ARJ, LZH, GZIP, 
BZIP2, Z, TAR, CPIO, RPM and DEB. Default 
compression scheme for 7zip is LZMA (Lampalle Ziv 
Markov Chain Algorithm), which provides better 
compression than bzip but slow.   

 
PPM. PPM stands for Prediction by Partial Matching 

[18]. PPM is a adaptive statistical data compression based 
on context modeling and prediction. PPM models use a 
set of previous symbols in the uncompressed symbol 
stream to predict the next symbol. Recent PPM 
implementation are among the best performing lossless 
compression programs for english text. 

 

6. Compression mechanism and system 
details   

 

6.1 Problem Background 
 

The compression work had started before Blue Gene/L 
system was operational. The idea was to address the 
Reliability, Accessibility and Serviceability issues of 
particular clusters architectures parallel to hardware and 
software development, to address these issues in 
commercial offerings with zero time to market after the 
hardware is available for commercial offerings. Earlier 
work was performed using the log date from a smaller 
prototype of Blue Gene/L in IBM Rochester, rather than 
on the full scale 64 rack Blue Gene installation in 
Lawrence Livermore National Labs [22]. The mechanism 
of logging and nature of log data in both systems are the 
same, though the log data rates are much higher in 64 rack 
LLNL systems than that in 2 racks IBM Rochester 
prototype.   As described earlier the main goals of 
designing a custom compression algorithm are (1) To 
save the storage space and (2) compress the log data sent 
across the network to reduce the bandwidth requirements.  

Blue Gene/L logs contain large fraction of redundant 
information. Similar problems are  one of the common 
issues while addressing error events for large-scale 
clusters as reported in literature [1].  Most of these 
redundant log records form adjacent records in the output 
logs with majority information being repeated either due 
to different software or hardware retries until the time out 
period. 

The compression is achieved by implementing a 
compression pipeline, with different compression 
algorithm used in each stage. The idea was to use mix and 
match of different compression algorithm in different 
stages to achieve better compression ratios, compression 

time and ability to handle streaming data. For example, 
using Burrows-Wheeler [4] as a stage in the pipeline 
gives better compression than LZ, but streaming data can 
not be handled by such a pipeline. Hence we can use LZ 
instead of Burrows-Wheeler in a pipeline compressing 
streaming data. Similarly, the combination of algorithms 
in the pipeline can be changed to meet other constraints 
imposed upon overall compression step.  

The custom compression algorithm was designed to 
use only specific characteristics of Blue Gene/L logs 
rather than generic characteristics of English text. This is 
important, since if the custom compression algorithm is 
utilizing any generic characteristics of text the algorithms 
down the stream may be depending on the same 
characteristics for compression. Since the data is already 
compressed using this feature, the combined compression 
ratio will not improve, even though the custom 
compression algorithm will give better stand alone 
compression ratio, which is not the target.  

Decompression is also faster than the standalone 
standard compression algorithms for most of the 
compression pipelines. The custom algorithm does not 
use a dictionary for compression. This evades the use of 
transferring a dictionary in case compressed data is 
transferred over a network.   

6.2  Dataset 
For final testing, log data collected for 103 days from 

64-Node (65536 processors) LLNL Blue Gene/L 
installation, which currently tops the top500 list [3] with 
137 teraflop of peak computing power, was used.  For 
initial development and testing logs collected from a 
8192-processor Blue Gene/L DD1 at IBM Rochester, 
which is currently ranked 16 in the Top 500 list of 
supercomputers [3]. The machine has been up since May, 
2004, and has been primarily running parallel scientific 
applications. Results in this paper are based on the LLNL 
log data compression. The uncompressed log data was 
195Megabytes in total and contained 1184010 log 
records. Please note that the amount of log data produced 
can be much more since log generated depends on 
machine utilization and logging behavior of applications 
running.  

 

6.3  Compression method 
 

We implemented a compression pipeline with different 
encoding methods as stages in the pipeline. This pipeline 
approach allows us to use combination of different 
encodings to achieve required characteristics such as 
higher compression ratios, ability to handle streaming 
compression etc. Irrespective of algorithms used later 
stages, we use the custom encoding scheme proposed in 
this paper as the first stage in the pipeline. 



First step for designing the custom compression was to 
identify specific characteristics of Blue Gene/L logs 
which may aid a better compression. Most of the errors in 
BG/L event logs are reported by the thousands of 
different hardware components with same entry data, 
severity, and facility, but differing in record id, time 
stamp, and resource serial number (Please see the section 
describing log format). For example, failure to find a 
program image is reported by APP facility associated with 
all compute chips running the job. After careful 
observation and experimentation, we decided to leverage 
on following trends in the Blue Gene/L logs to design 
custom compression algorithm. 

1. Most of the columns in the adjacent records tend 
to be same.  

2. Record Ids are ascending integers in sequence. 
3. The columns differing in most of the adjacent 

records are record ids, time stamps, serial 
number of the device, and location identifier. 

4. For these fields( mentioned in 3 above ) higher 
order bytes in the columns in the adjacent 
records tends to be the same, lower order bytes 
are differing from each other.  

5. If a byte differs in a column for two adjacent 
records, the lower order bytes-bytes to the right 
to the differing byte-also tend to be different. 

Let us examine the reasons for above trends in log data 
briefly. Trend 1 and 3 are due to the same error being 
reported by multiple devices. Trend 2 is the way logging 
is implemented. Reason for trend 4 is the temporal 
locality of adjacent records and spatial locality of the 
devices creating them. As noted in trend 3, columns 
differing in most of the adjacent records are record ids, 
time stamps, serial number of the device, and location 
identifier. Record ids are incrementing sequentially. For 
time stamps the higher order bytes recording date, hour, 
minute and second and even millisecond tend to remain 
the same, but microsecond part is generally differing from 
each other due to temporal locality, hence the lower order 
bytes will be differing ( Note the time stamp format given 
in section above.). For location identifier, due to spatial 
locality, the rack, midplane and mostly node card of the 
processors producing records tends to be same, which 
comes as higher order part of the location identifier. For 
serial number of the devices, trend 4 is less evident, but 
first two leftmost bytes tend to be same for adjacent 
records. 

Also we noticed that many of the generic compression 
utilities are taking more than linear compression time, 
hence reduction in input data size results more than linear 
improve in the compression time. For example: if a 
generic compression algorithm takes O(n2) time for 
compression reduction in size of the input by 50%  in 

earlier stages in compression pipeline will reduce the 
compression times to 75% of the original time. 

Based on these observations we decided to use a 
modified incremental encoding, which is a variant of delta 
encoding, for ordered text [23]. The basic compression 
strategy is to compare the given record with the previous 
record and encode only the difference. If the column in 
current record is same as the corresponding column in 
previous record proceed to the next column and nothing is 
encoded into the output. If there is a difference, continue 
after encoding current token as described below.  

The encoding scheme for the differences is as follows. 
If there is difference at a byte for a token, the rest of the 
token is written as such in the encoded stream along with 
the offset from the last difference in the same record. For 
the first difference in each record, the offset from the 
beginning of the record is encoded instead of offset from 
the last difference. One difference is encoded as separator 
tab, offset, separator tab, and the difference. Hence 
encoding takes one or two bytes offset, two bytes for tabs, 
and the differing data bytes. 

Percentage of increase in size is high for small runs of 
byte differences. For example, assuming a single byte 
offset, to encode a single byte difference we need to write 
1 byte offset, two bytes for two tabs, and one byte 
difference to output compressed stream. This causes an 
encoding overhead of 300%. (The probability of decrease 
in size for next offset due to this difference is not 
considered here). But consider we are encoding a 
difference 10 bytes in a run, total size in output stream 
will be 13 bytes, or 30% of increase in size due to 
encoding. So it is desirable to keep the runs of differences 
to be encoded as lengthy as possible. Hence, based on 
Trend 5 above, if we encounter a difference of single byte 
in a column, the rest of the column is encoded as a single 
run of difference in without checking rest of the column 
and algorithm proceeds with encoding the next column. 
The tabs are used as separators for encoding since tabs are 
not used in log data. 

As an example of encoding, let columns in two 
adjacent log records be, 

First Record:  FATAL  2004-12-14 22:52:46.714244 
Second record: FATAL  2004-12-14 22:52:46.715247 
Since FATAL is same for two lines nothing goes into 

output. For the time stamp everything till 2004-12-14 
22:52:46.71 is same so nothing is encoded.   

On encountering first difference, i.e. 4 and 5, the rest 
of the column is encoded as  offTAB5247TAB and 
proceed to next column, where off is offset from last 
difference and ‘TAB’ stands for tab character. For next 
difference offset will be difference from position of the 
character 5 in the second record above. After doing 
encoding of each record, the length of the encoded record 
is compared with that of the original record, and if the 



Table 1: The compression ratios, compression time, and decompression time for different 
compression schemes. The execution environment was Red Hat Linux 3.2.2-5 on an Intel Xenon 2.4 GHz 
with 4 GHz RAM. “custom” stands for algorithm proposed in this paper,  1 > 2 means output of 1 is 
given as input of 2 for compression. File based communication was used for testing combination of 
utilities; hence it incurs additional I/O operation time, though this is small compared to overall timings.

Compression Scheme Compression 
Ratio x 100   

Compression time 
( In seconds) 

decompression Time ( In 
seconds ) 

Custom 37.47 5.79  7.25 
bzip2 6.45 192.72 22.42 
Gzip 11.17 11.07 2.33 
7zip PPM 6.42 36.61   38.49 
7zip LZMA  5.35 222.05  7.64 
7zip LZMA level 9 4.48 1324.29 7.15 
custom  > bzip2 4.17 5.79 + 58.77=64.56 7.25+13.47 = 20.72  
custom  > gzip 7.10 5.79+8.12=13.91 7.25 + 2.33 = 9.58 
custom  > 7zip LZMA  4.03 5.79 +93.76=99.55 7.25+4.01 =11.26 
custom  > 7zip PPM 4.47 5.79 + 19.46 = 25.25 7.25+20.12 = 27.37 
custom  > 7zip LZMA level 9 3.61 5.79+ 358.13 = 363.92  7.25+3.92 =11.17 
Gzip   > 7zip LZMA level 9 10.19 36.10+11.07 = 47.17 5.19+7.25 = 12.44 
Gzip   > bzip2 10.53 17.05+11.07=28.12 7.26 +2.33 = 9.59 

 
encoded length is greater than that of the compressed 
record the original record is kept as such. This condition 
is always true for first record in log data, since the 
previous record is null and encoding increases size. The 
first record gives the starting record id for the records 
which can be incremented for each record and restored. 
We used a new line character to separate record; the 
original record is kept as such records in compressed 
format. This allows the compression to omit record ids 
from compressed    files. 

For decompression, the reverse process is performed 
on encoded data. Till the first offset, bytes are copied 
from previous record in sequence. Then the bytes from 
the encoded line are copied to the output line. After this, 
copying from the reference record line continues for the 
next token till the next difference. As mentioned above, 
first line is always kept as such in encoded file. Record 
ids are incremented for each record and recreated in the 
output record. If we see an uncompressed line, which is 
marked by the long record id as the first token, it is copied 
as such to the output record. Having the n-1th record, the 
nth record can be decoded; hence the decompression can 
handle streaming data. 

6.  Results and discussion  
 

The combination of preprocessing and different 
popular compression algorithm is tested on log data, and 
compression ratios, compression and decompression 
timings are tabulated in Table 1. 

The compression ratio of standalone custom encoding 
is low, as shown in row 1 in the Table 1. However, the 
combination of custom compression algorithm with all 
other compression utility gives 28.3% better compression 

ratios and 43.4% of improvement in compression time on 
average than stand alone compression utilities. Combined 
compression time also shows a decrease except for 
combination with gzip. The best compression ratio is for 
the combination of custom and LZMA level 9 in 7zip, 
which shows 21% improvement in compression ratio and 
in 72.5% reduction in time over the standalone LZMA. 
The combination of gzip and custom algorithm shows 
36% improvement in compression ratio though 
compression time shows an increase, but combination as 
such is faster than other schemes and can handle 
streaming data. The combination with bzip2 shows 35.5% 
improvement in compression ratio and 76.6% reduction in 
compression time. The last two rows show the 
combination of gzip used as a preprocessor for with 
bunzip2 and LZMA, which gives less compression than 
the standalone versions of bunzip2 and LZMA.  

Decompression shows an increase in time for some 
combinations. But decompression time is less important, 
as decompression is performed offline and only on parts 
of data need to be analyzed.  

7. Summary and future work  
 

The compression algorithm is effective to achieve 
higher compression ratios and less compression timings, 
and fast enough to handle data rate of Blue Gene/L LLNL 
installation logging. Since the custom compression can 
operate on streaming data, in combinations with a 
compression utility which can handle streaming data such 
as gzip, it can be used for compression prior to network 
transmission of log data in order for reduced bandwidth 
requirement. Similar approach can be followed for other 
kind of data also.  



One notable feature is that the preprocessing step is a 
simple one, and achieves only small standalone 
compression, but very effective in combination with 
generic compression utilities. The idea of preprocessing 
data with a custom scheme before passing to a generic 
compression utility is an effective method for better 
compression incurring least implementation overhead. 
Also it shows that cascading generic compression utilities 
which can give good standalone compressions is not an 
effective method, as it sometimes increases compressed 
sizes.  

As a future work, compression ratios and timings for 
the method on generic tabular data can be tested, as this 
method or a variant may be effective for this purpose. 
Also applicability of method for data compression for 
logs of other kind, like loosely coupled clusters and 
architectures other than Blue Gene/L need to be tested. 
There is scope for optimizing the decompression 
algorithm implementation, since not much care was taken 
to optimize decompression, since running time is much 
less compared to the compression times and not very 
crucial for our work in hand. 
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