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Abstract. Arrays over regions of points were introduced in ZPL in the
late 1990s and later adopted in Titanium and X10 as a means of simpli-
fying the programming of high-performance software. A region is a set
of points, rather than an interval or a product of intervals, and enables
the programmer to write a loop that iterates over a region. While conve-
nient, regions do not eliminate the risk of array bounds violations. Until
now, language implementations have resorted to checking array accesses
dynamically or to warning the programmer that bounds violations lead
to undefined behavior. In this paper we show that a type system for a
language with arrays over regions can guarantee that array bounds vi-
olations cannot occur. We have developed a core language and a type
system, proved type soundness, settled the complexity of the key deci-
sion problems, implemented an X10 version which embodies the ideas of
our core language, written a type checker for our X10 version, and ex-
perimented with a variety of benchmark programs. Our type system uses
dependent types and enables safety without dynamic bounds checks.

1 Introduction

Type-safe languages allow programmers to be more productive by eliminating
such difficult-to-find errors as memory corruption. However, type safety comes
at a cost in runtime performance due to the need for dynamic safety checks.
Traditionally, compilers use static analysis to eliminate some of these checks;
in contrast, our work uses a more powerful type system based upon dependent
types to prove the program safe in the absence of such checks. Our type system
allows the programmer to provide intuitive annotations which allow the com-
piler to deduce the desired safety properties. Our work is heavily influenced by
X10 [6], a new type-safe object-oriented programming language for distributed
high-performance computing. In X10, array accesses are required to be not only
in-bounds but also local with respect to the place of execution. This data locality
aspect is important for distributed algorithms running on high-performance clus-
ters where remote data access can be costly. Eliminating safety checks for array
accesses is important; array accesses are among the most frequent operations in
scientific applications, and thus their performance is critical. Experiments show
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that simple bounds checks in languages like Java can cause performance hits of
up to a factor of two. Dynamic checks can be even more costly in X10, since
arrays are allowed to be sparse and distributed.

Modern high performance computing (HPC) languages must contain a rich
language for arrays, a dominant data-structure in the HPC space. Chamberlain
et al. [4,3,5,7] proposed regions as a construct for specifying array operations in
languages for parallel programming. A region is a set of points, rather than an
interval or a product of intervals, and enables the programmer to define an array
over a region and to write a loop that iterates over a region. Regions were later
adopted in Titanium [9] and X10 [6]; in X10, a regions is a first-class value. All of
ZPL, Titanium, and X10 provide the programmer with a rich algebra of region
operators to manipulate arrays. A programmer can use regions to specify com-
putations on dense or sparse, multidimensional and hierarchical arrays. While
convenient, regions do not eliminate the risk of array bounds violations. Until
now, language implementations have resorted to checking array accesses dynam-
ically or to warning the programmer that bounds violations lead to undefined
behavior. For performance and productivity, we prefer that array computations
are statically checked to be safe.

We have developed an extension of the type system for X10 that allows the
programmer to express that accesses to X10 arrays are both in-bounds and place-
local. Our type system enables the programmer to use concise type annotations
to provide useful documentation that allows the compiler to eliminate all safety
checks, resulting in faster, statically-checked code. Code type-checks if accesses
are performed in a context in which the index can be statically established to be
in the region over which the array is defined. X10’s region-based iterators such as
for and foreach often provide such a context. For instance in the statement for
(x : r) s it is the case that within s one may assume that x lies in the region
r. The type system uses the operations of the region algebra as a high-level
abstraction that it can exploit for its reasoning. This is in contrast to previous
work which used decision procedures based on Pressburger Arithmetic in order
to statically eliminate checks. Using the new type system requires programmers
to write code in such a way that it explicitly uses regions and region operations
instead of the traditional integer arithmetic. However, this is a small price to
pay; in our experience, refactoring programs to use regions often results in code
that is easier to understand and more generic.

We have formalized the core of our type system in the context of an applied
dependently-typed lambda calculus [13]. We have proved type soundness and
settled the complexity of the key decision problems. We will illustrate the type
system with various examples. We have implemented the type system in an ex-
perimental compiler for X10, XTC-X10, and type checked a variety of programs.

Our type system is inspired by that of Xi and Pfenning [16,17]. Like Xi and
Pfenning, we use dependent types to avoid array-bounds checks. Xi and Pfenning
use a decision procedure based on Pressburger arithmetic [12] in order to show
the safety of array accesses. In contrast to Xi and Pfenning’s language and type
system, we study a programming model and type system based on regions. Our
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type system uses types that are parameterized over regions. Operations on region
values are mapped to corresponding operations on region types. The mapping is
defined such that subset relations for regions values corresponds to subtyping of
their respective types. Establishing that an index is in-bounds for a particular
array is equivalent to establishing that region over which the index may range is
a subset of the region over which the array is defined. A subtyping relationship
between the respective region types implies the desired subset relationship and
can thus be used to statically prove the safety of the access.

An alternative to using types to eliminate bounds checks is the use of static
analysis. Early work on using static analysis to eliminate bounds checks investi-
gated the use of theorem proving [14] to eliminate checks. Our work is related in
that we use types to guide a decision procedure, a technique that is also used in
proof carrying code [8]. For just-in-time compiled languages such as Java where
compile time is crucial, the ABCD algorithm [2] describes a light-weight analysis
based on interval constraints that is capable of eliminating on average 45% of the
array bounds checks. However, the results range from 0 to 100% for the various
individual benchmarks, which may make it hard for programmers to write code
that achieves consistently good performance.

When speed is of utmost concern, a language designer may decide to not
require any bounds checks altogether. For example, the reference manual for
Titanium [9], a modern language for high-performance computing, defines that
operations which cause bounds violations result in the behavior of the rest of the
program being undefined. The semantics of our core language is similar: a bounds
violation results in the semantics getting stuck. The contribution of our paper is
a type system which guarantees statically that bounds violations cannot occur.
Thus, our type system enables us to have both safety and high performance.

2 Example Programs

We will present our core language and type system via six example programs
which we show in Figure 1. The first five example programs all type check, while
the sixth program (shift) does not type check.

The function init initializes all points in an array to 1. The function init
takes two arguments, namely a region α and an array over region α. The use
of the dependent type α makes init polymorphic: init can initialize any array
without the need for any bounds checking. The expression a.reg has type reg
α and p which ranges over a.reg has type pt α. At the time of the assignment
to a[p], we have that the type of p matches the type of the region of a.

The function partialinit allows partial initialization of an array. It takes
two extra arguments, namely a region value x and a corresponding region type
variable β which represents the same region as a type. The body of partialinit
initializes those points in the argument array which can be found in the region
x. The argument β comes with the constraint β ⊆t α, which means that the
region β must be a subset of the region α. This constraint is necessary to type
check that the assignment to a[p] is safe; we have that the type of p is β
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which according to the constraint a subset of α, thus proving that the partial
initialization can be performed safely. The call partialinit <reg 0:9>(new
int[0:9])<reg 1:8>(reg 1:8) is a good example of the kind of reasoning that
the programmer has to do when programming directly in the core language; the
call satisfies the constraint β ⊆t α because [0 : 8] ⊆ [0 : 9].

The function copy takes two arrays a and b with regions α and β, respectively.
The body of copy copies elements from b to a, but only for common points. The
type of p is α∩t β, and each of the array accesses a[p] and b[p] will type check
because α ∩t β ⊆ α and α ∩t β ⊆ β.

The function partialcopy is a variation of copy which takes two extra ar-
guments which specify a subset of the intersection of the regions of a and b. Like
for copy, the subset relationship between the type of x and the regions of a and
b enables the type checker to prove that bounds checks are not required.

The function expand takes an array a and region x, where x must be a
superset of the region of a, and creates and returns a new array b over the region
x. The function expand partially initializes the new array b with values from a
at overlapping points. expand is interesting in that it highlights the importance
of keeping upper and lower bounds for the region of arrays during type checking.

The function shiftleft takes an argument a with region α and shifts all
elements one position to the left, while leaving the rightmost element unchanged.
In more detail, shiftleft first creates an inner region of α shifting all elements
of α by one to the right (α + 1) and then intersecting the result with α. If α
is simply an interval, this effectively removes the first element from α. Then
shiftleft proceeds with doing a[p-1] = a[p] for each point p in the inner
region. The inner region has type reg (α + 1) ∩t α). The expression p-1 is
always within the region of a because p-1 has type pt ((α + 1) ∩t α) − 1) and
therefore also, via subtyping, the type pt α (because +1 and −1 cancel each
other out). Similarly, the expression p is always within the region of a because
p has type pt (α + 1) ∩t α) and therefore also, again via subtyping, the type
pt α

The program shift is a small variation of shiftleft that contains a bug
which would result in an array bounds violation – and that consequently does
not type check. The problem with shift is that the array access a[p+1] will be
out of bounds when p reaches the end of the array.

3 The Core Language

We now present the syntax, semantics, and type system of our core language.
In the Appendix of the full version of the paper (available from our webpage),
we prove type soundness using the standard technique of Nielson [11] and others
that was popularized by Wright and Felleisen [15].

Syntax. We use c to range over integer constants, d to range over region
constants, l to range over array labels drawn from a set Label, p to range over
point constants, x to range over variable names, and α to range over region-
variable names. In our core language, points are integers, and we will occasionally
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let init = lam α.λa:int[α]. for (p in a.reg){ a[p]=1 }
in init<reg 0:9>(new int[0:9])

init : Πα. int[α] → int

let partialinit = lam α.λa:int[α].lam β:(β ⊆t α).λx:reg β
for (p in x){ a[p]=1 }

in partialinit <reg 0:9>(new int[0:9])<reg 1:8>(reg 1:8)

partialinit : Πα.int[α] → (Πβ:(β ⊆t α).reg β → int)

let copy = lam α.λa:int[α].lam β.λb:int[β].
for (p in (a.reg ∩s b.reg)){a[p]=b[p]}

in copy<reg 0..7>(new int[0..7])<reg 3..10>(new int[3..10])

copy : Πα.int[α] → (Πβ.int[β] → int)

let partialcopy =

lam α.λa:int[α].lam β.λb:int[β].lam γ:(γ ⊆t α ∩t β).λx:(reg γ).
for (p in x){ a[p] = b[p] }

in partialcopy<reg 0..7>(new int[0..7])<reg 3..10>(new int[3..10])

<reg 4..6>(reg 4..6)

partialcopy :

Πα.int[α] → (Πβ.int[β] → (Πγ:(γ ⊆t α ∩t β).(reg γ → int))

let expand = lam α.λa:int[α].lam β:(α ⊆t β).λx:(reg β).
let b = new int[x]

in { for (p in a.reg){ b[p] = a[p] } ; b }
in expand<reg 3..7>(new int[3..7])<reg 0..10>(int[0..10])

expand : Πα.int[α] → (Πβ:(α ⊆t β).reg β → int[β])

let shiftleft = lam α.λa:int[α].
let inner = (α+ 1) ∩s α
in { for (p in inner) { a[p-1] = a[p] } }

in shiftleft<reg 3..7>(new int[3..7])

shiftleft : Πα.int[α] → int

let shift = lam α.λa:int[α].
let inner = (α+ 1) ∩s α
in { for (p in inner) { a[p+1] = a[p] } }

in ...

Fig. 1. Example programs

write a point constant as c. For shifting a region by a constant we use the notation
{c1, . . . , cn}+ c = {c1 + c, . . . , cn + c}.
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(Type) t ::= int | pt r | reg r | t[r] | t→ t | Πα : ϕ.t
(Region) r ::= α | d | r ∪t r | r ∩t r | r \t r | r +t c
(Constraint) ϕ ::= true | r ⊆t r | ϕ ∧ ϕ

(Value) v ::= c | p | d | l | λx : t.e | lam α : ϕ.e
(Expression) e ::= v | x | e1 e2 | e<ρ>

| new t[e] | e1[e2] | e1[e2] = e3 | e.reg
| e1 ∪s e2 | e1 ∩s e2 | e \s r | e+s c | e++sc
| for (x in e1){e2} | e1; e2

(Region Arg) ρ ::= α | d

The language has six data types, namely integers, points, regions, arrays,
functions, and dependently-typed functions. The types of points, regions, and
arrays are defined in terms of set expressions that involve constants, variables,
union, intersection, set difference, and the unusual r+tc. Given an interpretation
of the variables, a set expression denotes a set, that is, a region. The type of a
point is a region that contains that point. The type of a region is a singleton
type consisting of that region itself. A dependently-typed function lam α : ϕ.e
has its argument constraint by the set constraint ϕ; its type is Πα : ϕ.t. The
idea is that if we call lam α : ϕ.e with a region d, then the set constraint ϕ must
be satisfied for α = d for the call to be type correct.

The expression language contains syntax for creating and calling functions,
for creating, accessing, and updating arrays, for computing with regions, and
for iterating over regions. The expression e.reg returns the region of an array.
The expression e++sc adds a constant c to the point to which e evaluates. The
expression e+s c adds a constant to each of the points in the region to which e
evaluates.

We need the set operators to work both on types, expressions, and actual
sets. In order to avoid confusion, we give each operator on types the subscript
t, on expressions the subscript s, and on sets no subscript at all.

In the example programs earlier in the paper, we used the syntactic sugar
let x = e in { e′ } in order to represent (λx.e′)e.

Semantics. Our core language has a small-step operational semantics. We
use H to range over heaps: H ∈ Label→ Int→ Value.

We use D(H) to denote the domain of a partial function H. A state in the
semantics is a pair (H, e). We say that (H, e) can take a step if we have H ′, e′

such that (H, e) (H ′, e′), using the rules below. We say that (H, e) is stuck if
e is not a value and (H, e) cannot take a step. We say that (H, e) can go wrong
if we have H ′, e′ such that (H, e) ∗ (H ′, e′) and (H ′, e′) is stuck.

We assume a function default which maps a closed type to a value with the
property that Ψ ;ϕ;Γ ` default(t) : t for a Ψ that contains suitable definitions
of the labels used in default(t), and for any ϕ and Γ . The idea is that we will
use default(t) as the initial value at all points in an array with element type
t. While we can easily define examples of such a function default, we will not
show a specific one, simply because all we need to know about it is the property
Ψ ;ϕ;Γ ` default(t) : t.
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In order to specify the execution order for the loop construct, Rule ((12))
uses a function order({c1, . . . , cn}) = 〈c1, . . . , cn〉, where c1 < . . . < cn.

Below we show the main rules of the call-by-valae semantics; the rules are
mostly standard and the full set of rules can be found in the full version of the
paper. The key rules (4) and (5) both have the side condition that l ∈ D(H) and
p ∈ D(H(l)). The condition p ∈ D(H(l)) is the array-bounds check; p must be in
the region of the array. If the side condition is not met, then the semantics will
get stuck. Notice that in Rule (7) we evaluate the syntactic expression d1 ∪s d2

to the value d1∪d2. Rule (12) unrolls the for loop and replaces the loop variable
with an appropriate point in each copy of the body of the loop.

(H, (λx.e)v) (H, e[x := v]) (1)
(H, (lam α : ϕ.v)<ρ>) (H, v[α := ρ]) (2)

(H, new t[d]) (H[l 7→ λp ∈ d.default(t)], l) where l is fresh (3)
(H, l[p]) (H,H(l)(p)) if l ∈ D(H) and p ∈ D(H(l)) (4)

(H, l[p] = v) (H[l 7→ (H(l))[p 7→ v]], v) if l ∈ D(H) and p ∈ D(H(l))(5)
(H, l.reg) (H,D(H(l))) if l ∈ D(H) (6)

(H, d1 ∪s d2) (H, d1 ∪ d2) (7)
(H, d1 ∩s d2) (H, d1 ∩ d2) (8)
(H, d1 \s d2) (H, d1 \ d2) (9)

(H, d+s c) (H, d+ c) (10)
(H, p++sc) (H, p+ c) (11)

(H, for (x in d){e}) (H, e[x := c1]; . . . ; e[x := cn])
where order(d) = 〈c1, . . . , cn〉

(12)

(H, v; e) (H, e) (13)

Satisfiability and Entailment. We use ρ to range over mappings from
variables to sets. We say that ρ satisfies a constraint ϕ if for all r1 ⊆t r2 in ϕ
we have r1ρ ⊆ r2ρ. We say that a constraint ϕ is satisfiable if there exists a
satisfying assignment for ϕ.

We say that a constraint is valid if all variable assignments satisfy the con-
straint. We say that ϕ entails ϕ′ if the implication ϕ ⇒ ϕ′ is valid, and write
ϕ |= ϕ′.

The satisfiability problem is: given a constraint ϕ, is ϕ satisfiable? The en-
tailment problem is: given two constraints ϕ,ϕ′, is ϕ |= ϕ′ true?

For our notion of set constraints, the satisfiability problem is NP-complete.
To see that, first note that already for the fragment of set constraints without
the r +t c expression, the satisfiability problem is NP-hard [1]. Second, to show
that the satisfiability problem is in NP we must first argue that we only need
to consider sets of polynomial size; we can then guess a satisfying assignment
and check that assignment in polynomial time. Let us first flatten the constraint
by, for each subexpression e, replacing e with a variable α and adding an extra
conjunct α = e. In the flattened constraint, let n be the number of variables
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in the constraint, let u be the largest integer mentioned in any region constant
in the constraint, and let k be the largest c used in any e +s +s or e ++s++s

expression in the constraint. In any solution, an upper bound on the largest
integer is n× u× k. To see that notice that either the constraint system is not
satisfiable or else the biggest integer we can construct is by a sequence of +k
operations, each involving a different variable. Similarly, we have have a lower
bound on the smallest integer used in any solution.

For our notion of set constraints, the entailment problem is co-NP-complete.
To see that, first note that ϕ |= ϕ′ if and only if ϕ ∧ ¬ϕ′ is unsatisfiable. For
the fragment of cases where ϕ′ = false we have that the entailment problem is
the question of given ϕ, is ϕ unsatisfiable, which is co-NP-complete. So, the full
entailment problem is co-NP-hard. Second, note that the entailment problem is
in co-NP; we can we can easily collect the set of all points mentioned in the
constraints, then guess an assignment, and finally check that the assignment is
not a satisfying assignment, in polynomial time.

Heap Types. We use Ψ to range over maps from array labels to types of
the form t[d]. We use the judgment |= H : Ψ which holds if (1) D(H) = D(Ψ)
and (2) if for each l ∈ D(H) we let t[d] = Ψ(l), then D(H(l)) = d and for each
p ∈ D(H(l)) we have Ψ ;ϕ;Γ ` H(l)(p) : t. We write Ψ C Ψ ′ if D(Ψ) ⊆ D(Ψ ′)
and Ψ, Ψ ′ agree on their common domain.

Type Rules. A type judgment is of the form Ψ ;ϕ;Γ ` e : t, which holds if
it is derivable the rules in Figure 2. The type rules ensure that ϕ is satisfiable
at every point in a type derivation of a type-correct program. In particular,
Rule (22) contains the explicit conditions that ϕ ∧ ϕ′[α := ρ] are satisfiable.
Rule 32 is a key type rule which says that to type check a loop for (x in e1){e2},
we check that e1 has a type reg r, and then assign x the type pt r while checking
e2. The type rules for array lookup, Rule (24), and array update, Rule (25),
ensure that the point is in bounds by requiring that the type of the point is a
region which is a subset of the region of the array.

4 Experiments

We have implemented the presented type system in XTC-X10, a prototype im-
plementation of an X10 variant that is publically available on our webpage3. The
implementation is able to type-check all of the example programs from Section 2.
Our prototype has some syntactic differences compared to IBM’s reference im-
plementation of X10, mostly because it adds additional features such as region
types, operator overloading and generics. We have converted some of the bench-
marks from the IBM reference implementation of X10 to work with XTC-X10.
Since those benchmarks were originally written for languages without regions,
most of the work is put into making the code use regions.

IBM’s reference implementation of X10 contains a parallel implementation of
the SOR benchmark, which illustrates the necessary conversion to regions. The
3 http://grothoff.org/christian/xtc/x10/
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Ψ ;ϕ;Γ ` c : int (14)

Ψ ;ϕ;Γ ` p : pt d (where p ∈ d) (15)

Ψ ;ϕ;Γ ` d : reg d (16)

Ψ ;ϕ;Γ ` l : Ψ(l) (17)

Ψ ;ϕ;Γ [x : t1] ` e : t2
Ψ ;ϕ;Γ ` λx : t1.e : t1 → t2

(18)

Ψ ;ϕ ∧ ϕ′;Γ ` e : t

Ψ ;ϕ;Γ ` lam α : ϕ′.e : Πα : ϕ′.t
(19)

Ψ ;ϕ;Γ ` x : Γ (x) (20)

Ψ ;ϕ;Γ ` e1 : t1 → t2 Ψ ;ϕ;Γ ` e2 : t1
Ψ ;ϕ;Γ ` e1 e2 : t2

(21)

Ψ ;ϕ;Γ ` e : Πα : ϕ′.t ϕ ∧ ϕ′[α := ρ] is satisfiable

Ψ ;ϕ;Γ ` e<ρ> : t[α := ρ]
(22)

Ψ ;ϕ;Γ ` e : reg r

Ψ ;ϕ;Γ ` new t[e] : t[r]
(23)

Ψ ;ϕ;Γ ` e1 : t[r] Ψ ;ϕ;Γ ` e2 : pt r′ ϕ |= r′ ⊆t r
Ψ ;ϕ;Γ ` e1[e2] : t

(24)

Ψ ;ϕ;Γ ` e1 : t[r] Ψ ;ϕ;Γ ` e2 : pt r′ ϕ |= r′ ⊆t r Ψ ;ϕ;Γ ` e3 : t

Ψ ;ϕ;Γ ` e1[e2] = e3 : t
(25)

Ψ ;ϕ;Γ ` e : t[r]

Ψ ;ϕ;Γ ` e.reg : reg r
(26)

Ψ ;ϕ;Γ ` e1 : reg r1 Ψ ;ϕ;Γ ` e2 : reg r2

Ψ ;ϕ;Γ ` e1 ∪s e2 : reg r1 ∪t r2
(27)

Ψ ;ϕ;Γ ` e1 : reg r1 Ψ ;ϕ;Γ ` e2 : reg r2

Ψ ;ϕ;Γ ` e1 ∩s e2 : reg r1 ∩t r2
(28)

Ψ ;ϕ;Γ ` e1 : reg r1 Ψ ;ϕ;Γ ` e2 : reg r2

Ψ ;ϕ;Γ ` e1 \s e2 : reg r1 \t r2
(29)

Ψ ;ϕ;Γ ` e : reg r

Ψ ;ϕ;Γ ` e+s c : reg r +t c
(30)

Ψ ;ϕ;Γ ` e : pt r

Ψ ;ϕ;Γ ` e++sc : pt r +t c
(31)

Ψ ;ϕ;Γ ` e1 : reg r Ψ ;ϕ;Γ [x : pt r] ` e2 : t

Ψ ;ϕ;Γ ` for (x in e1){e2} : t
(32)

Ψ ;ϕ;Γ ` e1 : t1 Ψ ;ϕ;Γ ` e2 : t2
Ψ ;ϕ;Γ ` e1; e2 : t2

(33)

Fig. 2. Type rules

SOR code iterates over the inner region of a two dimensional array and updates
each point with a weighted average over the point and its immediate neighbors.
The parallel version interleaves processing odd and even rows. The original X10
code that works with the IBM reference implementation is shown below.
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void sor(double omega, double[.] G, int iter) {

int M = G.distribution.region.rank(0).size();

int N = G.distribution.region.rank(1).size();

final double omega_over_four = omega * 0.25;

final double one_minus_omega = 1.0 - omega;

int Mm1 = M-1; int Nm1 = N-1;

for (int p=0; p<iter; p++) {

for (int o = 0; o <= 1 ; o++) {

final int offset = o;

finish foreach (point[ii] : 0: ((Mm1-1)-(1+offset))/2) {

int i = 2*ii + 1 + offset;

for (int j=1; j<Nm1; j++)

G[i,j] = omega_over_four * (G[i-1,j] + G[i+1,j] + G[i,j-1]

+ G[i,j+1]) + one_minus_omega * G[i,j];

} } } }

We have converted the code above to work with our prototype and to make
better use of regions. Aside from being statically checkable, the rewritten SOR
benchmark is also more generic. Where the original code required a rectangular
array to be used, the new code works with two dimensional arrays of any shape.
It uses the project operator on regions to compute the extent of the shape in
each dimension. This is necessary since the outer foreach needs to parallelize
processing of rows but not of columns and thus cannot simply iterate over the
entire array. Note that the inner for loop iterates over a single row by keeping
the first dimension fixed to i. Intersecting the selected row with inner allows
the type system to verify that the accesses are in bounds – and ensures that the
program works correctly for non-rectangular arrays. Note that the implementa-
tion automatically infers region types for local variables (particularly the type
of ij) and therefore no region type annotations are required for this benchmark.

const point NORTH = new point(1,0); const point WEST = new point(0,1);

void run(double omega, Array<double> G, int iter) {

region outer = G.dist.reg;

region inner = outer & (outer + WEST) & (outer - WEST)

& (outer + NORTH) & (outer - NORTH);

double omega_over_four = omega * 0.25d;

double one_minus_omega = double.ONE - omega;

region d0 = inner.project(0); region d1 = inner.project(1);

if (d1.size() == 0) return;

int d1MIN = ((point)d1.min())[0]; int d1MAX = ((point)d1.max())[0];

for (it[off] : [1:iter*2]) {

int om2 = off % 2;

finish foreach (pnt[i] : d0) {

if (i % 2 == om2)

for (ij : inner & [i,d1MIN:i,d1MAX])

G[ij] = omega_over_four * (G[ij-NORTH] +

G[ij+NORTH] + G[ij-WEST] + G[ij+WEST])

+ one_minus_omega * G[ij];

} } }
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The current XTC-X10 prototype uses an interpreter written in Java to ex-
ecute the generated code. As a result, giving meaningful performance numbers
based on XTC-X10 is not possible at this time. However, the performance per-
formance impact of eliminating bounds checks can be estimated by crudely dis-
abling all checks in an existing implementation. Disabling dynamic checks in
IBM’s X10 reference implementation can improve performance by a factor of 3
for some benchmarks. Similarly, disabling bounds checks in IBM’s Java Virtual
Machine can improve performance of benchmarks with intensive array access
patterns by a factor of 1.75 (Personal communication with Christopher Don-
awa.)

The number of bounds checks usually differs dramatically between appli-
cations. The following table lists total execution times and number of bounds
checks (total and per second of execution time) for various X10 benchmarks
(adapted from the Java Grande Benchmark Suite).

Benchmark Total checks runtime (s) checks/s
Crypt 3800520 15.6 245194
Moldyn 308416 12.9 23908
RayTracer 900 3.8 236
CG 830899147 355.0 2340560

5 Future Work and Conclusion

Many of the benchmarks available for X10 cannot be checked within the core lan-
guage presented in this paper. The dominant reason is X10’s partitioned global
address space. In X10, arrays can be distributed across places; for those arrays
accesses must not only be in bounds but also local to the current place. The
presented type system can be made to handle those cases by extending the op-
erator language to cover operations that manipulate distributions (mappings of
regions to places). Other benchmarks cannot be checked because their index op-
erations involve intricate integer arithmetic which cannot be mapped to regions
in obvious ways.

We are investigating the use of additional region operators that might enable
us to check more of these benchmarks. However, adding additional operators
further complicates the decision procedures for satisfiability and/or entailment.

Out-of-bounds array accesses remain a leading cause of security problems
and, according to the National Vulnerability Database [10], buffer overflows are
responsible for 233 out of 863 CERT technical alerts or vulnerability notes in
the years 2004 and 2005. Our type system can guarantee that no out-of-bounds
array accesses will happen, thereby also obviating the need for doing dynamic
checks of such accesses.

Acknowledgments. We thank Christopher Donawa and Rajkishore Barik for
providing us with performance data on the cost of bounds-checking in Java and
X10. Vivek Sarkar wrote the original X10 version of the SOR benchmark.
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