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Abstract

We present a novel autonomic control system for high performance stream processing systems. The

system uses bandwidth controls on incoming or outgoing streams to achieve a desired resource utilization

balance among a set of concurrently executing stream processing tasks. We show that CPU prioritization

and allocation mechanisms in schedulers and virtual machine managers are not sufficient to control such

I/O-centric applications, and present an autonomic bandwidth control system that adaptively adjusts in-

coming and outgoing traffic rates to achieve system management goals. The system dynamically learns

the bandwidth rate necessary to meet the system management goals using stochastic nonlinear optimiza-

tion, and detects changes in the stream processing applications that require bandwidth adjustment. Our

prototype Linux implementation is lightweight, has low overhead, and is capable of effectively managing

stream processing applications.

1 Introduction

Effective operation of modern, large-scale parallel and distributed systems critically depends on efficient

management of multiple resources, such as processing cycles, link bandwidth and system memory, allo-

cated among multiple (possibly parallelized) applications. The challenges in achieving this are amplified

by two trends: First, new service models such as On-Demand, or utility computing introduce bursty and

unpredictable demand patterns, which are difficult to characterize in advance. Second, successful operation

of these service models critically depends on the ability to meet service level agreements on performance.

However, such performance requirements are typically met by allocating system resources according to the

expected resource demands of the processes.
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While substantial prior work exists on independently managing different types of resources, such as

processor capacity and network bandwidth, little attention has been given to the complex dependencies

between availability and utilization of each one of these types of resources and application performance.

Often the approach to resource management in high performance computing and grid clusters is to size all

resources so as to ensure that no bottlenecks occur across all processes. Alternatively, one of the resources,

considered the more likely bottleneck, is explicitly controlled and it implicitly dictates the utilization of

the other resources. For example, in systems with explicit control of processing cycle allocation, processor

allocation dictates network bandwidth usage. Typically, interconnection bandwidth is overprovisioned to

the point that the network can keep pace with the processor’s demands for more data, and processing power

is usually the bottleneck that limits throughput. However, the advent of data-intensive stream processing

applications, as well as the expansion of distributed systems to global-scale (for example in grid computing),

renders such overprovisioning impractical and/or prohibitively expensive. In such cases network bandwidth

must be considered jointly with processing power during resource allocation.

In this paper we introduce a novel scheme for managing high performance distributed systems. In con-

trast to typical control mechanisms that rely exclusively on independent allocation of resources, such as

processing cycles or network bandwidth, we propose using adaptive joint allocation of multiple resource

driven by performance objectives. That is, instead of developing separate goals and control mechanisms

for managing different resources, we propose a new paradigm for monitoring and achieving application

processing objectives through explicit network controls. This approach is particularly valuable when the

network becomes a constrained resource. Traditional network resource allocation schemes require system

administrators and/or application developers to provide a characterization of the traffic generated by the

applications and the corresponding network bandwidth requirements. Our scheme eliminates such man-

ual intervention by autonomously developing a model that expresses the dependency between different

resources. We develop a system management mechanism that autonomously monitors, for multiple simul-

taneously running applications, the performance relative to quality objectives, and utilization of system

resources. The system learns the implicit relationship between the two and uses it to effectively manage the

applications.

Specifically, we present a system for autonomic management of network resources (such as local link

bandwidth) to effect a desired balance between concurrently executing processes on a stream process-

ing node. This system is capable of maintaining this balance with or without the presence of explicit

per-process CPU allocation mechanisms (e.g. processor sharing between VMWare [8] images, or CPU-

allocating schedulers such as the IBM HyperVisor [17] or CKRM [5]). In systems without per-process

CPU allocation mechanisms, such as a stock Linux kernel, our management system is able to autonomously

determine the appropriate data rate to/from each process necessary to effect the desired per-process CPU

usage and allocate the corresponding amount of network bandwidth. Even in systems equipped with per-

process CPU allocation mechanisms, some processes may, when left uncontrolled, consume larger amounts

of bandwidth, thus ”‘starving”’ other (potentially more important) processes to the point where they cannot

utilize their allocated CPU share. Our autonomic traffic management system prevents this from occurring.

Our scheme makes a number of important contributions. First, we introduce a very low-cost dynamic

learning procedure to determine the relation between performance objectives and various types of allo-



cated resources, in particular between communication resources and processing resource. By dynamically

learning this relationship through non-perturbative observation of the system, our scheme enables auto-

nomic system operation; the system operator or application supplier need not explicitly specify or predict

this complex, and often unknown, relationship. Second, we develop a novel stochastic Newton-type opti-

mization algorithm that robustly and rapidly drives the system towards a desirable operating point through

bandwidth control. The learning and optimization procedures are performed jointly; thus maximizing the

convergence rate. In addition to its rapid convergence rate, our algorithm scheme is designed to provide

both stability and adaptability in the presence of incomplete information or noise. For example, measure-

ments of performance metrics and/or resource utilization may include substantial noise due a variety of

background system operation factors. We have devised methods to filter out the impact of noise and avoid

unecessary, transient, changes to the system operating state.

This paper is organized as follows: Section 2 presents an overview of related work. Section 3 presents

the problem formulation and model. In section 4 we summarize the stochastic Newton-type algorithm

that simultaneously learns the complex relation between two types of resources and optimizes a target-

level criterion, and we provide a convergence proof. Section 5 discusses the architecture and components

of the system we built using this alogrithm, followed by experimental results and comparison with other

approaches in Section 6. We conclude in Section 7 with discussion and some future research directions.

2 Overview of Related Work

There is a substantial amount of prior work on the areas of independently managing networking and pro-

cessing resources in distributed systems, but considerably less in exploring the dependency between these

two types of resources.

The problem of providing network QoS via bandwidth reservation, scheduling and policing has been

extensively researched over the past years. The main focus of this work [7, 13, 11, 15] has been to study

mechanisms that, given an appropriate traffic characterization, can achieve high level of statistical mul-

tiplexing efficiency while guaranteeing the requested levels of QoS (or limiting violations thereof). The

traffic parameters (such as leaky bucket rate and size) along with the negotiated QoS can be thought of as

a contract between the user and the network. This work underlined part of the work of the Internet Engi-

neering Task Force Integrated Services (IntServ) [3, 6] and Differentiated Services (DiffServ) [18] working

groups. One common shortcoming of these approaches is that they rely on accurate characterization of the

traffic streams entering the network. While this assumption might be true for a small set of well known ap-

plications, it is clearly not applicable in today’s heterogenous, on demand computing envirornment, where

the traffic generated by an application and its relation to CPU requirements are not known in advance. Ad-

ditionally, this work does not link the allocation of network bandwidth with CPU processing utilization.

Still, the techniques developed to allocate and police bandwidth allocation can be used as a building block

in our control system.

On the operating systems domain a substantial amount of work in the area of managing distributed

applications has been published. This work typically focuses on intelligent scheduling of different tasks

across different nodes, prioritization of tasks, and allocation of CPU, memory, and disk resources. Typically



the network is assumed to be of sufficient capacity that it can be considered infinite. The authors in [12, 20]

describe a feedback-control based resource manager to allocate system resources based on the measured

progress of applications. Progress is measured by monitoring the occupancy level of application buffers

and the heuristic target is to maintain occupancy at a desired level. Load balancing [14] has been also used

to asign different nodes in a cluster to different processes requiring processing. It relies on individual nodes

that periodically send state (processing load and resource availability) measurements to a gateway node that

then determines the appropriate job dispatch policy. In [21] the allocation of communication resources is

considered in a linear system that yields optimal system performance. In particular, the authors consider

the joint problem of resource allocation and system design in order to optimize system performance.

Prior research in multimedia and stream processing systems is also relevant to our work; multimedia

applications have often been developed with built-in adaptation mechanisms to handle network or system

congestion. In [10] application-level quality adaptation techniques are presented. In [19] adaptive mecha-

nisms for real-time applications are described which adjust resource allocation if there is risk of failure to

satisfy timing constraints. Transcoding of web page multimedia objects based on the available bandwidth

is used in [4] to provide service differentiation across different clients. Abeni and Buttazzo in [1] pro-

pose a framework for dynamically allocating CPU resources to tasks whose execution times are not known

apriori. The motivation for learning the tasks’ CPU requirements is similar to our work; however the au-

thors consider only requirements in terms of CPU time and not network bandwidth, and do not address

any dependencies between the utilization of multiple resources. A multiple-resource utilization prediction

model, based on autocorrelation and cross correlation between two resources (e.g., CPU and memory) is

presented in [16]. That work presents a novel model for predicting the joint utilization requirements of dif-

ferent resources but does not address how to achieve a desired operating point from a system management

perspective.

Among more recent system management tools, VMware [8], creates virtual machines (VMs) on x86

architecture systems. It partitions a single physical system into logical compartments, each running its

own copy of operating system and applications and, thus, giving the illusion of a separate system. While

such separation is an effective way for managing different applications’ requirements, the granularity of the

different VMs is quite coarse and not very well suited for individual stream processing applications. In addi-

tion, creating and managing many different VMs and operating system images entails substantial overhead:

of the order of 2-20%, depending on the application, product and experimental setting [8], substantially

more than the 0.2-0.5% overhead that our system exhibits.

3 Problem Formulation

Consider n applications running on a system node, each corresponding to a process which uses (local) link

bandwidth to send to and receive data from one or more remote nodes. We make the following assumption:

Assumption 1 The set of processes, i = 1 . . . n remains constant throughout a time epoch of given length,

τ .



In other words, while the system we consider is stochastic, its behavior has some minimal degree of sta-

tionarity, enough to allow our algorithm to learn the relationship between processing and network resource

requirements and drive the system to the target operating point. In practice, as observed in our experimental

prototype, it is sufficient for this pseudo-stationarity time epoch, τ , to be on the order of 30 seconds. The

system management goal that we focus on is that of achieving a set of desired processing capacity (CPU)

allocations among different processes. This goal is akin to what workload managers or load balancers try

to achieve in distributed systems. In addition, this goal and the allocation of CPU resources in general are

of importance to virtualization engines, such as HyperVisor, and VMWare. The method we propose could,

however, be used with other system resources, such as memory, and with system management goals other

than trying to achieve a particular target value.

With respect to this particular goal, we shall assume a set of desired processing capacity (CPU) alloca-

tions, for the n processes, t1, t2, . . . , tn is provided, where ti denotes the percentage of processing resources

allocated to process i. We assume that the input target CPU levels, ti, i = 1 . . . n, satisfy
∑

i=1...n ti ≤ 1.

We also denote the observed allocation of CPU resources to the n processes by c1, c2, . . . , cn; where

ci denotes the percentage of processing resources allocated to process i. For an allocation to be feasible,∑
i=1...n ci ≤ 1; however, it is not necessary to impose this constraint explicitly as the actual CPU utiliza-

tion levels are observed variables, rather than explicitly controlled; hence, the condition is always satisfied.

Each of the n processes has an associated bandwidth allocation percentage, denoted by b 1, b2, . . . , bn, where

bi denotes the percentage of (local) link bandwidth allocated to process i. Naturally,
∑

i=1...n bi ≤ 1. In

general, CPU utilization of any process, i, ci : �n
+ �→ �+, is a function of the bandwidths, b ∈ �n, allo-

cated to all processes, and also depends on overall system load, number of concurrent processes and their

interactions, memory allocation, choice of network transport protocol, etc.

If the relation of a process’ CPU usage to its allocated bandwidth were known, our optimization task

would be relatively straightforward; we could then seek to allocate the bandwidth vector, b, that optimizes

the goal function, in this case minimizing some norm of the distance between observed CPU percentages

and the target. In practice, however, the relation of CPU utilization to bandwidth is not a known and

deterministic mapping.

The main contribution of our work is the development of a method for the joint learning and optimiza-

tion of a function of this mapping. We define the problem as one in which the CPU-bandwidth relation is

initially some (simple) a priori approximation. Through our adaptive algorithm, the CPU-bandwidth rela-

tion is updated iteratively, thereby learning the shape of this surface as a function of the control variable,

the bandwidth allocation vector, b.

Note that each step in the algorithm’s operation will involve assigning a new bandwidth value to each

process. Each change of the available bandwidth perturbs the system, and, as such, the number of iterations

should be minimized. In addition, the CPU-bandwidth relation is not deterministic; rather it includes many

sources of randomness including transient queueing effects associated and variations of a process’s CPU

utilization due to process state changes as well as random changes in (wide-area) network state.

Figure 1 illustrates the CPU utilization surface of one process as the bandwidth allocations for two

processes running jointly on a node are increased. The piecewise-linear form of the curve is due to the

sampling granularity in bandwidth space of the data. Notice that the c 2 is increasing in its bandwidth b2.



Bandwidth to Process 1 and Process 2  vs. CPU Usage of Process 1
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Figure 1: Observed relation between bandwidth allocated to two different processes running concurrently

and the CPU usage of one of the processes.

f(b) :=
1
2
E

[ ∑
i=1...n

[ti − ci(b)]2
]

=
1
2
E‖t − c(b)‖2. (1)

The notation E means expected value, and t, b, and c are vectors composed of the t i, bi, and ci, for

i = 1 . . . n, respectively.

We shall optimize a distance criterion such as (1). We refer now to the stochastic, learnt function of CPU

usage, C(b). The mathematical definition of the learnt CPU usage function will evolve at each iteration, j,

of our algorithm. Letting the superscript, j, indicate the iteration, and as before the subscript, i, indicates

the process, then for each i = 1 . . . n, and each iteration j,

Cj
i (bi) = ci(bi) + εj

i , (2)

where we assume that the εj
i are i.i.d. random variables. The sequence of functions {C j

i (bi)} converges to

ci(bi) for all i = 1, . . . n as iteration j → ∞. At each iteration, j, we shall thus seek to minimize

1
2
E

∑
i=1...n

(ti − Cj
i (bi))2 =

1
2
E‖t − Cj(b)‖2 (3)

=
1
2
‖t − C̄j(b)‖2, (4)

where C̄j
i (bi) is an empirical expectation of the CPU utilization for process i at iteration j. The function

(4) must be optimized subject to constraints on the control variable, b. In particular, it must hold that

b ∈ B := {b |
∑

i=1...n

bi ≤ 1, bi ≥ 0, i = 1 . . . n}. (5)

The model defined by (4)–(5) is a stochastic, nonlinear program with polyhedral constraints. As we shall

see in the next section, it is globally non-differentiable, due to the construction of the adaptive mapping, but

using our approach, the non-differentiability does not hinder the optimization procedure.



4 Adaptive Optimization and Approximation Algorithm

The objective of the algorithm is as follows: given a target CPU allocation vector, starting from an initial

bandwidth allocation vector b1, b2, . . . bn, dynamically adjust the bandwidth allocations in such a way that

the n processes (applications) consume the target amount of processing capacity.

Processing capacity utilization is indirectly modeled via the functions C i(b) for every i = 1 . . . n. If

these functions are known a priori and deterministic, the optimal {b i} can be found as the solution to a

non-linear optimization problem. However, given the large number of parameters and dependencies, as

illustrated in the previous section, the exact form of these functions cannot be known in advance. The solu-

tion we propose is thus to adaptively construct a learnt model of the {C(b)} mapping. Over this evolving

set of surfaces, our algorithm searches for the optimal operating point, given by the minimization of the

Euclidean distance to the target operating point (4).

4.1 Adaptive model of the CPU utilization mapping, C

As shown in Figure 1, the CPU utilization surface exhibits some regularity, in spite of its complexity. In

particular, we observe that Ci(b) increases in bi. Furthermore, as expected, the CPU utilization of process

1 decreases with increasing bandwidth allocated to process 2. While it is not possible to know the shape of

Ci a priori, the algorithm will learn the shape of the mapping.

The learning procedure is based on improving piecewise-linear approximations of each mapping, C j
i ,

for each process, i, at each iteration, j. In iteration j = 1, the function C 1
i (bi) has only one slope, α1

i and

one intercept, γ1
i . In most cases, the intercept γ1

i = 0. At iteration j = 2, the function is composed of

precisely two pieces, each with slopes potentially different from α1
i ; the pieces are numbered 2 to 3. Those

two pieces have slopes α2
i and α3

i and intercepts γ2
i and γ3

i . Similarly, the pieces defined at iteration 3 will

be numbered 4 to 6, as will their respective slopes and intercepts, and so on.

Specifically, pieces defined at iteration j, C j
i are given by:

Cj
i (bi) = (6)



αq(j−1)+1bi + γq(j−1)+1, 0 ≤ bi ≤ b
q(j−1)+1
i

αq(j−1)+2bi + γq(j−1)+2, b
q(j−1)+1
i ≤ bi ≤ b

q(j−1)+2
i

...

αq(j)bi + γq(j), b
q(j)
i ≤ bi ≤ 1,

where q(j) is an iteration-dependent index, defined as follows:

q(j) =
j∑

i=1

i, (7)

and the ranges in bandwidth of each piece are provided by the inequalities on each line of (6).

For the system under consideration, the optimization problem (4) exhibits the following properties.

Proposition 1 The processing power function, C j
i (bi) is:

1. piecewise linear,



2. continuous, and

3. nondifferentiable in bi.

Proof: The mapping C j(b) is constructed iteratively. At the first iteration of the algorithm, C j
i (bi) is a line

passing through the origin (0, 0) and, possibly, the point (1, 1), for each i = 1, . . . n. In each iteration,

when a new bandwidth point is determined, the resulting CPU utilization is measured and the slopes on

either side of each C j
i are updated to reflect insertion of the new point. In particular, the mapping, C j

i

will have j linear pieces at iteration j. Consequently, each C j
i is continuous and piecewise-linear in bi, its

argument. Nondifferentiability follows from the piecewise-linearity.

The CPU utilization function, C j
i , is modeled as a function of a scalar argument, b i, only. Although there

are clearly cross effects, i.e., Ci indirectly depends on bj , j 	= i, as mentioned previously, the algorithm

treats the problem as if the functions were separable across processes, i. The cross effects are explicitly dealt

with as stochastic variations, which allows for vastly shorter running times than are required for learning a

multi-dimensional model of each mapping, C i.
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Figure 2: Example of randomness in the CPU usage of one process for a single bandwidth vector. The left

side shows variation in CPU utilization shortly after the bandwidth change (after sample 24), and the right

side shows variation after hysteresis effects are dissipated.

Randomness in the CPU/bandwidth mapping arises from both time-dependent and time-independent

phenomena. An illustration is provided in Figure 2. Observe, for example, from Figure 2 that for a single

bandwidth level, bi, the CPU utilization, Ci varies across readings. The left side of the figure illustrates

the hysteresis effect, namely the fluctuations in CPU utilization of a process immediately following the

bandwidth change. The right side of the figure shows random fluctuations which occur once the hysteresis

effect has dissipated, and reflects in a large part the cross-effects from other processes. That is, the random

effects fall into two categories:

• Transport protocol and time-dependent randomness, or hysteresis:

When the bandwidth allocated to a process is increased or decreased, the impact on CPU utilization

may take a varying amount of time, depending on the transport protocol, buffer size, etc. For example



if a process is using TCP, addition of bandwidth at the network layer will result in slower addition to

the bandwidth perceived by the process, due to TCP additive rate increase. This effect is amplified

by the roundtrip delay between the two sides of the process. Time-dependent randomness in the

observation of Ci may be introduced by this transport-protocol-related effect.

• Time-independent stochastic effects: In addition to time-dependent randomness, there is time-

independent noise in measurements due to variation of CPU utilizations by the operating system

and by other processes.

We shall make the following assumption for the sake of convergence of the algorithm.

Assumption 2 [Monotonicity of each Cj
i (bi)] Assume that the mapping C j

i : �n
+ �→ �+ is increasing in

its argument, bi. for all bi ∈ B, i = 1 . . . n.

Note that, typically, a CPU utilization Ci will increase in bi, but decrease in bk, for k = 1, . . . n, k 	= i.

We are not making use, however, of cross derivatives in our algorithm, although cross effects are implicitly

present due to the fact that the sum of all CPU utilizations cannot exceed 1. If, for example, b 2 = 1 − b1,

we see that if C1 is increasing in b1, C2 is decreasing in b1 by construction.

Remark 1 [Singularity of the Hessian of f ] Due to the presence of the simplex constraint on the band-

width vector,
∑

i=1,...n bi = 1, the Hessian of the objective function (4) is of rank n− 1, since the nth term

of the gradient can be expressed in terms of the other n − 1 processes. To avoid singularity of the Hessian,

it is sufficient to redefine the problem in a reduced space, of n − 1 processes, the nth process’ bandwidth

thus being derivable from the remaining n − 1.

4.2 Steps of the stochastic Newton-type simultaneous approximation and optimiza-

tion algorithm

Our approach is to apply the theory of stochastic quasi-gradients and replace the unknown CPU utilization

function with a linear, separable approximation of it.

Let C̄i(bi) be a smoothed estimate of the CPU utilization for process i, for some number L of sample

observations; that is,

C̄i(bi) =
1
L

L∑
l=1

Ci,�(bi, εi), (8)

We make use of multiple observations of the CPU utilization at a single bandwidth level to obtain an

estimate of the expectation of the subgradient of C, ζ, with minimal system perturbation.

See Figure 3 for an illustration of the steps of the algorithm. Conside a single process; hence we will

drop the subscript i for the moment. In the initialization step of the algorithm, the initial bandwidth value



b0 is set, and the smoothed estimate of the CPU level at the bandwidth level b0 is C̄0. Suppose that C̄0 > t,

the upper bound (UB) is set to be the current point, UB = C̄0, and a new bandwidth b1 is chosen as the

intersection of the target CPU level, t, and the estimated function. Next, the CPU usage with bandwidth b 1

allocated is again measured L times, providing an estimate, C̄1. Suppose that it again exceeds the target,

t, then the upper bound is reset to the new point, UB = C̄1, and a new bandwidth b2 is chosen. In the

following iteration, suppose that we find that bandwidth allocation b 2 leads to a CPU usage that is below

the target C̄2 < t. This new point then becomes the new lower bound, LB = C̄2 and the next bandwidth

allocation b3 is chosen as the intersection of the target CPU line and the line between LB and UB. The

process continues until a stopping criterion is satisfied. In the actual algorithm, the movement is moderated

by use of a divergent-series step, which serves to slowly dampen the perturbations of the bandwidth.

A detailed description of the algorithm is provided below.

1. Initialization. Let the number of processes be n and the target CPU values be referred to by the

n−vector, t. Set iteration counter, j = 1. Set initial bandwidth vector to a given starting point b 0
i

or set to b0
i = 1/n for every i = 1 . . . n if no intial point is provided. Define the initial values

C̄0
i (LB(i)) = 0 and C̄0

i (UB(i)) = 1, for all i = 1 . . . n. Set stopping criterion threshold δ > 0 to an

appropriate value.

2. Main loop. While the stopping criterion has not been reached, repeat:

(a) Sample the CPU usage of each process i with the current bandwidth vector b. For each process

i = 1 . . . n, set C̄i(bi) to the smoothed CPU usage of process i.

(b) For each i = 1 . . . n, if C̄j
i (bj

i )) > ti then set UB(i)=j. Conversely, if C̄j
i (bj

i )) < ti then set

LB(i)=j.

(c) Direction finding. Determine the search direction, g j(b) such that gj
i (b) = (C̄j

i (bj
i )− ti) ∗ ζj

i =

(C̄j
i (bj

i ) − ti) ∗ mj
i where mj

i is the slope of the piecewise-linear function ci(bi), evaluated in

the direction towards the target value, ti; i.e., if, for process i, the current iteration counter j is

the upper bound, then mj
i , i = 1 . . . n, is the gradient of the segment between point C̄j

i (bj) and

C̄
LB(i)
i (bLB(i)). That is mj

i = α�
i for some active piece �. Conversely, if j= LB(i), then mj

i is

the gradient of the segment between point C̄j
i (bj) and C̄

UB(i)
i (bUB(i)).

(d) Newton step. The Newton step is given by the (sub)-gradient scaled by the norm of the Hessian.

Since we assume our objective to be seaparable, the norm of the Hessian is given, for each

process i, by the second derivative of the objective function evaluated at the active piece. Hence,

the Newton direction is given by Ni(bj) = (1/mj
i )

2gj
i (b

j
i ) = (C̄j

i (bj) − ti)/mj
i for all i =

1 . . . n.

(e) Step size. Use a divergent-series step, sj = γ/(j + 1), for some scalar constant, γ.

(f) Update the bandwidth vector: set bj+1 = bj − gj(b) ∗ sj , and set iteration counter j = j + 1.

(g) Evaluate stopping criterion. For example, if
∑

i=1...n |UB(i) − LB(i)| ≤ δ, then stop. Else

return to step (a) and continue.



Figure 3: Illustration of the steps of the algorithm.

Remark 2 A list of some or all (bj
i , C̄i(b

j
i )) pairs may be kept in a sorted list for each i = 1 . . . n. This

makes it possible to quickly look up a bandwidth allocation b i and estimated local slope mi when a target

ti changes.

Proposition 2 Let

ζj
i (bi) = E[ξj

i ], (9)

where ξj
i is the ith component of a stochastic quasi-gradient of the CPU utilization mapping at iteration j.

Then, ζj
i (bi) = C̄′(b) is a smoothed estimate of the stochastic quasi-gradient of C j(b) at iteration j.

Proof: Let the current iterate, bj
i for process i and iteration j be such that C̄j

i (bj
i ) > ti. Then, an estimate



of the expectation of a subgradient of C i is, for some number L samples,

ζj
i =

1
L

L∑
l=1

ξ�,j
i (bj

i , εi), (10)

=
1
L

[
L∑

l=1

Cl,j
i − LBj

bl,j
i − bj(LB)

]
, (11)

=
C̄j

i − LBj

bj
i − bj(LB)

, (12)

= (C̄j
i )′(bj

i ) (13)

where the second line comes from the definition of the subgradient of the piecewise-linear function C̄j
i on

the active segment, LB indicating the lower bound of the active segment.

Under Assumption 2, we have the following property of the algorithm.

Proposition 3 If for any iteration, j, the search direction vector, g j = 0, then the current iterate, bj is a

solution to optimization problem (4).

By construction, we have that, for each process i = 1 . . . n, at every iteration, j,

C̄j
i (LBj

i ) ≤ ti ≤ C̄j
i (UBj

i ). (14)

In addition, due to the definition of the constraint set B, we have that

LBi ≤ bi ≤ UBi, (15)

for every i = 1 . . . n. Under Assumption 2, the slopes of the piecewise CPU utilization mapping, (C j
i )′(bj)+ ≥

0 and (C̄j
i )′(bj)− ≥ 0. Hence, if, at some iteration j, for every i = 1 . . . n,

gj
i = 0, (16)

(ti − Cj
i (bj))mj

i = 0, (17)

then either ti − C̄j
i (bj) = 0, i = 1 . . . n, in which case the target has been reached, or m j

i = 0, i = 1 . . . n.

In the latter, there are two cases, (i.) C̄j
i (bj

i ) ≤ ti ≤ C̄j
i (UBj

i ) or (ii.) C̄j
i (LBj

i ) ≤ ti ≤ C̄j
i (bi

j). In case

(i.) if mj
i = 0, then C̄j

i (UBj
i ) = C̄j

i (bj). Under Assumption 2, C̄j
i (UBj

i ) = ti = C̄j
i (bj), and analogously

in case 2, which completes the proof.

The following assumptions are needed to prove convergence of the algorithm.

Assumption 3 The sequence of search direction vectors, {g j(bj , ε)} is bounded. That is, for all j, ε,

‖gj(bj , ε)‖ ≤
upsilon, for some constant υ > 0.



Assumption 4 [Functional convergence of approximation] The sequence of learnt functions, f j(b) →
f(b) uniformly over B.

Assumption 3 holds when the feasible region, B is compact. See Proposition B.24 of Appendix B in

[?]. Hence, in our problem setting, Assumption 3 is always satisfied. Under Assumptions 3 and 4, we are

able to prove the convergence of the algorithm to the set of optimal solutions of the original problem.

Theorem 1 [Convergence of the algorithm to optimal solution] Suppose that Assumptions 3 and 4 hold.

By proposition 1, C̄j
i are continuous for all i = 1, . . . n. Suppose further that f(b) and the learnt functions,

f j(b), for all iterations j, are convex. Then, f j(bj) → f(b∗) = min{f(b) : b ∈ B}.

Proof: The feasible set, B, is convex and compact by contruction. The successive bandwidth vectors, b j

are given by the iteration bj+1 = ΠB [bj − sjgj(ζj , bj)], where gj(ζj , bj) is the expected subgradient of

the objective function, f j(bj), and the steps sj satisfy
∑

j=1,...∞ sj = ∞,
∑

j=1,...∞(sj)2 < ∞. Hence,

according to [9], the iterations of the simultaneous stochastic optimization and approximation procedure

converge to the optimal solution value of the original problem.

The means of making the algorithm robust to the two sources of randomness mentioned in Section 4.1

are different, and are summarized below.

4.2.1 Frequency of observation intervals, transport protocol, and time-dependent randomness, or

hysteresis

Iterations take place over (fixed) time intervals based on information obtained over the preceeding inter-

val(s). If the duration of the interval is small, ideally, the algorithm would progress and converge faster.

However, as the observation interval shrinks, the quality of the observed CPU allocation measurements

deteriorates. Given that there is a lower bound on the amount of time a CPU allocates to a given task, as the

interval decreases, the amount of noise increases. Hence, too small an interval can lead to violation of the

monotonicity assumption and other unpredictable behavior. On the other hand, too large an interval may

lead to very slow convergence.

Furthermore, as previously discussed, the transport protocol and network latency may induce delays in

the response of the system. These delays must be taken into account in determining the time duration of

each iteration to allow the process to “converge” to the correct CPU utilization.

Hence, to deal with time-dependent random effects, the length of an iteration, in clock time, is treated

as a parameter of the algorithm which must also be optimized.



4.2.2 Time-independent stochastic effects and random noise

To counter the effect of noisy measurements due to variation of CPU utilizations by the operating system,

each iteration relies on smoothed measurements, collected over a number of prior observation intervals.

Specifically, we utilize a moving average transformation coupled with a reduction of outlier measurements.

Alternatively, an exponential weighted average can be utilized, so that the method is less affected by noise

as the interval is reduced.

5 Experimental Design

This section introduces the system we developed to test our adaptive bandwidth control algorithm. Imple-

menting the algorithm in a real-world setting exposed the strengths and weaknesses of the proposed system,

and inspired the addition of several features to improve performance.

As in the problem formulation, the system is built around a central controller that uses input from

bandwidth and CPU monitoring components to iteratively adjust the bandwidth policing levels until CPU

resources are shared in a desired proportion. The system is inherently difficult to control: each iteration

is potentially expensive given that it perturbs the operating point, and poorly-chosen bandwidth policing

levels can significantly decrease the efficiency and endanger the stability of the computing processes.

In particular, CPU utilization is subject to significant noise levels; this can be due to the granularity of

the OS (Linux) kernel scheduler. For example, if CPU utilization is measured over a period shorter than a

complete scheduler epoch, the measurement will overstate the CPU share of the processes that have already

run while understating the share of those that have not yet run. The next CPU utilization measurement will

likely over/understate different sets of processes. This noise can be decreased by measuring CPU utilization

over longer measurement periods, somewhat decreasing the responsiveness of the control. Other sources of

CPU utilization noise are harder to control, such as the periodic execution of various system services and

any other processes not under direct management.

In this test system, as in any real implementation, there is substantial noise in input variables. As

previously discussed, CPU utilization measurements over short time periods can be subject to noise from

scheduler granularity. In the real system, we also must deal with complications that cannot be modeled as

noise. Processes can exhibit different relationships between bandwidth use and CPU utilization over time.

This relationship can change quite often and rapidly, as a process’ handling of incoming traffic may be en-

tirely dependent on the content of the data. To address this problem, our controller has a mechanism (outside

the usual adaptation algorithm) that recognizes a fundamental shift in the bandwidth/CPU relationship, and

triggers a ”‘restart”’ of the learning and control process.



5.1 Bandwidth Policing

The bandwidth policing component uses Linux’s tc command to enforce the bandwidth allocations decided

by the controller. The command tc (short for “traffic control”) is a user-space Linux application that allows a

user to configure a set of packet queues, traffic classes, and traffic shapers that reside in the Linux kernel and

control the handling of incoming and outgoing packets. tc supports a range of packet filters for classifying

traffic, queueing disciplines for scheduling packet processing and an efficient mechanism for controlling

traffic rates.

5.2 CPU Monitoring

For the results described in this paper, our system management goal is to achieve a given target CPU

utilization vector, and our QoS metric is the squared distance of the observed operating point from that

vector. CPU utilization is read from Linux’s /proc virtual filesystem, which provides the number of CPU

ticks used for each process and by the system as a whole. For any given interval, the ratio of ticks used by a

process to the total provides the fractional CPU utilization (regardless of the number of CPUs). This metric

is inexpensive to obtain, and accurate for polling frequencies down to tenths of a second 1

5.3 Bandwidth Monitoring

In addition to creating and deleting filters for policing streams, tc allows a user to query a filter for

some basic information: bytes delivered, packets delivered, and packets dropped. We use the bytes

delivered statistic to monitor the amount of traffic associated with each process under management.

The measured traffic rate usually differs from the allocated rate, even when an application attempts to use

the full amount of bandwidth allocated to it. This difference is attributed to transient effects caused from

filter creation/deletion, TCP rate control, and approximations by the rate control filters. These short terms

variations make it difficult to use the measured bandwidth in our adaptation algorithm, so we use mea-

sured bandwidth only to determine whether or not an application is attempting to utilize all the bandwidth

allocated to it. Thus, small changes in the measured bandwidth are not taken to indicate changes in an

applications’ CPU/bandwidth function; however, when the measured bandwidth is considerably less than

the allocated, we use it as an indication that the application is not capable of utilizing the full bandwidth

allocation.
1Below about 200ms, measurements are inaccurate since the polling frequency approaches the granularity of the Linux scheduler.



6 Experimental Results

In this section we report on results obtained from our experimental set-up. We conducted two sets of exper-

iments; in the first, we evaluated the performance of the method with a set of example stream processing

applications in an environment without any other resource allocation schemes. In the second set of results

we compared the method against other resource management schemes available today and evaluated how

the method could be used in conjunction with these schemes. We start by describing the applications that

were used in our experiments.

6.1 Test Applications

In order to produce a realistic testing environment, we experimented with a set of common stream process-

ing applications that exhibit different CPU-bandwidth utilization functions, such as cryptographic, multi-

media and text searching applications. In most cases, these are invoked from a scripting language (Python)

to facilitate control of the application set.

The first application is stream encryption based on the Blowfish algorithm with a 264-bit key. This

application is very CPU intensive; it utilizes approximately 100% CPU to process about 10Mbps of input

data. The second application performs text (regular expression) search on an incoming stream, applying

filters to find matching regular expressions. As expected, this is a much less CPU intensive application; it

can saturate the link bandwidth while using only about 40% of the total CPU. A third multimedia streaming

application encodes incoming audio (raw PCM values) into MPEG-II Layer 3 (MP3) format. This appli-

cation is slightly less CPU-intensive than encryption, and exhausts the CPU at about 16Mbps incoming

data rate. The fourth application, a variant on the third, also encodes the same incoming audio to MP3, but

at a lower quality setting. This application requires significantly less CPU, and can reach incoming data

rates around 55Mbps before exhausting the CPU. Both audio encoding applications have the interesting

property of being data-dependent, such that the bandwidth-CPU relation varies somewhat according to the

content of the incoming data (e.g. silence is faster to encode than a tonally complex combination of musical

instruments).

6.2 Quantitative Results

Figure 4 shows a typical case of the control algorithm at work. One instance of each of the four applications

(encryption, search, high quality MP3 encoding, and low quality MP3 encoding) is running on the system,

each with a different CPU target. Initially (at iteration zero), each application is allocated up to one fourth of

the total bandwidth, which is enough to keep the encryption and mp3 encoding processes busy, constrained

by the CPU. In the next iteration (iteration 1), the bottom graph shows the bandwidth allocations to mp3

encode (high quality) and search being decreased, and the upper graph shows the corresponding decrease in

CPU usage. Simultaneously, the bandwidth allocation of the encryption process is increased, and the CPU
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usage decreases. After some vaccilation around the target values, the CPU usage of each process settles in

close to the target. CPU utilization for all four applications converges to within 5% of the targets in only

three iterations, and stays within that range for the remainder of the experiment.

Figure 6.2 shows the effect of increasing the number of processes under management on the convergence

of the processes to their targets. For the cases with more than four processes, there are considerable spikes in

error as the system is perturbed toward convergence. Increasing the number of processes under management

appears to both increase the time required to reach convergence and to increase the error measured when

that convegence is achieved. In this figure, error is measured as the sum of the squared distances of observed

CPU usages from their targets, divided by the sum of the squares of the targets. All targets were fixed at

5% CPU, and processes consisted of a mix of the four different applications. Some of the increased error

at convergence and the extra time to convergence with added applications is thus attributable to the overall

increase in offered CPU load.



6.3 Comparative Experiments

In this subsection we evaluate the performance of the method against other existing alternatives and examine

how well it can work in conjunction with these mechanisms. In particular, we compare the method’s ability

to achieve and maintain a desired CPU allocation with attempts to reach the same allocation using two

alternative mechanisms: (i) process priorities in the Linux 2.6 kernel scheduler, and (ii) CPU allocation

with the Class-based Kernel Resource Manager (CKRM) patch.

Our goal in the experiments is to maintain a target 3:1 ratio of processing allocation between two in-

stances of the same stream processing application, each instance receiving a separate stream of input data

over a shared 100Mbit local area network. We are interested in experimenting with applications that exhibit

different bandwidth and CPU resource requirement profiles, from low bandwidth, very CPU intensive to

those requiring high bandwidth but relatively low CPU. We therefore created a synthetic stream process-

ing application that can be tuned to model a wide spectrum of applications with different CPU/bandwidth

requirements. It achieves this by having a configuration argument that specifies the number of (numerical)

computation loops (i.e. operations) to execute for each kilobyte-sized block of incoming data. We con-

figure each of the management mechanisms (manually, in the case of nice levels, automatically in the

case of CKRM and our method) to get as close as possible to the 3:1 ratio target of CPU utilization. We

record the observed CPU utilization and incoming bandwidth for at least 3 minutes for each test case, and

repeat for each management mechanism. This procedure is repeated for several different settings of the data

processing application’s argument (number of loops per 1Kb of data). This gives a complete picture of the

effectiveness of the different management mechanisms across a wide range of stream-processing applica-

tions, varying from high to low bandwidth intensity. To reduce noise in measurements due to background

processing, we limited the maximum CPU targets to 75% and 20%, reserving at least 5% of CPU resources

for system processes.

6.3.1 Linux Scheduler Priority (nice) Testing Procedure

In a stock Linux kernel, the sole mechanism for influencing the relative CPU allocation of running tasks

is adjustment of scheduling priorities (also known as the Linux nice command, which allows a “nice”

user to deprioritize their own tasks and a priveleged user to prioritize tasks). The kernel scheduler uses

these priorities to determine both the precedence of and the timeslice given to each task in every scheduling

epoch. The nice levels range from -20 to 19, with -20 being the highest priority. The kernel adjusts

the nice level by an interactivity bonus/penalty ranging from -5 to +5, depending on whether a program

usually sleeps waiting for some input (bonus) or usually runs (penalty).

Our process for managing CPU allocation using scheduler priorities was to manually search for the pair

of priorities for the two running tasks that result in CPU utilizations closest to the targets. For lower values

of the processing loops per kilobyte of data, even the most extreme pair of priorities (-20 and 19) were not

able to reach the desired CPU targets. In such cases we show the results obtained with these minimum and



maximum priorities.

6.3.2 Class-based Kernel Resource Manager (CKRM) Testing Procedure

CKRM is a patch to the Linux kernel that allows “Class-based Kernel Resource Management.” Through a

psuedo-filesystem, users can create classes, assign running tasks to them, and set CPU sharing allocations

of each class.

Our process for managing CPU allocation using CKRM was to put each task in a separate class, then

set the CPU share guarantees (which is also used as a weight for CPU sharing) to the desired targets. As

previously mentioned, we allow the sum of the two targets to be at most 95% of the CPU, as leaving less

than 5% of the CPU for system tasks and our monitoring components would make the system potentially

unstable.

6.3.3 Testing Procedure

Our method can be launched by any user with sudo priveleges to run the kernel network QoS controller

tc. It accepts arguments specifying the names or process identifiers of the tasks to be controlled, and the

desired CPU targets.

We configured the system to sample CPU usage every second, and to use 5 of these samples per iteration.

In such a configuration, the system may change the bandwidth allocation to a task at most once every five

seconds, though in actuality it rapidly converges on an allocation and maintains it unless the system is

disturbed.

6.3.4 Comparative Experimental Results

Figure 6.3.4 shows the CPU utilizations achieved by the tested management schemes under a range of

the operations-per-kilobyte parameter ranging from 0 to 80. The dotted lines labeled “targets” show the

target levels of CPU utilization – the levels we attempted to achieve using each of the tested mechanisms.

First, we note that our method, referenced in the figures as “atm” for “autonomic traffic manager”,

is consistently closest to the target levels across the entire spectrum of processing load. The difference

is most remarkable when processing load per unit bandwidth is low, i.e., for very bandwidth intensive

applications. In the range between 0 and 20 processing loops per kilobyte, neither the Linux Process

Priorities approach nor CKRM are capable of achieving any differentiation at all between the two tasks,

let alone the desired 3:1 ratio. the Linux Process Priorities approach begins showing the ability to effect
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Figure 6: CPU Utilization measured using each of the 3 management schemes: nice, ckrm, and our ap-

proach, called “atm”, for varying processing levels. Each scheme is represented by two lines for the two

tasks, and the target CPU utilizations are indicated by the dotted lines labeled “targets.”

differentiation above 20 loops/KB, and reaches the target differentiation at about 50 loops/KB. CKRM

shows very little differentiation below 40 loops/KB, and reaches the targets at about 60 loops/KB.

We believe that the Linux Process Priorities approach and CKRM are unable to achieve differentiation

in the case of low CPU/high bandwidth intensity applications because the processing tasks receive data via

TCP/IP over a shared link, and the TCP/IP stack does not explicitly favor tasks of higher nice priority

or larger CKRM CPU allocation. Thus TCP/IP tends to equalize the bandwidth allocated to each of the

two tasks unless another mechanism is used to explicitly control this allocation, which is exactly what our

method does.

For cases with 60 loops/KB and above, all three mechanisms are able to maintain the system at target

levels (note that the Linux Process Priorities approach and CKRM converge on CPU utilizations slightly

above the targets, since they will redistribute any unused CPU time above the 95% we allocate). As the loop

count increases, tasks become increasingly CPU-dependent, and pure CPU-allocation scheduling schemes

can successfully maintain the desired balance, while management by pure bandwidth-allocation schemes

such as our method become more difficult. Nevertheless, we find that our method is quite capable of

reaching CPU targets in separate trials with up to 10,000 processing loops/KB.

Figure 6.3.4 shows the bandwidth utilization measured during the tests. Similar to the CPU utiliza-

tion graphs, we see that the Linux Process Priorities approach and CKRM do not achieve any meaningful

differentiation between the two tasks for loops/KB values below 20. Bandwidth differentiation closely par-

allels CPU differentiation: the Linux Process Priorities approach shows some differentiation above 20 and

converges with our method (referred to as “atm”) at 50, while CKRM shows differentiation above 30 and

converges with our method and the Linux Process Priorities approach at 60.
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The bandwidth utilization lines for our method are essentially flat for the section of the line between 0

and 40 loops/KB, reflecting the fact that targets increase in direct proportion to the number of instructions

per KB. Above 50 loops/KB, the CPU is fully utilized, so increasing the loops/KB variable leads to linear

decrease in the bandwidth. The bandwidth utilizations are very near the ideal, as can be observed from the

fact that the Linux Process Priorities approach and CKRM converge to our method’s bandwidth utilization

once they reach the targets.

Figure 6.3.4 shows the standard deviation of all samples taken during all trials of nice, CKRM, and

our method. The predominant feature of the graph is a large peak demonstrated by nice in the range be-

tween 20 and 60 operations per kilobyte. Recall that this range corresponds exactly to the region where the

Linux Process Priorities approach transitions from achieving no differentiation between tasks to achieving

the full targeted differentiation. In fact, during experimentation we noticed that the Linux Process Priorities
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Figure 9: Standard deviation of bandwidth utilization.

approach was producing very unstable system operation in this range around 40 operations per kilobyte,

with both CPU utilization and bandwidth usage oscillating quite violently. This may be the result of in-

teraction between the Linux scheduler giving priority and larger timeslices to a task while TCP/IP detects

higher losses on that tasks’ link, and repeatedly throttles it down (via its multiplicative decrease algorithm).

CKRM exhibits standard deviation which increases roughly linearly from 0 to 50 operations per kilo-

byte, then drops near zero at 60 operations per kilobyte and thereafter. Our method, in comparison, shows

standard deviation roughly flat across all operations/KB, demonstrating that it is not very sensitive to the ra-

tio of bandwidth to CPU. For 0 to 50 operations per kilobyte, ATM exhibits similar or less variance around

the CPU targets than either the Linux Process Priorities approach or CKRM. Both CKRM and the Linux

Process Priorities approach perform very well when tasks are sufficiently CPU-centric: with 60 or more

operations per kilobyte, the Linux Process Priorities approach and CKRM exhibit less variance than our

method.

Figure 6.3.4 shows the standard deviation of the bandwidth used across all samples for each trial. Similar

to Figure 6.3.4, we observe that nice exhibits relatively large variance in the region between 20 and 60

operations per kilobyte. Our method displays differing variance in different trials, at times quite high

for the higher priority task’s bandwidth, but consistently lowest of the group for the lower priority task’s

bandwidth. We attribute the former observation to our method’s bandwidth search mechanism, which likely

had to adjust bandwidth allocation rapidly to maintain the desired CPU levels in this challenging operating

region. In observing our method at work, we often see that system tasks can ”‘steal”’ CPU from the stream

processing tasks (since our method, unlike the Linux Process Priorities approach and CKRM, does not

directly control CPU scheduling). This is consistent with the observation of low variance in the low priority

task under our method, since it is less likely to have CPU share stolen by system tasks, and can lock in a

specific bandwidth and maintain that allocation for long periods of time.



We attempted to run both our method and CKRM simultaneously, with no coorindation between the two,

and found that the combination did not perform as well as our method alone. Specifically, our method seems

to experience higher variability and slightly less differentiation in the presence of CKRM than in isolation.

With our method’s ability to control highly bandwidth-centric tasks and CKRM’s ability to control CPU-

oriented tasks, using the two in concert, in a coordinated fashion, or dynamically choosing between them,

should enable improved control across the full spectrum of stream processing tasks, and with other types of

processes as well. Determining the best way to do so would present a worthwhile avenue for future study.

7 Conclusions

Efficient operation of distributed and parallel computing applications depends on efficient management of

multiple resources such as CPU, system memory and link bandwidth. While substantial work exists on

independently managing system (CPU, memory) and networking resources, little attention has been given

to the complex dependencies between utilization of processing and network bandwidth resources. As our

work shows this link is a critical piece of system management tools, especially in the case of high-bandwidth

stream processing applications, for which existing system management tools based on CPU-prioritization

schemes are inadequate.

To address these shortcomings, we have developed a system that seeks to achieve system management

objectives by explicitly considering the relationship between the bandwidth allocated to an application and

its corresponding utilization of processing resources. By controlling the bandwidth allocation vector across

different applications, we can drive the system towards a desired CPU utilization vector. Effective operation

of our system has been demonstrated for a wide-range of applications, from CPU intensive to bandwidth-

intensive.

Our results demonstrate that weighted and prioritized CPU scheduling are not sufficient to achieve

meaningful control over high-rate stream processing operations, and that our method can achieve such con-

trol over both high-rate (low operations/unit of bandwidth) and low-rate (high operations/unit bandwidth)

stream processing tasks. Our method controls CPU utilization indirectly by setting the bandwidth to (or

from) each processing tasks, and so must learn the relationship between the bandwidth and CPU resources

used by each task, while simultaneously effecting the desired control output. Despite the algorithmic so-

phistication of our method, when compared to simple weighted CPU sharing (e.g. Linux Process Priorities

(setting juudiciously the nice command) and CKRM), our method achieves accuracy consistency compa-

rable to those two approaches for low-rate stream processing applications, and, most importantly, improves

upon their performance with the high-rate stream processing tasks that the Linux Process Priorities approach

and CKRM cannot handle. Furthermore, our method achieves this will notably low overhead.

We anticipate that there will be gains made by managing multiple resources in a single framework, above

and beyond those that we achieved here by controlling different resources via entirely isolated mechanisms.

Hence our suggestions for future research in the are are two-fold. On the one hand, a study of incorporating



our bandwidth-based traffic management approach in conjunction with other existing traffic management

schemes (such as Linux Process Priorities, CKRM, or others) would present an important contribution to

the state of the art. On the other hand, our ideas could be developed further by designing schemes to handle

more than one resource. For example, network bandwidth and CPU shares, and/or memory could be jointly

controlled for still greater benefit to stream processing systems and other I/O centric applications.
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