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Summary. Invariant manifolds are important objects in the study of dynamical
systems, as well as several applications. They are challenging to compute because
even in simple systems they can be very complicated surfaces, demanding adaptive
schemes to deal with large curvatures.

This paper describes a method that represents the invariant manifold as a set of
circular disks in the tangent space, projected onto the manifold which overlap and
cover the manifold. These disks are found by integrating fat trajectories, which add
tangent and curvature information to the usual point in phase space, and integrates
these quantities along a trajectory.

Using a covering eliminates the usual problems with advancing front approaches,
and the dual of the covering is a triangulation, should one be needed.

1 Introduction

One of the more important concepts in dynamical systems is that of an in-
variant manifold. By dynamical system we mean a flow in a phase space IRn

dx

dt
= f(x), x ∈ IRn (1)

An invariant set of points in phase space is such that points on the trajectory
t ∈ (−∞,∞) passing through any point in the set are also in the set. So a
collection of trajectories through a discrete set of initial points is an invariant
set. If the initial points lie on a smooth curve and the flow f(x) is smooth, the
invariant set will be a smooth surface. This is a consequence of the smooth
dependance of trajectories on initial conditions (Figure 1.)

Any point in the initial set can be moved forward or backward along a
trajectory without changing the invariant manifold, so the curve of initial
points defining an invariant manifold is not unique, and a smooth invariant
manifold need not be defined by a smooth curve. If a smooth curve of initial
points M0 can be found for an invariant manifold M , M0 is called a global
transversal of M .
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Fig. 1. Invariant sets. (left) defined by a set of points, (right) defined by points on
a smooth curve.

For a large class of invariant manifolds M0 is part of the definition of the
manifold. For example, the unstable invariant manifold of a hyperbolic fixed
point is the image of a small ball in the unstable eigenspace of the fixed point.
However, there are interesting invariant manifolds for which finding a global
transversal is part of the problem. A periodic orbit can be found by finding
a fixed point of a Poincar’e return map. The fixed point is a global transver-
sal. Not all invariant tori have a closed global transversal, but a torus which
contains a quasiperiodic motion does, and a global transversal can be found
which is an invariant circle of a return map that is similar to the Poincaré
return map [18], [20]. There are better ways to compute periodic orbits [3]
and quasiperiodic tori [17], [19], which find M0 and M together by solving a
larger nonlinear system. The literature on all these problems is extensive, and
the citations above are not meant to be exhaustive.

Some commonly computed invariant manifolds are summarized in Table
1.

Motion Geometry M0

Fixed Pt. Point Point

Periodic Motion Closed Curve Point

Heteroclinic Motion Curve connecting two Fixed
Pts.

Point

Quasiperiodic Motion Torus Closed curve

Unstable manifold of hyper-
bolic equilibrium

IR× (k − 1) Sphere (k − 1) Sphere

Inertial manifold Attracting kd manifold (k − 1)d manifold

Table 1. Some common invariant manifolds and the manifolds of starting points
which define them.

Certain complex behaviors in dynamical systems are associated with par-
ticular configurations of invariant manifolds. However, they can also be useful
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by themselves. In orbital mechanics, for instance, it has been proposed [5],
[10] to use the unstable manifold of periodic motions (orbits) to design trajec-
tories for spacecraft “missions”. These trajectories start in an unstable orbit
about a planet or Lagrange point. To stay in the unstable orbit small thrusts
are needed. By choosing an appropriate point and direction on the unstable
manifold and burning a small amount of fuel, the vehicle can coast along a
trajectory on the invariant manifold, and reach certain destinations with no
further expense of fuel. The destination might be another unstable periodic
orbit, which would allow the spacecraft to return home.

Invariant manifolds are also commonly used in fluid flow visualization,
where they are called stream surfaces. In experiments, smoke or dye is intro-
duced into a steady flow along a wire or a tube, and swept downstream. Flow
visualization software simulates the experiment by computing the image of
the wire under the flow.

In this paper we describe an algorithm for computing a well distributed set
of points on a two dimensional invariant manifold when a global transversal
is given (a curve in IRn). The algorithm is described in detail for invariant
manifolds of dimension two and greater in [9]. The points are spaced along a set
of trajectories, and the trajectories are spaced by “fattening” the trajectories.
That is, trajectories are not allowed to pass into an interval around the other
trajectories.

2 Basic definitions

The “forward” part of an invariant manifold M+(M0) consists of all trajec-
tories which start at a point on a smooth curve M0 ⊂ IRn. There is also a
“backward” part M−(M0), found by integrating trajectories backward in time
from M0. This is simply a change of the sign of f(x), so in what follows we
drop the superscripts ±, and consider only the forward image of M0.

The “natural” parameterization of M uses the coordinate σ of a parame-
terization of M0, and the time t. Any point on an invariant manifold M(M0)
can be written as x(σ, t) ∈ IRn where

M(M0) =
{

x(σ, t)
∣∣∣∣ x(σ, 0) = M0(σ),

d
dt

x(σ, t) = f(x(σ, t))
}

.

In many interesting cases the natural parameterization is poor (Figure 2).
The tangent vectors of the coordinate lines of the natural parameterization
are xi

,σ(σ, t), and xi
,t(σ, t) = f i(x(σ, t)). A poor parameterization is one where

these become nearly linearly dependant, and/or become large or small in
norm.

We use the usual tensor notation [16], where the superscript refers to
the coordinates of a vector x ∈ IRn. The subscript with a comma refers to
the derivative with respect to the subscript. We will also use the Einstein
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summation convention, where the appearance of an index twice in a product
indicates a sum over that index. The inner product of two vectors is written
xpyp, to mean

∑
p xpyp. We will try to use p, q, r, ... for indices which are

summed over, and i, j, ... for other indices.
The metric g at a point on M(M0) is the 2× 2 matrix

g =

xp
,σxp

,σ xp
,σxp

,t

xp
,tx

p
,σ xp

,tx
p
,t

 .

A “good” parameterization is one for which g is everywhere close to the iden-
tity. That is x,σ and x,t are unit vectors, and x,t is orthogonal to x,σ.

dx
ds

dx
ds

x(s ,0)

x(s ,t)
f(x)

f(x)

Fig. 2. The natural parameterization. (left) A “good” parameterization, (right) two
types of “poor” parameterizations. The lower trajectory has tangent vectors that
are roughly orthogonal (that is, g is diagonal), but not unit vectors. The upper
trajectory suffers from shear, where the tangent vectors are far from orthogonal (g
has large off diagonal elements.

One way to understand the literature on computing invariant manifolds
is to consider how the natural parameterization M is improved. (A recent
survey [14] describes and constrasts the various approaches.) [11] and [13] use
a diagonal scaling, while [6], [7] and [15] use an upper triangular scaling. These
scalings are done indirectly, by adapting a mesh, and if the coordinate curves
no longer align with the trajectory, some sort of interpolation must be done.
The approach described here uses a parameterization that is locally Euclidean
near a trajectory (i.e. g in the new parameterization is the identity), and
advances points, tangents and curvature along trajectories (a fat trajectory).

3 Fat Trajectories

In order to build an interval about a trajectory we need the tangent space and
curvature of the invariant manifold M . The interval trajectory will be the set
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of points which when projected to the tangent space of the nearest point on
the fat trajectory, lie inside a disk about the origin. The radius of the disk
will be allowed to vary along the trajectory according to the curvature of the
trajectory. A good choice is R =

√
ε/2 ‖ x′′ ‖, where x′′ is the curvature and

ε controls the distance between the tangent space and the manifold (see [8]
for details).

In the natrual parameterization the t tangent vector is x,t = f(x). The σ
tangent must be integrated along a trajectory starting at M0(σ) –

d
dt

xi
,σ = f i

,px
p
,σ. (2)

With a little differential geometry it can be shown [9] that an orthonormal
basis xi

0, xi
1 for the tangent space which changes as little as possible along a

trajectory (Figure 3) evolves according to

d
dt

xi
,j = f i

,px
p
,j −

(
xp

,rf
p
,qx

q
,j

)
xi

,r (3)

Equation 3 is similar in form to Equation 2, but a linear combination of the
tangent vectors has been subtracted, and this maintains the orthonormality
of the basis. Evolution equations can also be found for the curvature (or more
precisely the derivatives of the tangent vectors). In the natural parameters

d
dt

xi
,t,t = f i

,px
p
,t

d
dt

xi
,σ,t = f i

,px
p
,σ

d
dt

xi
,σ,σ = f i

,px
p
,σ,σ + f i

,p,qx
p
,σxq

,σ

(4)

and in the orthonormal basis

d
dt

xi
,j,k = f i

,px
p
,j,k + f i

,p,qx
p
,jx

q
,k

−(xp
,rf

p
,qx

q
,j)x

i
,r,k − (xp

,rf
p
,qx

q
,k)xi

,r,j

−(xp
,wfp

,qx
q
,j,k + xp

,wfp
,q,rx

q
,jx

r
,k + xp

,j,kfp
,qx

q
,w)xi

,w

(5)

Though the expressions are of course more complicated, the form of Equation
5 is the same as Equation 4 except that this time linear combinations of both
the second derivative vectors and the tangents have been subtracted.

Initial conditions for the basis at points on M0 can be found using Gram–
Schmidt orthogonalization starting with the natural parameterization. Since
the second derivatives in the natural parameterization are easily found they
can be transformed into second derivatives in the new basis [9].
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This coordinate system is analogous to the Riemannian Normal Coor-
dinates (RNC) used in general relativity to find an inertial frame along
geodesics. Here the trajectory plays the role of the geodesic. The coordinate
system is also a parallel transport.

f(x)

M0

f(x)x,0

x,1

x,0

x,1

x,1

x,0
x,0

x,1

R

R

R

Fig. 3. A sketch of the new coordinate system near a trajectory. (left) Looking
“down” on M . (right) the same in space. Note that the flow direction f(x) is not
one of the two basis vectors. The lines paralleling the trajectory are a neighborhood
on M of the trajectory with width R.

Fat trajectories are neighborhoods of width R(x) about a trajectory, with
R(x) varying along the trajectory (Figure 3). To cover M , a set of points is
distributed on M0 using R(x), and fat trajectories are integrated forward from
these points. The integration is stopped if the trajectory enters a previously
integrated fat trajectory. This may leave uncovered parts of M if the flow
expands (which is common). To cover the rest of M we must locate points
and construct initial conditions for starting more fat trajectories. To do this
we use circular disks in the tangent space of the fat trajectory at points spaced
on the trajectory according to R(x). This allows us to use a representation of
the boundary of the covered part of M to locate an interpolation point.

4 Flying disks

In [8] the author developed a method of representing manifolds as the union
of overlapping spherical balls of different radii. The representation was used
to compute implicitly defined manifolds (i.e. solutions of F (x) = 0 with F :
IRn → IRn−k), and has been used for computing other types of manifolds as
well. The approach computes an approximate “restricted Laguerre–Voronoi”
tessellation of M based on the spherical balls. This is instead of the more
usual grid, or triangulation, though the dual Delaunay triangulation can be
used if a triangulation is required (Figure 4.) Voronoi and Delaunay diagrams
are described in [2]. The restricted Laguerre–Voronoi diagram, or restricted
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power diagram, is decribed in [1], [4] and [12]. Using the Voronoi tessellation
avoids the well known problems with advancing triangulations, and the radius
of the spherical ball provides a way of equi-distributing points on M . Roughly,
points are no closer than R, or further apart than 2R.

Below we describe the two dimensional case, but the same approach works
in higher dimensions, with a polyhedral Voronoi tessellation instead of polyg-
onal tesselation.

A set of circular neighborhoods The restricted Laguerre-Voronoi diagram of
the set of circular neighborhoods.

The dual Delaunay triangulation of
the restricted Laguerre-Voronoi
diagram of the neighnorhoods.

Fig. 4. A set of circular neighborhoods and the corresponding restricted Laguerre-
Voronoi and dual Delaunay diagrams.

A triangulation would probably be the first choice to represent a manifold.
To iteratively find a set of points on a manifold a point on the boundary would
be identified (easily done for a triangulation) and advanced some distance
normal to the boundary. The new point would then be used to define a triangle
(or simplex in higher dimensions) which is added to the mesh. This keeps the
triangulation moving “outward” from the initial point, but there are many
cases in which the new triangle is incompatible with the existing triangulation.
That is, the new triangle overlaps the existing triangulation.

A covering is a set of neighborhoods centered at points on the manifold.
The neighboroods are allowed to overlap, as long as every point on M lies in
some neigborhood. A covering does not have the difficulty with compatibility
of new neighborhoods as triangulations (they are meant to overlap). However,
it is not obvious how to find a point near the boundary of a union of neigh-
borhoods. The polygonal Voronoi tiles provide a way to find a point on the
boundary.

Finding the Voronoi tiles is simple. The points are found at the same time,
so this is not the usual incremental computation of a Voronoi diagram, where
the points are givem. If we have one circular disk, and a square which contains
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it, then the boundary of the disk is the part of the circle inside the square.
When a second disk is added, the intersection of the circles bounding the
two disks lies on a line (in higher dimensions a plane) orthogonal to the line
between the centers of the two disks, and the part of the circle on the boundary
of the union is the part on the appropriate side of this line. If complementary
halfplanes are removed from the squares surrounding the two disks, the part of
the boundary of each disk is the part inside the resulting polygon (figure 5). By
identifying neighboring disks when a new disk is added, the Voronoi tiles (the
part of the disk inside the polygon) are updated by removing complementary
halfplanes from the new disk and each disk which it overlaps.

aD

R

R

R

D

R

a D  +R  = (1-a ) D +R2 2 2 2
10

0 1

1

0

2 2

a=            +
2(R  -R  )
2 D

2
01

2
1
2

aD

Fig. 5. Updating Voronoi tiles. Each tiles starts as a square, then for each disk
which overlaps the disk the polygon is clipped against the line by the intersection
of the circles of the two disks.

When disks are in different tangent spaces, they must be projected to
a common tangent space before updating the polygons. If the radius of the
disk is small relative to the curvature of M , the projection of one disk to the
tangent space of an overlapping disk will almost be a circular disk, and the
previous procedure can be used to update the polygons. There is an error
committed, but the effect is that points that are identified as boundary points
may be slightly inside the boundary (Figure 6).

The invariant manifold M is represented as the union of the projections
of a set of circular disks onto M . This is a list, or “atlas” of “charts”, which
consist of a point on M , tangent vectors of M at that point, and a radius
(these represent the circular disk), together with a polygon (the Voronoi tile).
As points are added to the list, the polygons are updated by clipping the
polygon against a line.

To approximate a fat trajectory we start with a point x0 ∈ M0, or an
interpolated point, and compute the initial orthonormal basis and second
derivatives. This forms the first chart on the fat trajectory. The trajectory,
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a b c d

Fig. 6. On a curved surface (a) the update of a disk’s polygon is done in the disk’s
tangent space. The center of each overlapping disk is projected into the tangent
space (b), and a circle with the radius of the overlapping disk is used to update
the polygon. There is an error involved, since the neighborhood is actually on the
manifold (sketched below the surface), and the circle is distorted by the projection
onto M and then the projection into the tangent space. This process is then repeated
(c) to update the polygon of the neighboring disk. The result (d) is still part of the
boundary of the projection onto M , but we may think that a point is on the boundary
when it is actually a little inside. The size of this error is of the order of the distance
between the tangent space and M on the circle.

tangent space and curvature are integrated a distance R, and another chart
is added. This process is repeated until a maximum time is reached, or the
trajectory enters an existing chart. A sketch of a fat trajectory that has been
covered this way is shown in figure 7.

M0
M0

Fig. 7. Circular neighborhoods (charts) along a trajectory. (left) Looking “down”
on M . (right) the same in space, showing how the disk “rolls” and “pitches”, but
does not “yaw”.
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5 Interpolation

When there are no more points on M0 which are outside the union of charts
(Figure 8), a starting point must be found that is not on M0. A point in the
interior of the union will be inside a fat trajectory, so we use the polygons
to find a point near the boundary, where the new trajectory will leave the
interior of the union.

M0

Fig. 8. When the manifold of starting points M0 is covered, some other point must
be found that can be used to start a new trajectory.

In [9] the author used an argument based on a modified nonlinear optimiza-
tion problem to show that such a point exists. There is a technical requirement
that is satisfied for 2d surfaces once M0 is covered, and the variation in f(x)
over the disk must be small relative to the radius of the disk. The optimization
problem looks for a point on the boundary of the union which is furthest back
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(locally) toward M0 along trajectories on M . While there is no objective in
this optimization problem, the usual optimality conditions must hold. These
conditions are that an optimum be a stable fixed point of a modified flow (on
a boundary the component of f(x) normal to the boundary is projected out).
The problem is posed on the part of M which is outside the disks, and not
further than a maximum time Tmax from M0 (measured along trajectories).

There can be no fixed points on the extrior of the union, since it takes an
infinite amount of time to reach the fixed point, and a maximum time has
been imposed. The point furthest back toward M0 must therefore lie on the
boundary of the disks. For a point on the boundary to be a fixed point, the
flow vector must lie in the positive cone of normal vectors. This is just another
way of introducing Lagrange multipliers. There are only two types of point on
the boundary, those which lie on a single circle, and those at the intersection
of two circles. For a fixed point on a single circle f(x) must be parallel to
the normal of the circle, and point away from the center of the circle. That
is, the extension of the flow vector on the boundary backward in time passes
through the center of the circle (Figure 9). However, such a point cannot be a
minimum, since it lies on a circle which curves backward in time.

n
x

f(x)

a b

nana
x

Positive Cone
f(x)

A

Fig. 9. (left) A point x on the boundary of a single disk is a fixed pointof the
modified flow if f(x) is parallel to the normal and points in the “outward” direction.
That is, the extension of f(x) backward in time passes through the center of the
disk. Moving x a little in either direction on the circle moves x further back towards
M0, so it is not the “minimum”. (right) A point x at the intersection of two circles
is a fixed point of the modifed flow if f(x) lies in the positive cone formed from
the two normals. That is, the extension of f(x) backward in time crosses the line
between centers a and b (point A). This is a local “minimum”, and a trajectory
started at A – if f does not change too rapidly over the radius of a disk – will pass
out of the interior of the disks near x. Initial values for the tangents and curvature
can be interpolated from centers a and b.
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At fixed points of the modified flow lying at the intersection of two circles
must have f(x) in the positive cone formed by the normals of the two circles.
The normals are parallel to lines starting at the center and passing through
the intersection point (Figure 10). That is, the extension the flow vector at
the boundary point backward in time crosses the interior of the edge between
the two centers. This point is the minimum, and if we use the point on the
edge between the centers to start a new trajectory, the initial values can be
interpolated from the values at the two centers, and if f(x) does not vary
much over a disk the new trajectory will leave the union near the intersection
point.

Intersection points can be easily found from the polygons associated with
the disks (Figure 10). They are points where an edge of the polygon crosses
the circular boundary of the disk. A list of the disks on the boundary can be
maintained (boundary disks have polygons with at least one exterior vertex).
To find an interpolation point this list is transversed, and the edges of the
polygon are tested for crossing. If one endpoint is inside and the other outside
this is trivial. If both endpoints are outside, the distance between the edge
and the center being less than the radius indicates a crossing.

6 Example

As an illustration, we consider a periodically forced pendulum with damping
(this example is from [21]). When the forcing is zero, the phase space consists
of a set of hyperbolic fixed points at x1 = (2n + 1)π, (x1),t = 0, where the
pendulum points straight up, and centers at x1 = 2nπ, (x1),t = 0 with the
pendulum pointing down. With periodicity the phase space can be reduced
to x1 ∈ [−π, π]. Figure 11 shows the unperturbed nonlinear single pendulum.
Gravity acts on the pendulum bob and the equations are

d
dt

x1 = x2

d
dt

x2 = − sinx1

Without the forcing and dmping there is an energy E = x2
2/2−cos x1 that

is conserved on trajectories. For initial energies E > 1 the pendulum “runs”,
that is x1 continually increasing or decreasing depending on the initial velocity.
For E < 1 the pendulum oscillates about the downward pointing fixed point.
If the pendulum is started with E = 1 it will swing to the top and stop. This
last is a heteroclinic orbits shown as dark curve in Figure 11 center.

The perturbated equations, analyzed in [21] are
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a

b

f(a)

f(b)

a

b

P

P

ea

eb

Fig. 10. Interpolating: (left) Some of the disks and polygons from Fig. 8. Polygons
with a vertex outside the disk indicate that the disk is on the boundary. We highlight
two polygons, Pa and Pb. (right) The edges of Pa and Pb which cross the boundary
of the disks, and two of the crossing points, a and b. All of the other edges of the
polygons have been removed. The centers that these two edges separate form an
edge. At point a the flow vector f(a) extended backward does not intersect ea,
while at the point b f(b) extends backward to cross eb. A trajectory started at the
point where the two cross will leave the union of the disks, and initial values can be
interpolated between the centers at the ends of eb.

d
dt

x1 = x2

d
dt

x2 = − sinx1 + ε (γ sin(Ωx3) sinx1 − δx2))

d
dt

x3 = 1

The perturbation is time dependant, so time is introduced as a phase space
coordinate to make the flow autonomous (a standard trick called suspending
the flow).

For small perturbations (ε << 1) there is a critical forcing amplitude

γ∗ =
4δ

πΩ
sinh

πΩ

2

For γ < γ∗ the damping removes more “energy” than the periodic forcing
puts into the system, and the pendulum eventually will spiral into the fixed
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x1

eg  sin W t

e=0

x1

x1
.

-p p

e=0

x1
.

-p

p

-p

p

t=0

t=2p /W

x1

x'1

edx'1

1

Fig. 11. The periodically forced pendulum from [21]. (left) A periodic vertical force
is applied to the pivot, as well as a damping. (center) the behavior of the pendulum
when ε = 0. If the energy x2

1/2 − cos x1 is greater than one the pendulum swings
around and around. If the energy is less than one the pendulum oscillates (there is
no damping at ε = 0. When the energy is exactly one, the pendulum comes to rest
with the bob above the pivot. (right) with ε > 0 time becomes a variable, periodic
over 2π/Ω. Following [21] we will use this box to display the image of a line of initial
points.

point at zero (which is now the straight line (0, 0, t)). For γ ≥ γ∗ heteroclinic
tangles appear (a type of chaotic motion).

For illustration we chose M0 to be the line (x1, x2, x3) = (3.0,−0.1, x3),
which is near one of the unstable fixed points for ε = 0. Figure 12 shows the
surface that was computed. The time coordinate x3 is periodic with period
2π/Ω, and Figure 12 shows sixteen periods of x3. If we use the same compu-
tational results and collapse it to two periods of x3 we can see some of the
structure that leads to a heteroclinic tangle and chaotic motion.

Fig. 12. The periodically forced pendulum. ε = .2, γ = 1.5, δ = .2, and Ω = 5. The
calculation used 176 points on seven replicas of the fundemental region [0, π/Ω),
and those 176 start points created 84,943 disks. In addition, 48 interpolations were
needed, for a total of 91,240 disks.
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Fig. 13. (left) A closer view of the invariant manifold in Figure 12. (right) The
same invariant manifold but brought back to a single period in the forcing. The
dark black line is a trajectory starting near the fixed point at x1 = π. The mapping
from the plane t = 0 to t = 2π/Ω is used in the analysis, and the black dots are the
orbit of one point under that map. For these parameters the motion decays to the
fixed point of the map at (0, 0)

References

1. F. Aurenhammer, Power diagrams: Properties, algorithms and applications,
SIAM Journal of Computing, 16 (1987), pp. 78–96.

2. , Voronoi diagrams – a survey of a fundamental geometric data structure,
ACM Computing Surveys, 23 (1991), pp. 345–405.

3. E. J. Doedel, Nonlinear numerics, International Journal of Bifurcation and
Chaos, 7 (1997), pp. 2127–2143.

4. H. Edelsbrunner, The union of balls and its dual shape, Discrete and Com-
putational Geometry, 13 (1995), pp. 415–440.

5. G. Gomez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, and
S. D. Ross, Invariant manifolds, the spatial three-body problem and space mis-
sion design, in International Conference on Differential Equations, Berlin, 1999,
pp. 1167–1181.

6. J. Guckenheimer and A. Vladimirsky, A fast method for approximating
invariant manifolds, SIAM J. Appl. Dyn. Systems, 3 (2004), pp. 232–260.

7. J. Guckenheimer and P. Worfolk, Dynamical systems: Some computational
problems, in Bifurcations and Periodic Orbits of Vector Fields, D. Schlomiuk,
ed., Kluwer Academic Publishers, 1993, pp. 241–277.

8. M. E. Henderson, Multiple parameter continuation: Computing implicitly de-
fined k–manifolds, International Journal of Bifurcation and Chaos, 12 (2002),
pp. 451–476.



16 Fat Trajectories

9. , Computing invariant manifolds by integrating fat trajectories, SIAM
Journal on Applied Dynamical Systems, 4 (2005), pp. 832–882.

10. K. C. Howell, B. T. Barden, and M. W. Lo, Application of dynamical
systems theory to trajectory design for a libration point mission, The Journal of
the Astronautical Sciences, 45 (1997), pp. 161–178.

11. J. P. M. Hultquist, Constructing stream surfaces in steady 3D vector fields,
in IEEE Proceedings Visualization ’92, Boston, October 1992, pp. 171–178.

12. H. Imai, M. Iri, and K. Murota, Voronoi diagram in the laguerre geometry
and its applications, SIAM Journal on Computing, 14 (1985), pp. 93–105.

13. M. E. Johnson, M. S. Jolly, and I. G. Kevrekidis, Two-dimensional in-
variant manifolds and global bifurcations: some approximation and visualization
studies, Numerical Algorithms, 14 (1997), pp. 125–140.

14. B. Krauskopf, H. Osinga, E. Doedel, M. Henderson, J. Guckenheimer,
A. Vladimirsky, M. Dellnitz, and O. Junge, A survey of methods for com-
puting (un)stable manifolds of vector fields, International Journal of Bifurcation
and Chaos, 15 (2005), pp. 2127–2143.

15. B. Krauskopf and H. M. Osinga, Computing geodesic level sets on global
(un)stable manifolds of vector fields, SIAM Journal on Applied Dynamical Sys-
tems, 2 (2003), pp. 546–569.

16. D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational
Principles, John Wiley & Sons, New York, 1975.

17. B. Rassmussen, Numerical Methods for the Continuation of Invariant Tori,
PhD thesis, Georgia Institute of Technology, School of Mathematics, December
2003.

18. V. Reichelt, Computing invariant tori and circles in dynamical systems of
fixed points.

19. F. Schilder, H. M. Osinga, and W. Vogt, Continuation of quasi-periodic
invariant tori, SIAM J. Applied Dynamical Systems, 4 (2005), pp. 459–488.

20. M. van Veldhuizen, A new algorithm for the numerical approximation of an
invariant curve, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 951–962.

21. S. Wiggins, Global Bifurcations and Chaos, no. 73 in Applied Mathematical
Sciences, Springer–Verlag, New York, 1988.


