
RC23927 (W0603-204) March 31, 2006
Computer Science

IBM Research Report

A Java Framework for Runtime Modules

Olivier Gruber
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Richard Hall
Laboratoire LSR

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Java Framework for Runtime Modules

Olivier Gruber1 and Richard S. Hall2

1IBM Research – ogruber@us.ibm.com
2Laboratoire LSR – richard.hall@imag.fr

Abstract. We present the design of core mechanisms for building module
frameworks from reusable components. Our approach promotes flexibility and
modularity, separating the different facets of a module framework: a way to load
classes or resources for applications, a delegation model between class loaders,
and the actual class loading. Our design, implemented in Felix (Apache), can
model the module layer of popular frameworks such as GBeans, XBean, or the
OSGi framework.

1 Introduction

In recent years, there has been growing interest in runtime modules within the Java
community [2][3]. Originally, Java had no such concept and later adopted class load-
ers as its runtime module model. Unfortunately, class loaders mix three facets: a way
to load classes or resources for applications, a delegation model between class load-
ers, and the actual class loading (i.e., reifying class bytes into class objects). To sup-
port other runtime components and services, different Java communities have pro-
posed, above Java class loaders, different runtime module frameworks, such as
GBeans1 or OSGi technology [5].

There seems to be overall agreement that a runtime module is a namespace for Java
types and resources. Furthermore, there is usually a delegation model where modules
delegate to other modules for loading types or resources. However, there is almost no
agreement on the details of runtime modules, such as the granularity of delegation
(e.g., Java types, packages, or entire modules) or encapsulation capabilities. We also
find very different module packaging, from simple to extended Java archive (JAR)
files as well as other formats such as JXE files for the IBM J9 virtual machine [4].

This paper introduces our work on a comprehensive Java framework for runtime
modules, which continues previous work in this area [1]. It provides core mechanisms
for supporting heterogeneous module semantics through policies. This framework is
the result of having to deal with such diversity through the releases of Felix, the
Apache incubator implementation of the OSGi framework. We designed our mecha-
nisms to support implementations of the OSGi framework through its Release 3 and 4
specifications. We realized that in fact these mechanisms could be used to implement
a large number of existing module semantics.

This position paper is structured as follows. In section 2, we introduce the overall
architecture of our approach for runtime modules and discuss our interfaces and the
underlying design. In section 3, we quickly compare our approach with the state of the
art and illustrate the flexibility of our approach. In section 4, we conclude.

1 http://wiki.apache.org/geronimo/GBeans

2 Architecture and Design

Our focus is on the design of the core mechanisms for building module frameworks
from reusable components. Our approach promotes flexibility and modular develop-
ment, separating the different facets of a module framework: actual class loading from
a physical container (IContentLoader), delegation model (ISearchPolicy), and
interface for Java applications to load classes and resources (IModule). The corre-
sponding architecture is depicted in figure 1.

For a given framework implementation, one of the first steps is to decide on a de-

pendency model. A dependency model understands the dependencies among modules.
It knows how to resolve a module, that is, to satisfy its dependencies. For each re-
solved module, it can provide a search policy object (ISearchPolicy) that repre-
sents its delegation model to other modules for class and resource loading.

We do not impose a dependency model or search policy. For instance, we have im-
plemented different dependency models, such as OSGi R3 (package-level dependen-
cies) and R4 (more expressive dependencies and module-level dependencies). It is
also important to point out that we do not fix the metadata format used to express de-
pendencies; this is internal to the implementation of the module framework and its de-
pendency model.

The module framework uses a module factory (IModuleFactory) to create mod-

ules (IModule). Once a module has been created, the framework needs a content
loader (IContentLoader) for it. The content loader is the entity that knows how to
reify Java types and resources from the actual module content (IContent). A content
loader usually leverages a Java class loader for this, but it does not have to; some Java
runtime environments provide special support such as the IBM J9 virtual machine.

Fig. 1. Architecture

Fig. 2. Search policy

Fig. 3. Module factory

Fig. 4. Module

The IContent interface abstracts the storage details of the actual contents of a
module, which is one large point of diversity among existing module frameworks. For
example, this can be simply downloading JAR files from an HTTP site to a local file
system, where they may or may not be expanded. The JAR files may also be complex,
embedding native libraries and other JAR files for the module's local class path (e.g.,
OSGi bundles). Our approach does not mandate any specific download format or lo-
cal storage policy.

The last step is to provide the content loader with its search policy object, which
supports delegated class loading. The purpose of content loader is the reification of
the local classes and resources for the Java Virtual Machine. When a class is needed,
the content loader checks that it has not already loaded it, if not, it delegates to its
search policy. The search policy knows the delegation model and may ask another
module to load the class if necessary. If the search policy does not return a class, the
content loader attempts to load it locally, from its own content.

3 Examples

This section discusses several different models for modules from different successful
systems. Taken together, they cover a wide range of modularity and illustrate the flex-
ibility of our approach as a low-level mechanism for building module frameworks.

The GBeans platform is developed in Geronimo, the open-source J2EE-certified
Web Application Server from Apache. It uses a module layer based on a tree of mod-
ules, faithful to the traditional Java class loading architecture. The deployment unit is
a configuration, which is described by an XML file, called a configuration, containing
a list of JAR files for the local class path as well as a list of other child configurations.

To support GBeans, one has to first develop a search policy, which is straightfor-
ward in this case since the model is simply a tree of modules. A module is therefore
resolved if its parent module is resolved. Furthermore, the delegation model is also
simple since it is based on the traditional parent class loader delegation. A second step
is to write the management agent that knows how to download a configuration and the
JAR files it needs. These JAR files can be simply stored in the file system and a sim-
ple URLClassLoader will suffice for implementing the content loader.

The new release of GBeans, called XBean2, is moving toward a Directed Acyclic
Graph (DAG) for its module layer, with module-level granularity. Not much needs to
be changed from the above in order to accommodate a DAG. The resolver needs to re-
solve a module only if required modules are resolved. Furthermore, the delegation for
class loading has to delegate to those required modules.
2 http://www.xbean.org

Fig. 6. This is the content caption
Fig. 5. This is the content loader caption

For OSGi technology, a deployment unit is a bundle, which is a JAR file with a
manifest containing module metadata. At runtime, a bundle is a module following a
fairly complex dependency model. The OSGi R4 specification defines two levels of
granularity for dependencies: Java packages or bundles. Furthermore, the resolution is
fairly complex as dependencies are flexible and powerful. Hence, one major challenge
is to develop the resolver for the dependency model, which needs to include a back-
tracking constraint resolver.

Regarding the bundle contents, there is no major difficulty, but different systems
use different approaches. Traditionally, OSGi implementations keep bundles as JAR
files for class and resource loading, but need to extract native libraries. Some imple-
mentations support exploding bundle JAR files into the file system. As long as one
knows how to create a class loader for the content layout, the approach works.

4 Conclusion

In this short paper, we have presented core mechanisms for supporting modular im-
plementations of module frameworks. The separation between mechanisms and poli-
cies, as well as the ability to provide custom implementations for the core mecha-
nisms, provide unprecedented flexibility and reuse. One key aspect is that the ap-
proach separates the dependency model from actual class loading. It also separates the
reification process for classes from issues of module content management.

The proposed approach and corresponding interfaces are the results of several
years of designing and implementing module layers, with different dependency mod-
els and different class loader delegation. We believe that the proposed architecture
and design is sound for core mechanisms that could be integrated in the Java Runtime
Environment for supporting modules, without imposing an actual model for modules
and their dependencies. Overtime, it would simplify the Java class loaders since they
could focus on reification of classes rather than dependency model or storage issues.

5 References

1. R.S. Hall. “A Policy-Driven Class Loader to Support Deployment in Extensible Frame-
works,” Proceedings of the 2nd International Working Conference on Component Deploy-
ment (CD 2004), May 2004.

2. Java Community Process. “JSR 277: Java Module System,”
http://www.jcp.org/en/jsr/detail?id=277, June 2005.

3. Java Community Process. “JSR 291: Dynamic Component Support for Java SE,”
http://www.jcp.org/en/jsr/detail?id=291, February 2006.

4. C. Laffra, S. Foley, and J. McAffer. “Packaging Eclipse RCP Applications,” IBM Corp.,
2004.

5. OSGi Alliance. “OSGi Service Platform Core Specification Release 4,” http://www.osgi.org,
August 2005.

	1Introduction
	2Architecture and Design
	3Examples
	4Conclusion
	5References

