
RC23907 (W0603-067) March 8, 2006
Computer Science

IBM Research Report

INTELLECT: INTErmediate-Language LEvel C Translator

Sumit K. Jain
Intel Corporation

Jones Farm 4
2111 N.E. 25th Avenue
Hillsboro, OR 97124

Guillaume Marceau
Department of Computer Science

Brown University
Providence, RI 02912

Xiaolan Zhang, Larry Koved
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Trent Jaeger
Department of Computer Science and Engineering

Pennsylvania State University
University Park, PA 16802

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

INTELLECT: INTErmediate-Language LEvel C Translator

Sumit K. Jain∗

Intel Corp.
Jones Farm 4, 2111 N.E. 25th Avenue

Hillsboro, OR 97124
sumit.jain@intel.com

Guillaume Marceau∗

Department of Computer Science
Brown University

Providence, RI 02912
gmarceau@cs.brown.edu

Xiaolan Zhang Larry Koved
IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10520

{cxzhang,koved}@us.ibm.com

Trent Jaeger
Department of Computer Science and Engineering

Pennsylvania State University
University Park, PA 16802

tjaeger@cse.psu.edu

Abstract

Static analysis tools have proven to be valuable in de-
tecting software bugs in early development stages. As Java
emerges to be the language of choice for software develop-
ers, many Java analysis tools have been developed. Since
many properties that are checked by these tools are also
desirable in C programs, it makes sense to make these anal-
yses available for software written in C. In this paper we
present an intermediate language level C to Java transla-
tor called INTELLECT. INTELLECT preserves the precise
control and data information needed by static analysis tools
such that no information is lost due to the translation from
the perspective of static analysis. Our experiments demon-
strate that INTELLECT is sufficiently robust – it success-
fully translated a subsystem of a complex embedded kernel
written in C. We were also able to apply analyses originally
developed for Java on the translated code. Thus we believe
that building such a C to Java translator is practical, and
that such a tool can facilitate the reuse of existing and future
Java analysis tools on programs written in C, thus greatly
enhancing the return on the cost of developing such tools.

1. Introduction

Static analysis tools have proven to be valuable in de-
tecting software bugs in early development stages [5, 20,
2, 3, 22, 8]. As Java emerges to be the language of choice
for software developers, many Java analysis tools have been

∗Work performed while being a summer intern at IBM T.J. Watson Re-
search Center

developed, ranging from general bug finding tools [1, 9], to
sophisticated tools that can verify high-level security prop-
erties [12, 11]. Since many properties that are checked by
these tools are also desirable in C programs, it makes sense
to make these analyses available for software written in C.
There are two solutions to this problem. We can port all
these analyses to a C analysis backend. Alternatively, we
can develop a translator that translates C code to Java code.
We choose to go with the latter approach, because we be-
lieve it is more cost-effective – once the translator is de-
veloped, we can reuse all existing as well as future Java
analyses tool on C program.

Developing such a language translator is the first step
of a much larger endeavor [23] that aims to build a unified
program analysis framework where we can plug and play
analysis tools. By reusing existing analyses that are already
developed for other languages, we save the cost of develop-
ing the same analyses for different languages, or on differ-
ent analysis backends, thus significantly reducing the cost
of tool building (and maximizing the return on the cost of
developing these analyses).

Such a language-neutral analysis framework provides
some additional benefits, one of which being that we can
now analyze multi-language software, software that is writ-
ten in more than one language. It is not uncommon for a
complex software package to be written in multiple lan-
guages. For example, it is sometimes necessary to have
mixed C code in a Java for improved performance. One
would like to still be able to run static analysis tools against
the mixed code. Unfortunately none of today’s static analy-
sis tools support multi-language software.

In this paper we present a tool called INTELLECT, stand-
ing for INTErmediate Language LEvel C Translator, that

translates programs written in C into Java code. The trans-
lation is performed at intermediate language level, because
we believe that the languages are closest at such level, thus
we can achieve the best accuracy. INTELLECT preserve
the control and data information needed by static analysis
tools such that no information is lost due to the translation
from the perspective of static analysis. In other words, the
analysis results would be the same if we had ported the anal-
ysis to a comparable backend for C.

Our experiments demonstrate that INTELLECT is suffi-
ciently robust – it successfully translated a subsystem of a
complex embedded kernel written in C. We were also able
to apply analyses originally developed for Java on the trans-
lated code. Thus we believe that building such a C to Java
translator is practical, and that such a tool can be beneficial
to the static analysis community.

The remaining of the paper is organized as follows. Sec-
tion 2 describes basic differences between C and Java. Sec-
tion 3 discusses related work. Section 4 presents the ba-
sic translation algorithm. Section 5 details the implemen-
tation on GCC and the challenges we encountered. Sec-
tion 6 presents initial experiences and results of using IN-
TELLECT. and Section 7 concludes.

2. Problem

2.1 C vs. Java

Most C language structs have their corresponding coun-
terparts in Java and thus can be translated in a straightfor-
ward way. Examples include expressions, field references,
statements, functional calls, etc. Some of them require
slight modification. For example, data structures in C be-
come public classes in Java.

That being said, C also differs from Java significantly in
a few aspects, with pointers being the most noteworthy. In
the C language, the address of a piece of data is explicit and
can be manipulated using pointer arithmetic (integer opera-
tions). In Java, there is no way of explicitly representing an
address. Moreover, one can cast any data type to any other
data type in C, whereas in Java, the type of a given object
is encoded in the data itself and type casting follows type
safety rules. Thus C is a type unsafe language, while Java is
a type safe language.

Another major difference is goto statements. In C, con-
trol of the program can be directed to any other statement in
the same procedure using a pair of goto and label instruc-
tions. In Java the control flow of a program follows a more
rigid rule and goto statement is no longer supported.

These differences require careful handling during trans-
lation.

2.2 Classifying Translators

Depending on whether the translation occurs at the
source language level, or at the IL (intermediate language)
level, there are typically two types of translators: source-
to-source translators and IL-to-IL translators. Source-to-
source translators produce more human-readable output,
which facilitates debugging. In addition, the translation
is more succinct, because it occurs at a higher, more ab-
stract level. The main problem with source-to-source trans-
lation is goto elimination [6], which adds additional trans-
formation overhead and may result in modified data/control
flow in the translated code. IL-to-IL translators do not suf-
fer from this problem, because all intermediate languages
support the goto construct in one form or another. Further-
more, intermediate languages are semantically very close to
each other, even if the original languages are very different.
Thus, in most cases, the translation is a one on one mapping
between two ILs, with just a few exceptions. This results in
a potentially much more accurate translation in terms of pre-
serving data/control flow, compared to a source-to-source
translation.

INTELLECT is an IL level translator. Before we detail
the approach taken by INTELLECT in Section 4, we first
give an overview of currently available C-to-Java translators
in Section 3.

3. Related Work

Translating C to Java is not an easy task, and there have
been a few attempts of doing it. Here we compare a few
representative translators to ours.

Jazillian [10] is a commercial C-to-Java translator that
takes a C file as input and produces functionally equiva-
lent Java files. With Jazillian, the resulting Java file is ex-
pected to execute the same way as the original C file. As
such the translation occurs at a higher, semantic level, and
the resulting Java file does not necessarily have the exact
same data/control flow. For instance, C library functions are
replaced with functionally equivalent Java libraries which
have different names and invocation conventions. The fol-
lowing example shows that one printf call in C is replaced
with two method calls in Java.

printf("%3.2f", f);

...becomes...

DecimalFormat myFormat =
new DecimalFormat("###.##");

System.out.println(myFormat.format(f)) ;

In addition, because Jazillian needs to do quite some
guess work in order to produce functionally equivalent

code, there are cases that the heuristics employed in Jazil-
lian does not cover, and as such Jazillian is not guaranteed
to work 100% of the time. In contrast, our goal is slightly
less ambitious – we expect the resulting Java file to produce
the same analysis results as the C file. Thus our translation
occurs at a lower level and covers a much larger set of cases.
The translation preserves all data/control flow information
accurately (with regard to the analysis). The resulting Java
file, however, does not run unmodified in general.

Ephedra [13, 14, 15] is another C-to-Java translator
that shares similar goals with Jazillian. As with Jazillian,
Ephedra is a source-to-source translator. Thus it suffers
the same goto elimination problem. As a matter of fact,
Ephedra does not deal with gotos at the time of this writing.

C2J [19] is yet another C-to-Java translator that aims to
achieve the same goal as the previous two translators. Judg-
ing from the limited documentation, it appears that C2J is
also a source-to-source translator and it at least suffers the
same limitations as the other two translators.

Demaine [4] talks about an automatic conversion of
pointers into references. His theoretical considerations are
well founded, but they were not accompanied by any imple-
mentation.

4. Approach

Our IL-to-IL translation approach has two advantages
over traditional source-to-source translation approaches:
accuracy with regard to preserving control and data flow,
and no goto complication. In the following sections, we first
show why goto elimination is a complicated issue, and why
traditional approaches are not suitable for our purposes. We
then describe the basic translation rules. Finally we dis-
cuss a few challenging issues, highlighting the differences
between our approach and the previous ones.

4.1. Goto Elimination

Goto elimination is necessary for source-to-source trans-
lators since the Java source language does not support goto
statements. Most translators incorporate the standard goto
elimination algorithm [6] or its variations. The basic idea is
to move each goto statement closer to the corresponding
label instruction in a series of steps, until they are within
the same basic block and then can be replaces with more
common control constructs such as if statements.

Figure 1 shows a simple C program with goto statements,
and the corresponding translated Java code using an ideal 1

implementation of the goto elimination algorithm described
in [6].

1The reason we use the word ’ideal’ here is because no source-to-
source translators we have experimented so far that claim their algorithm
was based on [6] were capable of translate this C example correctly.

It can be seen from this example that goto elimination
is a rather complicated task, and thus is error prone. As a
matter of fact, so far we have yet to see an implementation
of the goto elimination algorithm [6] that’s provably correct.

Even assuming such an implementation exist, it will not
be suitable for our purpose – applying static analysis on the
translated code. Because our goal is static analysis, we want
the goto elimination to preserve the original data and con-
trol flow accurately, such that the translation does not alter
analysis results in any un-intended way.

The goto elimination algorithm [6] does not satisfy the
above requirement. As shown in Figure 1, the translation
modified the original data and control flow by introduc-
ing three new variables and using them in new conditional
statements. Therefore, such translation might alter the re-
sults from static analysis (despite the fact that the translated
code might run correctly and produce the same execution
results). For example, an analysis engine has to support
path sensitivity in order to correctly reason that if line 18 is
executed, then line 23 must also be executed. Most analy-
sis engines do not support path sensitivity. And since one
of the uses of our translator is to compare different static
analysis engines, requiring them to support path sensitivity
would defeat this original purpose.

In addition to introducing side effects that alter analy-
sis results, the standard goto elimination algorithm ?? is
sub-optimal in performance. For the simple example shown
in Figure 1, the translated code added 3 new variables, es-
sentially increasing the total number of variables by 150%,
which could result in significant slowdown in analysis time.

An IL-to-IL translator bypasses the goto elimination
phase, because gotos are universally available at IL level.
Therefore, with an IL-to-IL translator, not only do we
achieve better accuracy with regard to analysis results, the
translated code is also much more succinct compared to the
traditional approach of goto elimination at source level.

4.2. Basic Translation

At IL level, languages are surprisingly similar, so in most
cases, there is a one to one mapping between the two lan-
guage constructs and the highest level of accuracy can be
achieved.

Table 2 in the Appendix shows the mapping between C
and Java for basic language constructs 2. Basic types such
as char , int and float in C are mapped directly to the
same types in Java. Structures are mapped to classes with
all fields set to public. Functions become public methods of
a global class representing the entire file being translated.
Structures and unions become classes with the correspond-
ing fields.

2Note that these examples illustrate the mappings at the conceptual
level for ease of understanding. The actual translation occurs at IL level

int main() { 1. public class Main {
int x; 2. public static void main(String[] args) {
int y = 0; 3. boolean goto_end = false;
x = 5; 4. boolean goto_L2 = false;
if (x) { 5. boolean goto_L1 = false;

x++; 6. int x;
goto L1; 7. int y = 0;

} 8. x = 5;
L2: 9. if (x != 0) {
x--; 10. x++;
if (x) goto end; 11. goto_L1 = true;
L1: 12. }
y++; => 13. do {
goto L2; 14. goto_L2 = goto_L2;
end: 15. if (goto_L2 || !(goto_L1)) {

} 16. x--;
17. if (x>0)
18. goto_end = true;
19. else
20. goto_end = false;
21. }
22. if (goto_end) {
23. break;
24. }
25. y++;
26. goto_L2 = true;
27. }
28. while (goto_L2);
29. }
30. }

Figure 1. A Goto Elimination Example.

Sideway casts (casts of class types that do not have in-
heritance relationship) are statically illegal in Java, so they
are hidden away from the compiler with a cast to Object
first.

4.3. Challenging Issues

4.3.1 Pointers

One of the challenges in translating C to Java is of course
dealing with pointers n C. Our approach maps pointers in
C to arrays of length one in Java. Dereferencing a pointer
thus becomes a referencing of the 0th element of the array.
Similarly, variable and fields whose address is being taken
are given an extra level of dereference via arrays of size 1.
Accesses to these variables in C thus need to be mapped to
accesses to the 0th element of the translated array variables.
Table 3 in the Appendix shows translations for pointer re-
lated data structures.

4.3.2 Function Pointers

Previous approaches deal with function pointers using
reflection, which changes the data/control flow of the origi-
nal program in a significant way. INTELLECT takes a more
elegant approach that maps function pointers in C to virtual

methods in Java, making use of Java’s support for anony-
mous inner classes. The mapping consists of 3 steps. All
function pointers types are first mapped to Fn . The Fn class
is constructed with one method named idrCall , but it is
overloaded multiple times. For each signature of different
length used at an indirect call site anywhere in the program,
idrCall is overloaded one more time. Step 1 in Table 4
in the Appendix shows how this step works.

Whenever the address of a function is being taken, the
class Fn is extended anonymously. The member method
with matching signature is overridden to now branch to the
destination function, as shown in step 2 of Table 4. Finally,
indirect call sites are then relinked to transit via the virtual
function, as shown in Step 3.

4.3.3 Variable Argument Functions

Functions with variable arguments are implemented with
a method that has one argument of an Object array type.
At each call to a variable argument function, the arguments
are packed into an array before being passed to the variable
argument function, as shown in Table 5.

In C, variable argument functions implement their own
unpacking of the arguments. No attempts is made to trans-
late the variety of unpacking protocols available. Rather

unfortunately, this means the body of such function cannot
be not processed and a warning is printed on standard error
whenever one is omitted.

Indirect calls to function with a variable number of argu-
ments will hop yet one more time. First, the default bodies
of the idrCall methods package their argument into an array.
They then invoke another method of Fn : the varargCall
method. The varargCall method can then be overridden
when the address of a variable argument function is being
taken. The overriding method is guaranteed to receive its
arguments in an array that contain the arguments passed at
the call site.

4.4 Limitations

Our translation algorithm has a few limitations. First we
do not deal with pointer arithmetics. Secondly, array in-
dices are ignored and all references to array elements are
mapped to references to the 0th element. We believe that
these limitations do not compromise our goals of static anal-
ysis because these limitations exist in most analysis tools
(C or Java). Thus no accuracy of analysis is lost due to the
translation. As we move to more powerful analysis tools,
however, we will refine our translation algorithm to trans-
late array indices faithfully, and to handle simple and legal
cases of pointer arithmetics.

5. Implementation

INTELLECT uses two intermediate languages, GIM-
PLE, an intermediate representation provided by the GNU
C [7] compiler, and Jimple, an intermediate representation
for Java provided in the SOOT framework developed at
McGill University [21].

5.1. GIMPLE

Traditionally, GCC always compiles the source code to
RTL (Register Transfer Language), a low-level intermediate
language, before applying optimizations. Higher level se-
mantic information, such as data types, structures and fields,
are lost at RTL level. Therefore, it is not possible to perform
higher level optimization using RTL. From security analysis
point of view, this excludes a large set of security analyses,
such as complete mediation and information flow analysis,
because they need to be reasoned at data type level.

Fortunately, two new intermediate representations called
GENERIC and GIMPLE [17] are introduced to the GCC
compiler 3, opening the door for optimization and program
transformation at a level higher than RTL, yet much simpler
than source trees. GENERIC is a language-independent

3Available in the new GCC release version 3.5

tree representation, and GIMPLE is a simplified subset of
GENERIC. Due to lack of space we will not cover the de-
tails of GIMPLE, and encourage readers to consult the orig-
inal paper on this topic [17]. It suffices to mention that
GIMPLE resembles a parse tree, except that complex ex-
pressions are reduced to a 3-address form. GIMPLE also
lowers all high-level control flow structures to conditional
gotos.

On top of the two intermediate languages, a new op-
timization infrastructure called Tree SSA is provided in
GCC [18]. The optimization framework provides three
main modules: the gimplifier, Control Flow Graph(CFG)
and the Static Single Assignment (SSA) module. The gim-
plifier converts a normal parse tree to GIMPLE format. The
CFG is a directed graph that represents the execution (con-
trol flow) of a program. The SSA module transforms the
GIMPLE representation to SSA form. INTELLECT uses
only the first two modules.

5.2. Jimple

Jimple is part of the SOOT framework developed at
McGill University [21]. Similar to GIMPLE, Jimple was
developed to simplify analysis and transformation of Java
bytecode. In addition, Jimple also uses 3-address form. It
is thus not surprising that the grammar of Jimple is fairly
close to that for GIMPLE. The similarity between the two
intermediate language makes them most suitable for trans-
lation.

5.3. Translation Process

The translation process consists of three stages. In the
first stage, we merge all C source files into one C file using
the merger from the CIL tool kit developed at University of
California at Berkeley [16]. In the next stage, the C file is
processed by a modified GCC compiler that performs the
GIMPLE to Jimple translation and produces the resulting
Jimple files. In the final stage, we use the soot toolkit to
generate Java class files from the Jimple files. In section 5.4
we detail our modification to the GCC Tree SSA infrastruc-
ture to implement the translation.

5.4. Implementation Architecture

Figure 2 shows the architecture of our translator imple-
mented on top of the GCC Tree SSA infrastructure. We
implements our translator as an additional pass after the
C code is gimplified. The translator itself consists of two
passes. In the first pass, we collect variables whose ad-
dresses have been taken and store them in a hash table. In
the second pass, we translate GIMPLE code to Jimple for-
mat statement by statement. Variables in the hash table are

Hash table for addressed variables

ParserC
Source Jimple

Collect addressed
variables Translate

Gimplifier Translator

GCC Frontend

GIMPLEParse Tree

Figure 2. Implementation Architecture in GCC.

translated to corresponding array objects, and references to
these variables become array references of the 0th element,
as described in Section 4.3.1. For both passes we traverse
the GIMPLE trees (basic blocks) in a linear fashion through
the interface provided by Tree SSA framework. Whenever
we need some information about any expression/declaration
during the translation, we can access it from the correspond-
ing GIMPLE tree, again by using the API provided by the
framework.

To facilitate lookup, the hash table contains information
about the scope in which the addressed variables have been
declared. If a field of structure is being addressed then its
scope is name of the structure. For a local variable inside a
function, the scope is the name of the function. For glob-
als the scope is the file name. GCC removes all the local
scopes within a function and just keep one scope for that
function by renaming the variables. This helps us greatly as
we do not have to deal with multiple levels of scopes within
a function.

5.4.1 Challenges

As close as the two intermediate languages are, there
exist some disparities between them which give rise to
a few challenges during translation. The disparities are
largely due to two reasons: over-simplification and under-
simplification of the GIMPLE intermediate language.

Over-simplification When the addresses of a structure
field is taken, GCC translates expression directly to the ad-
dress of the base structure plus the field offset, as shown by
the example below, thus losing information on which field is
accessed. We call this over-simplification. Since Java does
not have the notion of pointers, all references are done to

named objects. Thus it is necessary to keep the field infor-
mation for translating the code to Jimple.

C GIMPLE
---------- -------------
int * a; int * a;

=> int *t = &st;
a = &st.b a = t+4B;

Ideally, we would like to change the GIMPLE grammar
so that the field information is kept. Unfortunately, over-
simplification happens in one of the parsing phases before
gimplification. That means we need to modify the AST tree
grammar as well. Modifying these two grammars will break
many parts of GCC, which depend on them.

We decide to use the following approach. During the
parsing phase, we replace the original addressOf instruction
with a dummy instruction, and hide the original addressOf
instruction (e.g., &st.b) in a special field of the dummy
instruction. We call the hidden instruction shadow instruc-
tion. We add two fields to the data structure that represents
GIMPLE instructions, one for indicating whether there is
a shadow instruction, and the other for storing the shadow
instruction itself.

During the gimplification phase, we recognize these spe-
cial dummy instructions and perform gimplification on the
sub-components of the shadow instructions. Note that we
cannot directly gimplify the shadow instructions because
they are not in a form expected by the gimplification phase.

During the translation phase, we test if the shadow bit is
set for every instruction, and if so, we translate the shadow
instruction instead of the dummy instruction.

Under-simplification Another problem is due to the fact
that GIMPLE instructions are not truly in 3-address forms.

GIMPLE allows complex expressions such as component
references (e.g., a.b.c) and addresses of component ref-
erences (e.g., &a.b) to be passed as parameters or in the
right hand side of an assignment instruction. In these cases,
GIMPLE under-simplifies the C language. Jimple, on the
other hand, uses true 3-address forms, so such expressions
are not allowed in Jimple.

The solution is to simplify these complex expressions
during the translation by introducing temporary variables.
For example, f(a.b) is translated into two statements in
Jimple: t = a.b , and f(t) .

We introduce temporary variables in cases where global
variables are referenced. Because global variables are trans-
lated to member fields of the enclosing C_method class,
their references become accesses to the corresponding fields
of the this variable. Being a strict 3-address form lan-
guage, Jimple does not allow such access to occur in the pa-
rameter of a function call. Therefore, we create a temporary
variable for each global variable referenced in the function,
and initialize the temporary variable with the correspond-
ing global variable. References to the global variables are
thus translated to references to the corresponding temporary
variables.

6. Results

Figure 3 shows the translated Jimple code for the exam-
ple in Figure ??. As expected, the translated code has the
exact same control and data flow as the original C code.

We applied the tool on a kernel that implements a high-
availability secure operating system. Table 1 shows the file
sizes in different stages of translation.

C Jimple Class File
Size(bytes) 133,646 252,210 27,418

Table 1. File Sizes in Different Translation
Phases.

The translated class file is then fed into a static analysis
tool called Domo ??, which is an inter-procedural analysis
framework for Java. The fact that Domo was able to an-
alyze the resulting class file shows that the resulting class
file is well-formed. The details of the analysis are beyond
the scope of this paper and will be covered in a forthcoming
paper 4.

4We are currently working on translating the Linux kernel and expect
to have the results when the final version of this paper is due

public class C_method extends
java.lang.Object

{
public int main()
{
C_method this;
int y;
int x;

this := @this: C_method;

y = 0;
x = 5;
if x != 0 goto L0;
if x == 0 goto L2;
L0:
x = x + 1;
goto L1;
L2:
x = x - 1;
if x != 0 goto end;
if x == 0 goto L1;
L1:
y = y + 1;
goto L2;
end:
return 0;

}
}

Figure 3. Example of Translated C Code in
Jimple Format.

7. Conclusion

In this paper we present an intermediate language level
C to Java translator called INTELLECT. INTELLECT pre-
serves the precise control and data information needed by
static analysis tools such that no information is lost due to
the translation from the perspective of static analysis. Our
experiments demonstrate that INTELLECT is sufficiently
robust – it successfully translated a subsystem of a com-
plex embedded kernel written in C. We were also able to
apply analyses originally developed for Java on the trans-
lated code. Thus we believe that building such a C to Java
translator is practical, and that such a tool can facilitate the
reuse of existing and future Java analysis tools on programs
written in C, thus greatly enhancing the return on the cost
of developing such tools.

References

[1] B. Alpern, D. W. Coleman, R. D. Johnson, A. Kershenbaum,
L. Koved, G. Leeman, D. Rimer, K. Srinivas, and H. Srini-

vasan. SABER: Smart Analysis Based Error Reduction,
2003. In Submission.

[2] T. Ball and S. Rajamani. Automatically validating temporal
safety properties of interfaces. In SPIN 2001 Workshop on
Model Checking of Software, May 2001.

[3] H. Chen and D. Wagner. MOPS: An Infrastructure for Ex-
amining Security Properties of Software. In Proceedings of
the 9th ACM Conference on Computer and Communications
Security, pages 235–244, 2002.

[4] E. D. Demaine. C to java: Converting pointers into ref-
erences. Concurrency: Practice and Experience, 10(11–
13):851–861, 1998.

[5] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking sys-
tem rules using system-specific, programmer-written com-
piler extensions. In Proceedings of the Fourth Symposium
on Operation System Design and Implementation (OSDI),
October 2000.

[6] A. M. Erosa and L. J. Hendren. Taming Control Flow:
A Structured Approach to Eliminating Goto Statements.
In Proceedings of the 1994 International Conference on
Computer Languages, pages 229–240, May 16-19, 1994.
Toulouse, France.

[7] Free Software Foundation, Inc. GNU Compiler Collection.
http://gcc.gnu.org/.

[8] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.
Buffer overrun detection using linear programming and
static analysis. In Proceedings of the 10th ACM Conference
on Computer and Communications Security, pages 345–
354, Washington, DC, 2003.

[9] IBM. DOMO. IBM internal tool for static analysis of Java
code.

[10] Jazillian, Inc. How to convert c to java. Available at
http://jazillian.com/how.html.

[11] T. Jensen, D. Metayer, and T. Thorn. Verification of control
flow based security properties. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, May 1999.

[12] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for java. In Proceedings of the 17th Annual
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2002), pages
359–372, November 2002.

[13] J. Martin. Ephedra - a c to java migration environment, April
2002. Ph.D. Dissertation, University of Victoria, Kanada.
Available at http://ovid.tigris.org/Ephedra/.

[14] J. Martin and H. A. Muller. Strategies for migration from c
to java. In Proceedings of the 5th European Conference on
Software Maintenance and Reengineering, pages 200–209.
IEEE Computer Society, 2001.

[15] J. Martin and H. A. Muller. C to java migration experi-
ences. In Proceedings of the 6th European Conference on
Software Maintenance and Reengineering, pages 143–153.
IEEE Computer Society, 2002.

[16] S. McPeak, G. C. Necula, S. P. Rahul, and W. Weimer. In-
termediate Language and Tools for C Program Analysis and
Transformation. In Proceedings of Conference on Compiler
Construction (CC’02), March 2002.

[17] J. Merrill. GENERIC and GIMPLE: A New Tree Repre-
sentation for Entire Functions. In Proceedings of the GCC
Developers Summit3, pages 171–180, May 25-27, 2003.

[18] D. Novillo. Tree SSA: A New Optimization Infrastructure
for GCC. In Proceedings of the GCC Developers Summit3,
pages 181–193, May 25-27, 2003.

[19] Novosoft. C to java converter. Available at
http://in.tech.yahoo.com/020513/94/1nxuw.html.

[20] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detect-
ing format string vulnerabilities with type qualifiers. In Pro-
ceedings of the Tenth USENIX Security Symposium, pages
201–216, 2001.

[21] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a java optimization frame-
work. In Proceedings of CASCON 1999, pages 125–135,
1999.

[22] X. Zhang, A. Edwards, and T. Jaeger. Using cqual for static
analysis of authorization hook placement. In Proceedings of
the 11th USENIX Security Symposium, 2002.

[23] X. Zhang, L. Koved, T. Jaeger, L. Zeng, G. Marceau, and
S. K. Jain. Towards a Unified Program Analysis Framework.
In Submission.

APPENDIX

C Java
public class C method
{

int x; int x;
float y; float y;
struct foo a; foo a = new foo();

void f1() { ... } public void f1() { ... }
int f2(int p1, ...) public int f2(int p1, ...)
{ ... } { ... }

}
typedef struct { public class foo {

char c; char c;
int i; int i;
struct bar b; class bar b = new bar();

} foo; }
struct foo *f; foo f;
struct bar *b; bar b;
f = (bar*)b; f = (bar)(Object)b;

Table 2. C to Java Mappings for Basic Lan-
guage Constructs.

C Java
struct foo *pf; foo[] pf;
int i; int i;
int *pi; int[] pi;
int ai[3]; int[] ai = new int[3];

pf = malloc(sizeof(pf = new foo[1]
struct foo)); {new foo()};

pf→i = 23; pf[0].i = 23;
pi = i; pi[0] = i;
int i; int[] i = new int[1];
i = 5; i[0] = 5;
scanf(”%i”, &i); scanf(”%i”), i);
i++; i[0]++;
int *pi = &i; int[] pi = i;
(*pi)++; pi[0]++;
f(pi); f(pi);

Table 3. C to Java Mappings for Pointer Re-
lated Language Constructs.

C Java
Step 1. int x; int x;

...
public class Fn {

...
x = (*fa)(23); public int idrCall(int p1) { ... }
x = (*fb)(23, 42); public int idrCall(int p1, int p2) { ... }
x = (*fc)(”boo”); public int idrCall(String p1) { ... }

}
Step 2. int a(int p1) { ... } public int a(int p1) { ... }

int b(int p1, int p2) { ... } public int b(int p1, int p2) { ... }
int c(char *p1) { ... } public int c(String p1) { ... }

(int (*fa)(int)) = &a; Fn fa = new Fn() {
int idrCall(int p1) { return a(p1); }

}
(int (*fb)(int, int)) = &b; Fn fb = new Fn() {

int idrCall(int p1, int p2) { return b(p1, p2); }
}

(int (*fc)(char*)) = &c; Fn fc = new Fn() {
int idrCall(String p1) { return c(p1); }

}
Step 3. x = (*fa)(23); x = fa.idrCall(23);

x = (*fb)(23, 42); x = fb.idrCall(23, 42);
x = (*fc)(”boo”); x = fc.idrCall(”boo”);

Table 4. C to Java Mappings for Function Pointers.

C Java
void vafunc(...) ; public abstract void vafunc (Object[] args);
int a1;
char a2;
vafunc(a1); vafunc(new Object[] {a1});
vafunc(a1, a2); vafunc(new Object[] {a1, a2});

public class Fn {
public abstract void varfunc(Object[] args);
public Object varargCall(Object[] args) { return null; }

int a1; public Object idrCall(int a1)
{ return varargCall(new Object[] {a1}); }

char a2; public Object idrCall(int a1, char a2)
{ return varargCall(new Object[] {p1, p2}); }

}
fp = &vafunc; Fn fp = new Fn() {

Object varargCall(Object[] args) { return vafunc(args); }
};

fp(a1); fp.idrCall(a1);
fp(a1, a2); fp.idrCall(a1,a2);

Table 5. C to Java Mappings for Variable Argument Functions.

