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ABSTRACT
Dramatic improvements in productivity might be achieved
if programmers could fully define applications declaratively.
Successful approaches exist for declarative definition of ap-
plication Views and Models. However, the inability to sim-
ilarly define an application’s business logic in a way that is
compatible with the View and Model definitions has stymied
progress towards the goal of fully declarative application as-
sembly.

We present Relational Blocks as an attempt to solve this
problem. Relational Blocks expresses business logic in rela-
tional algebra, and interfaces to an application’s View and
Model through a relational API. Early results, from small-
scale applications, show that this unified approach enables
applications to be defined in a purely declarative fashion.
Furthermore, we have exploited this behavior by building a
editor that supports the visual construction – and immedi-
ate execution – of these declarative applications.

Keywords
relational blocks, declarative programming, relational alge-
bra, relational model, application assembly, visual applica-
tion design.

1. INTRODUCTION
Declarative programming promises to increase productivity
by allowing programmers to define applications (or parts
thereof) based on what the application should do, rather
than on how the application should do it [12]. This is in con-
trast to imperative programming, which envisions programs
as a sequence of commands (statements) applied to the pro-
gram state. Although declarative and imperative program-
ming are often described as opposites, in practice they form
a spectrum. At one extreme, fully imperative programming
specifies all the low-level details about the implementation of
an application, such as “load the value 5 into register zero”.
At the other extreme, fully declarative programming speci-

fies no details about the implementation of an application:
“Computer, build me an order-entry application!”.

In reality, high-level languages such as C and Java avoid
the necessity of programming at a fully imperative level;
for its part, declarative programming has not yet advanced
to the point of allowing single-sentence descriptions of com-
plex applications. Even so, computer scientists seek to move
the level of abstraction further towards the declarative end
of the spectrum, because a more concise description of the
application should lead (in general) to higher productivity.
In other words, if low-level details can be omitted by the
programmer, she should be able to write programs more
quickly. Productivity is enhanced because programmers are
free to concentrate on defining the application’s function,
and are not distracted by considerations of how that func-
tion is achieved.

Declarative programming has been successfully applied to
View construction such as Web pages that are written in
HTML. Programmers describe only what the Web page should
look like: web-browsers are responsible for providing the al-
gorithms that render the page onto a display’s pixels. Appli-
cation Models can also be described declaratively. For exam-
ple, relational database schema can be described by the DDL
subset of SQL [3], and XML document structure can be spec-
ified by schema [14]. Finally, application logic (Controllers)
can be described in declarative fashion using functional lan-
guages (e.g., Haskell and Lisp), logic-based languages (e.g.,
Prolog), and constraint-based languages (e.g., Oz). XML
document instances can be manipulated in declarative fash-
ion using languages such as XSLT [17], and navigated using
query languages such as XPath [15] and XQuery [16].

Despite such examples, and despite the promise of increased
productivity, most applications continue to be built using
imperative programming techniques. This may be because
humans tend to think and plan in a sequential style. Im-
perative programming allows an “incremental” approach to
implementing an application since one can start coding with-
out fully understanding everything that needs to be accom-
plished. Alternatively, it may be because most introductory
programming courses are taught with imperative program-
ming languages. More fundamentally, there may be prob-
lems with existing declarative approaches that make them
less productive than imperative approaches. For example,
popular declarative languages only cover part of the applica-
tion development space. HTML (without scripting) cannot



Figure 1: Create Example View

be used to build spreadsheets, and XSLT cannot be effi-
ciently used to build messaging systems. Although separate
declarative technologies may exist for different portions of
the application space, there is no existing way to integrate
the different portions into a single coherent application.

Relational Blocks addresses the inadequacies in existing declar-
ative approaches to interactive-application design. It pro-
vides a fully declarative visual design paradigm, including
encapsulated Model, View and Controller blocks. All blocks
have a common interface, so they can be combined in any
way which is meaningful. The visual Controller design takes
place in a two-dimension canvas, which allows the designer
more freedom to express the system interconnections than
the standard text editor allows in one dimension. Inter-
connections between blocks need not be labeled, so that no
effort is expended on naming data flows whose semantics
are apparent from the visual layout. The two-dimensional
layout also allows the designer to more clearly express the
construction of encapsulated composite blocks out of the ba-
sic M/V/C blocks. Application construction may also take
place in an incremental fashion. Only a small set of blocks is
required to bootstrap a working application. M/V/C blocks
may be added, removed, or rewired at any time, and the
application immediately verified and re-executed.

1.1 Create Example
The following application fragment can make the above is-
sues more concrete. Create Example allows a user to create
{Name, Value} records (rows) in a database system. Figure
1 is the View which is seen by the user. The user enters a
name in the Name text box, a value in the Value text box,
and presses the Create button to create the record.

The “conventional” (all imperative) approach to building
applications (e.g., by coding in Java) uses widget-technologies
such as Swing or SWT to define the UI panels, text-entry
fields, and button. Event-handler code is then linked to the
widgets so that the following sequence is executed when the
user clicks the Create button:

1. Read the values of the Name and Value text boxes

2. Use these values to issue a JDBC insert to the data-
base Model

The most obvious problem with the “all-imperative” ap-

<def:Code>

<![CDATA[

void ButtonClick(object el, ClickEventArgs cea)

{

Button btn = (Button) el;

FlowPanel parent = (FlowPanel) btn.Parent;

parent.Children.Remove(btn);

parent.Children.Insert(1, btn);

}

]]>

</def:Code>

Figure 2: Non-visual imperative code accessing
declarative visual components

proach is that an intrinsically visual activity (defining the
application’s View) is done in a non-visual medium. The
developer is typically required to hand-code the size of the
windows, the placement of all the widgets, the widget mod-
ifier flags (e.g., “resizable”), and so forth. Often they resort
to drawing the View by hand on graph paper in order to
determine the correct parameters for the imperative code!

Motivated by this observation, visual approaches to View
implementation use tools such as Dreamweaver [11] and IBM
Rational Application Developer [9] to declaratively define
Views such as that shown in Figure 1. This approach is sat-
isfactory for static views which are not coupled with Model
and Controller logic (e.g., static HTML pages). However, it
does not extend well to dynamic Views, where the contents
of the View has a signficant dependency on the current state
of the Model. For example, visual HTML tools do not allow
the displayed table size to be based on the current contents
of the Model. This requires integration of declarative (View)
and imperative (Model and Controller) approaches.

Mixed declarative/imperative approaches such as Microsoft’s
XAML [1] provide a means to integrate declarative defini-
tion of the View with an imperative definition of the Con-
troller. XAML allows programmers to declaratively define
a View layout of text, images, and controls, using a visual
editor or XML. However, the Controller logic must be imple-
mented in a standard imperative language such as C#, ei-
ther embedded in the application XML or in a “code behind”
file. The View widgets must call imperative event-handlers
when interesting events occur; the imperative code must ac-
cess the View widgets using labels and graph navigation.
Both of these patterns are shown in Figure 2 (excerpted
from [1], Figure 7), which illustrates an event-handler for a
Button click. In this example, clicking the Button causes
it to move into the second position in the View. Note that
the XAML only declares the initial View; after a Button
is pressed, the View must be updated using imperative C#
code, and no longer corresponds to the View described by
the XML.

The impedance mismatch caused by mixing declarative and
imperative programming is eliminated if Model and Con-
troller design use a visual paradigm, just as visual View de-
sign does. Visual design of Model components based on the
relational Model is fairly straightforward: relational tables
look like tables, with a column (or row) for each attribute



(e.g., see [9]). Unfortunately, visual design of Controller
logic is not well understood. Relational Blocks is an attempt
to address the problem of visual declarative Controller de-
sign in a way that integrates with existing visual declarative
paradigms for View and Model design.

1.2 Relational Blocks
In this paper we propose the Relational Blocks approach
for building entire applications using only a visual declar-
ative approach. Section 2 introduces the Relational Blocks
approach, and explains how it addresses the problems dis-
cussed above. We also discuss the integration of transactions
and exceptions into the programming model. Section 3 dis-
cusses the Relational Blocks visual editor, the technologies
used in its implementation, and illustrates its use in the as-
sembly of a small sample application.

We have just begun to explore the use of Relational Blocks
in visually assembling applications. We describe some of the
challenges that we are actively addressing in Section 4.

2. RELATIONAL BLOCKS APPROACH
The Relational Blocks approach for declarative visual design
of Controller components is based on relational algebra. The
particular formulation we have chosen is based on Relational
A ([4], chapter 4). Relational algebra is in many ways a per-
fect match for a Model represented by a relational database,
since relational algebra provides a declarative description of
the data that should be extracted from the relational Model
and how it should be manipulated [2]. Also, relational al-
gebra operations are reasonably simple in isolation, small in
number, and can be easily composed to form more complex
operations. Relational algebra also maps nicely onto a vi-
sual representation of interconnected blocks, similar to an
electronic circuit. The operations defined by Relational A
are: not (set complement), remove (remove an attribute),
rename (rename an attribute), and (natural Join), or (gen-
eralized union), and tclose (transitive closure).

One problem is that relational algebra by itself does not
provide a means to update a relational Model, since rela-
tional algebra expresses a set of time-invariant relationships
between outputs and inputs. The update and insert oper-
ations found in SQL are therefore not found in a relational
algebra such as Relational A.

One approach to handling updates is to use an imperative
programming language ([4], Chapter 5, Tutorial D). Rela-
tional Blocks takes a different approach: it treats the Model
as the state of a Relational State Machine. Thus, the exe-
cution of the State Machine causes the Model (and View)
to be updated. The State Machine is typically “clocked”
(makes transitions) on View events. Thus, the application
state is specified up front, and Relational Blocks supplies a
well-defined model to update this state

In order to express the complete application using relational
algebra, the View components must also be integrated with
the relational algebra Controller and relational Model. Rela-
tional Blocks therefore encapsulates View components within
a relational API that is compatible with the Model and Con-
troller components.

This allows the entire Relational Blocks application to be
expressed as a directed graph of Model, View, and Controller
components, all defined in a declarative fashion:

• Model : the Model is expressed as a set of relations (ta-
bles). Visually, the Model takes the form of a mathe-
matical table, as in existing visual tools for relational
database design. The Model may consist of persistent
and/or transient portions (this is an application de-
sign issue; the Relational Blocks paradigm makes no
distinction between persistent and transient Models).
The Model has an output, which is the current state of
the database, and an input, which is the desired next
state of the database.

• View : the View is expressed visually, by laying out
widgets to form the desired user interface screen. Program-
writeable widgets have an input, expressed as a rela-
tion. For example, a label might have a single tu-
ple with text and font attributes. Program-readable
widgets have an output, expressed as a relation. For
example, a slider might have a single tuple with a sin-
gle attribute value in its output. Note that read/write
widgets (e.g., text boxes) effectively become part of the
Model, since they act as a mini database. More com-
plicated widgets such as tables and lists are multi-tuple
relations. The View widgets are thus directly compat-
ible with the Model and Controller components.

• Controller : the application’s controller logic is described
declaratively using relational algebra. The input to the
Controller is the current state of the Model and the
current values of the readable widgets. The output of
the Controller is the next state of the Model and the
next state of the writeable View widgets.

These relational components are assembled in a way that
is analogous to hardware-chip assembly. A component is
described syntactically solely in terms of its input and out-
put terminals, and its interconnection to other components.
Component semantics are described mathematically (using
the relational algebra), or approximated in natural language.
Continuing the hardware analogy, the assembled compo-
nents form a directed graph. The Relational Blocks run-
time maintains this graph, whose state changes only when a
“clock tick” occurs. The functional (Controller) portions
of this graph must be acyclic; however, cycles may pass
through the Model and View components, because the cy-
cles are “broken” by the clocked nature of the Model and
View.

2.1 Relational Blocks Example
In this section we illustrate the basic concepts of Relational
Blocks using the Create Example introduced in Section 1.
The Create Example View is shown in Figure 1, and its
Model is shown in Table 1. It consists of a single table, with
name and value attributes, each of type string.

The full example (Model, View, and Controller) is shown in
Figure 3. (Figure 3 is an annotated version of the Relational
Blocks visual editor canvas; Figure 8 is the actual screen-
shot.) The Figure shows the Controller blocks in addition



Table 1: Example Model
name value
string string

. .

. .

to the View widgets and Model definition. The output of the
Name text-box is a single-tuple relation with the attribute
text. This output flows to the block titled remove+rename
#1. In the current implementation, the remove and re-
name algebra functions are combined into a single block,
since they are often used together. In this case, the block
renames the text attribute to name, and removes any other
attributes. Similarly, the block titled remove+rename #2
renames the text attribute of the Value text-box to value,
and removes all other attributes.

The two relations from the remove + rename blocks flow
to the join block, which performs an and operation. This
results in a single-tuple relation with the attributes name
and value, the values of which are taken from the Name and
Value text-boxes, respectively. (Note that and reduces to a
Cartesian product when there is no common attribute name
in the joined relations, as in this case.) Thus the relation
header from the and operation is exactly compatible with
the relation header of the Model block, which is required by
the Relational Blocks implementation.

The “Create” button produces a no-attribute (degree zero)
relation. Degree-zero relations are used to indicate true and
false in Relational A. true contains a single no-attribute
tuple, and false contains no tuples. true is the identity
relation for and (any relation and true yields the original
relation). Any relation and false yields the empty relation.

The enabled insert block has two inputs: insert and
enable. This is actually a macro block which contains the
blocks shown in Figure 4. insert specifies the new tuple(s)
to be inserted into the Model at the next state transition,
iff the enable input is true. In the macro block, insert
is and’ed with enable to form a relation which is either
equal to insert or empty, depending on the value of enable.
The resulting relation is or’ed with the current value of the
Model, so that the next value of the Model is either aug-
mented by the insert tuple(s), if enable is true, or un-
changed, if enable if false.

State transitions of the application in this example are trig-
gered by user actions on the View. Thus, when the “Create”
button is clicked, the contents of the Name and Value text
boxes are merged into a single tuple, which is then inserted
into the Model. If a different View event occurs (e.g., the
user clicks on one of the text boxes), no change is made to
the Model, since the enable value is false.

2.2 Relational Blocks Runtime
More generically, the Relational Blocks runtime execution
is event-driven, typically by View events (e.g., clicking the
“Create” button). (Another event source might be external
events, such as database triggers, but this has not yet been
studied.) Each event executes the following algorithm:

1. Evaluate the inputs to all model blocks. Typically this
is a recursive process, because the inputs depend on
the outputs of other algebra blocks, View widgets, and
Model block outputs. In the example above, evaluat-
ing the input to the Model block embedded in the en-
abled insert macro requires evaluating the or block
inside the macro, the and block inside the macro, the
and of the remove + rename blocks, and the out-
puts of the text boxes. Also, the selected output of
the “Create” button must be evaluated.

2. Each model block then updates its state, using the
values just calculated in step 1. In this step, the Re-
lational State Machine transitions to the next state.
In the example above, the Model will insert the new
{Name, Value} tuple iff the “Create” button was pressed.
Future evaluations of Model outputs will equal this
new state.

3. All writeable View blocks update their state based on
their current inputs. Note that the View is thus up-
dated synchronously by the event-handler, and asyn-
chronously by the user.

Imperative languages almost always have a model of com-
putation based on the concept of a program counter. The
program counter indicates exactly where the flow of execu-
tion is at all times. (Note that multithreaded models will
have one program counter per thread.) This is made ex-
plicit by the way that imperative-language debuggers allow
developers to set breakpoints for an application’s execution
so that the application is suspended when the flow of exe-
cution reaches that point. In contrast, Relational Blocks, in
common with other declarative approaches, does not have
a concept analogous to a program counter. Instead, Rela-
tional Blocks uses an event-driven state-machine model: on
each event, the next state is evaluated functionally, and the
state machine is then advanced.

2.3 Flexibility/Power
One capability which is needed for more complex applica-
tions is a general function-evaluation mechanism. For ex-
ample, suppose the type of the value attribute is changed to
type integer instead of string. The application design must
be enhanced to convert the string value output from the re-
move+rename #2 block to an integer type. Reference [4]
discusses a theoretical approach to implementing functions
using relational algebra operations:

1. Create a constant-valued relation with attributes for
all of the function’s inputs and outputs. In our exam-
ple, Table 2 defines the attribute value string as the
string-valued input, and value integer as the integer-
valued output, the latter being the equivalent integer
representation of the former.

2. Perform an and operation between the function inputs
and the constant relation. The result is a relation with
a new attribute, value integer , that is the function re-
sult.



Figure 3: Example Model/View/Controller
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Figure 4: Enabled Insert Model



Table 2: Relation to Convert String to Integer
value string value integer

“0” 0
“1” 1
“2” 2
. .
. .
. .

To see how this works, suppose that the user has entered
the string “42” into the Value text-box. The output of the
text-box is the following relation:

text
“42”

The remove+rename #2 block is modified to rename text
to value string , producing the following relation:

value string
“42”

Performing an and operation with the relation of Table 2
produces this result:

value string value integer
string integer
“42” 42

Finally, an added remove + rename block removes the
value string attribute and renames value integer to value,
producing the following input relation to the enabled in-
sert block:

value
42

The problem with this approach is that many useful func-
tions require that the constant relation be of infinite size. In
our example, there are an infinite number of strings which
express legal integer values. Relational Blocks therefore im-
plements the equivalent functionality by allowing the devel-
oper to specify functions in terms of expressions. A Rela-
tional Blocks function block macro is specified by:

1. The name of the function output attribute. In our
example, this is value integer .

2. An expression that is applied to the function input
attribute(s) to produce the function output attribute.
In the example above, the expression is
integer value(value string ).

For each input tuple, the function-evalution block produces
a new tuple which is equal to the input tuple extended with

integer_value()

value_string

value_integer

Figure 5: Expression Tree for value integer = inte-
ger value(value string)

the function-output attribute. Thus, the block output is
the same as would be produced by an and with a function
expressed as a constant relation.

Internally, the expressions are parsed and represented as ex-
pression trees, as is typically done by compilers. The ex-
pression tree for the string-to-integer conversion example is
shown in Figure 5. Expression-tree terminal nodes may be
constants or input attributes. Expression-tree non-terminal
nodes may be unary functions, such as integer value(), unary
minus, etc., or binary functions, such as arithmetic sum,
concatenate, etc. Relational Blocks provides a library of
node implementations to support commonly used functions
and operators. If desired, additional node implementations
can be implemented in an imperative language (Java, in the
current implementation).

2.4 Exception Handling
Under any application design paradigm, errors can be di-
vided into two classes: those that can be detected before
runtime, and those which are detected only at runtime. The
vast majority of Relational Blocks errors can be detected
while designing the application, before running the applica-
tion. All Model specification errors can be detected before
runtime. Also, note that all block interconnections carry
information about their Relation Headers: that is, the set
of attribute names and types which flow on the connection.
This enables the Relational Blocks design tools to validate,
before runtime, that output connections are compatible with
the inputs that they are connected to. For example, if the
relation header of the insert input to the enabled insert
block does not match the relation header of the Model, Re-
lational Blocks detects an error and does not allow the ap-
plication to be executed. Similarly, an attempt to rename
or remove an attribute that does not appear in the input
relation header, can be detected at design time.

The only errors which cannot be detected before runtime
manifest themselves during execution of function blocks.
For example, the string “4t2” is not a legal string version of
any integer, and therefore does not appear anywhere in the
value string column of Table 2. Thus a function block
which attempts to convert this to an integer will yield the
empty relation. Intuitively, it is desirable for Create Ex-



ample to detect that the user has input an illegal value (a
string that cannot be converted to an integer), and to re-
cover gracefully.

Relational Blocks cannot use the exception model of impera-
tive languages such as C++ and Java. Like other declarative
languages, Relational Blocks does not have a “flow of con-
trol” that can be altered by an exception. More specifically,
the Controller semantics is fixed by the relational-algebra
blocks which make up the application design. Algebra blocks
cannot “refuse” to produce a relation output, because the
downstream blocks are depending on that output. Because
Relational Blocks implements function blocks with ex-
pression trees, some allowance must be made for expression
nodes which are provided with invalid inputs.

We considered an approach in which, given illegal input, the
expression-tree evaluation yields no output, and thus does
not appear in the function block output. However, in or-
der to make it easier to detect and handle such problems, Re-
lational Blocks uses a “Replacement Model” approach [18].
In this approach, the output of an expression with invalid
inputs is replaced by a fixed value, with the fixed value spec-
ified as a property of the function block.

Also, the Relational Blocks function block outputs con-
tain an additional attribute called invalid domain, which
indicates whether an output tuple corresponds to an input
tuple whose attribute value(s) were invalid inputs to the
function block expression. A distinguished value for the
invalid domain attribute indicates that the expression eval-
uated successfully. The function block therefore always
provides a result tuple for each input tuple. The result tu-
ple(s) contain an attribute indicating an expression-input
error, if one occurred; if an error did occur, the value of the
function-output attribute is the statically-configured prop-
erty value.

Downstream blocks may check the value of the invalid domain
attribute. They can also check whether the function’s out-
put is the value that signifies an error, and generate a popup
or status-line message as desired. Such checking must be
part of the application design itself; it is not provided by
the Relational Blocks framework. We resisted the tempta-
tion to use NULL [3] as the output value that signals an
exception. Partly because the semantics of the NULL value
is overloaded, and for other reasons [4], we decided that Re-
lational Blocks should not use the NULL-based approach for
handling exceptions.

In Relational Blocks, only the framework or expression-node
implementation can actually throw imperative exceptions
(due to programming errors or database communication er-
rors). If thrown, these exceptions are caught in the top-level
processing loop (Section 2.2), an appropriate message is sent
to the user, and the application’s current transaction (Sec-
tion 2.5) is rolled back.

2.5 Transactions
Relational Blocks supports the design and execution of trans-
actional applications: i.e., applications that access and up-
date shared state using the well-known ACID semantics
[8]. A key issue, therefore, is how to transactionally scope

an application’s activities. Frameworks such as Enterprise
JavaBeans [6] declaratively associate transaction semantics
on a per-method basis. Developers can specify, for exam-
ple, that the invocation of the setAccountBalance() method
should start a transaction, unless a transaction is already
active. This approach is unsuitable for Relational Blocks
because the notion of a “method” does not exist. More
fundamentally, we believe that transactions should not be
scoped at method granularities, but rather should be con-
trolled by user-initiated activities. Users expect that trans-
actions are initiated (and soon committed) when they click
the “submit” button after filling out a form (e.g., a funds-
transfer screen). It seems more useful, therefore, to spec-
ify transactional boundaries based on user interactions. (In
practice, transaction boundaries for imperative application
development are also usually based on user interactions.
With EJBs, each user interaction typically calls a top-level
method which declaratively begins and commits the trans-
action.)

Since declarative programs have no explicit flow-of-control,
developers cannot insert transaction begin, commit, and
rollback statements at certain points in the flow. Instead,
Relational Blocks implicitly begins a transaction with each
user-interaction event, and commits the transaction immedi-
ately after processing the event. A special rollback block
is available to control transaction rollback. If the input to
the rollback block is true, the transaction is aborted in-
stead of being committed. This allows the application de-
signer to specify conditions under which the database up-
dates should not take place. In the example above, an en-
tered value of “4t2” will be converted to some default value
(e.g., zero) specified as a property of the Function Rela-
tion. However, the zero value should not be inserted into
the database. A typical application design would convert
the invalid domain attribute indicator into a rollback con-
dition. Alternatively, the application designer could detect
error conditions and use them to disable all Model blocks.
If done correctly, this is functionally equivalent to forcing a
rollback, although it is probably more complex and error-
prone.

2.6 Relationship to OO Application Construc-
tion

As with object-oriented design, Relational Blocks imposes
a strict encapsulation on the basic blocks (Model, View,
and Controller) that it provides. Developers could build
their own “macro” blocks, composed from basic blocks pro-
vided by Relational Blocks, although this is not currently
supported. The developer determines the granularity of a
Relational Blocks macro component: should it be only a
Model, View, or Controller component; or should it be a
fusion, say, of Model and Controller function such as the
enabled insert block discussed above? This would allow,
for example, a generic “login page” block to be built and
shared among multiple applications.

Regardless of the developer’s decision, the Relational Blocks
API ensures a complete separation of interface from imple-
mentation. Well-known benefits follow from this approach
including: reducing complexity by hiding information; sep-
aration of concerns; and ensuring that changes to a compo-
nent’s implementation do not ripple-through the rest of the



application. Relational Blocks is technology neutral: even
though it is implemented in Java, the implementation could
be replaced with another language without changing the se-
mantics. In fact, Relational Blocks can be considered as
the extension of the object-oriented approach to application
assembly, such that current approaches to declarative appli-
cation assembly are augmented with encapsulation.

In contrast, an approach that includes both declarative and
imperative portions tends to discourage strict encapsulation.
Looking at the XAML [1] example in Figure 2, the impera-
tive Controller code must have a deep understanding of the
details of the View, because the View API is accessed at the
widget level. Thus small changes to the View may require
rewriting the Controller code.

Relational Blocks, however, differs from the classic object-
oriented approach in that the fundamental Model concept is
a relation rather than an object. There are several reasons
for this decision. First, we wish to leverage the huge ex-
isting base of relational data and applications. Relational
database technology is mature, and provides persistence,
transactions, and security. More fundamentally, we believe
that relational algebra is the most natural way to express
application logic in a declarative fashion. Finally, we are
convinced that attempts to map single object instances to
entire relational tuples are fatally flawed (see [4] chapter 2).
This is not a problem that is specific to Relational Blocks,
but affects all object-relational mappings. (See [10] for a
brief review of previous efforts in this area.) However, using
objects as attribute (column) values works well.

3. RELATIONAL BLOCKS PROTOTYPE
We have implemented a Relational Blocks prototype using
the Graphical Editor Framework (GEF) [7], an Eclipse [5]
tools project. GEF allowed us to easily create a rich graphi-
cal editor that maps the Relational Blocks application model
to a graphical editing environment. GEF consists of two
Eclipse plug-ins. The first, draw2d, is an SWT-based draw-
ing plug-in that provides a layout and rendering toolkit for
displaying graphics. The second, gef, provides a frame-
work for common graphical editor operations based on a
model-view-controller architecture. Developers provide the
application model: by using GEF, they are able to apply
changes made to the view (via the editor) to the model;
conversely, changes made to the model can be immediately
applied to the view. GEF is completely application neu-
tral and we used it to build the Relational Blocks prototype
fairly quickly. As shown in Figure 6, the pallette currently
provides a small set of pre-fabricated widget, model, and
algebra blocks. Developers drag blocks from the palette to
some location on the application-design panel. By selecting
the “connect” palette entry, developers can wire one block
to another. The editor displays the “pin” names, and does
not allow illegal wirings to be constructed. The property-
sheet view is used to modify various properties: e.g., the
database and table names of a enabled insert block.

In this section, we shall illustrate the prototype’s features by
walking through the steps used to build the Create Example
application fragment. We discussed the semantics of Create
Example in Section 1, as well as the Relational Blocks com-
ponents used to build it. Here, we focus on how a developer

uses the visual editor to assemble the application. The as-
sembly steps do not have to occur in any particular order,
and the steps can be interleaved.

3.1 Sketch the UI
The prototype is not focused on rendering a polished UI.
Instead, Relational Blocks allows users to sketch the UI by
laying out widgets such as labels, buttons, and text-entry
fields on the screen. We plan to extend the set of available
widgets to include more complicated types such as tables
and lists. We also plan to improve the accuracy of the UI,
perhaps by using the Eclipse Visual Editor [13] project.

Figure 6 shows how the developer sketched the UI. It con-
sists of two text-entry fields (for the Name and Value), each
associated with a corresponding label. The user clicks the
“Create” button after supplying the Name and Value in-
formation. Label widgets currently have neither inputs nor
outputs. Button widgets have a boolean valued output re-
lation: it contains a true value when the user has clicked
the button, and is false otherwise. This wire is an “enable”
wire, as it determines whether the values in the text-entry
fields will propagate to the model (Figure 7).

3.2 Design the Model
Figure 7 shows the developer designing the model in “bottom-
up” fashion. She specifies the name of an existing relational
database table for a enabled insert block, and the editor
automatically extracts the Relation Header from the table’s
meta-data. The use of transient relations (e.g., an applica-
tion “white-board”) requires that the developer input the
Relation Header through a dialog. As discussed above, en-
abled insert is composite block, consisting of a (persistent)
model and enabled “insert” logic. A developer could ex-
plicitly assemble the required blocks, but Relational Blocks
supplies the macro as a convenience. We currently provide
corresponding enabled update and enabled delete com-
posite blocks.

3.3 Specify Application Logic
Figure 8 shows the developer assembling the application by
(1) inserting the application logic via algebra blocks and (2)
wiring the blocks together, to form the Create Example ap-
plication graph. The Figure shows that clicking the button
determines whether the enabled insert block is enabled,
and thus whether the text-entry fields update the Model.
The tuple that is inserted into the model is formed by and of
the text-entry fields. Because these values have a Relation
Header that differs from the model’s, remove + rename
blocks are used to morph these Relation Headers to match
the model’s.

3.4 Run the Application
Developers can, at any time, invoke the “validate” or “exe-
cute” functions by clicking on the corresponding editor icon.
Although the editor enforces some part of the Relational
Blocks semantics through its property-sheet dialogs and for-
bidding illegal wiring, this is done only on a per-block basis.
Validation looks at the “whole picture”, and reports whether
each of the blocks is valid, has warnings, or has errors. An
error implies that the application cannot be executed in its
current state. A warning indicates that the application will



Figure 6: Using the Relational Blocks Editor to Sketch an Application UI

Figure 7: Using the Relational Blocks Editor to Specify the Model



Figure 8: Adding Controller Logic to the Application

execute, but that the behavior might not be as desired (e.g.,
a text-box output left unconnected).

Executing the application is a superset of validation, since
it constructs a graph comprised of runtime blocks, each of
which corresponds to a design-time block displayed in the
visual editor. Further semantic checks are performed, and if
valid, a concrete version of the application is constructed.
Several tasks are performed at this point. First, a run-
time graph (Section 2.2) is constructed such that a directed
edge exists from runtime blocka to runtime blockb iff an
design-time wire connects an output terminal of design-time
blocka to an input terminal of design-time blockb. Second,
view widgets are mapped to concrete SWT widgets in a
layout that conforms to that displayed in the visual editor.
An SWT event-handler is constructed for each SWT wid-
get that delegates all event handling to the runtime graph’s
processEvent() method. processEvent() performs the state-
machine clocking. Finally, database connections are estab-
lished as necessary to the relational database tables that
correspond to enabled insert blocks. At this point, the
application is displayed to the user, and can be executed
“as is”. Figure 9 shows the result.

4. CHALLENGES
Our claim that Relational Blocks enables and supports fully
declarative visual application assembly has been validated
only with “demo-sized” applications. We face several chal-
lenges as we scale Relational Blocks to build real-world ap-
plications.

One issue is complexity: Relational Blocks designs will al-
most certainly grow too complicated to be displayed on a
single screen. A complicated View which takes up all the
screen real estate cannot be packaged on the design screen

with its Controller and Model. The natural solution to this
problem is to introduce hierarchy. The top-level design of
the application should fit on a single screen. Designers can
“drill down” to lower levels of the design to see more detail,
or move up to see the entire application.

In order to support hierarchy, Relational Blocks needs to
support designer-defined composite blocks, or macros. This
allows the developer to encapsulate a set of Model, View
and/or Controller blocks, and treat it as a single reusable
block in higher-level designs. For example, the designer
might design a composite block for each UI screen in the
application. Connections between individual UI screens and
the relevant Controller and Model can then be shown on a
different screen. This also has the benefit of allowing the
View design to be modified without affecting the Controller
and Model, as long as the interface to the View remains
unchanged. In addition to user-defined composite blocks,
Relational Blocks should come with an existing library of
composite blocks; for example, login Views, user database
Models, and priority encoders (useful for radio button wid-
gets).

Also, virtually all significant applications require multi-View
navigation. Thus, Relational Blocks must have design-time
view which shows a “navigational” view of all the Views of
the application. Finally, designers must be able to integrate
Relational Blocks applications (or portions of applications)
with existing, non-relational-block, components. We must
therefore devise a way to easily wrap a thin relational shell
around such components. We already have some experience
with this requirement, since many of the basic blocks are
wrapped versions of SWT widgets and JDBC artifacts.

Despite these challenges, the approach of visual application



Figure 9: Direct Execution of the Application from the Relational Blocks Editor

assembly used by Relational Blocks seems promising.
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