
RC23928 (W0604-003) April 3, 2006
Computer Science

IBM Research Report

Automating System Administration:
Landscape, Approaches, and Costs

Aaron B. Brown*, Joseph L. Hellerstein, Alexander Keller
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

*IBM Software Group

Automating System Administration:

Landscape, Approaches, and Costs

Aaron B. Brown, Joseph L. Hellerstein, and Alexander Keller

IBM Corporation

Abstract

Automation is essential for efficient system administration. This chapter addresses

the following questins: What to automate? How to automate? And, when to auto-

mate? The “what” question is addressed by studying what system administrators do

and therefore where automation provides value. The “how” question is about tech-

nologies for automation. We discuss three approaches—rule-based systems, control

theoretic approaches, and workflow-based automation. The “when” is ultimately a

business question that should be based on a full understanding of the costs and

benefits of automation. For this, we provide a framework for doing such an analysis

and apply it to software distribution.

Key words: Automation, System Administration, Scenarios, Strategies, Process

Models, ITIL, workflow construction, Cost-Benefit Analysis

1 Introduction

The cost of systems administration in Information Technology (IT) systems
often exceeds the cost of hardware and software. Our belief is that automating
system administration can reduce these costs and increase the business value
provided by IT.

Making progress with automating system administration requires addressing
three questions. What to automate? How should this automation be done?
When does the automation provide business value?

What to automate is often answered in a simplistic way — everything! The
problem here is that automation requires investment and inevitably causes
some disruption in the “as-is” IT environment. As a result, it is important to
target aspects of System Administration where automation provides the most

Preprint submitted to Elsevier Science 24 February 2006

value. We believe that a process-based perspective provides the kind of broad
context in which such judgments can be made.

How to automate system administration can be approached in many ways.
Among these are rule-based techniques, control theory, and automated work-
flow construction. These approaches provide different kinds of benefits, and,
in many ways, address different aspects of the automation challenge.

When to automate is ultimately a business decision that should be based on
a full understanding of the costs and benefits. The traditional perspective has
been that automation is always advantageous. However, it is important to
look at the full costs imposed by automation. For example, automating soft-
ware distribution requires that: (a) the distribution infrastructure be installed
and maintained; (b) software packages be prepared in the format required by
the distribution infrastructure; and (c) additional tools be provided to handle
problems with packages that are deployed because of the large scale of the im-
pact of these problems. While automation often provides a net benefit despite
these costs, we have observed cases in which these costs exceed the benefits.

The remainder of this chapter provides more detail on the questions of what,
how, and when to automate.

2 What System Administrators Do

We start our consideration of automating system administration by examin-
ing what system administrators do, as these tasks are the starting points for
building automation.

System administrators are a central part of IT operations. Anyone who has
owned a personal computer knows some elements of system administration.
Software must be installed, patched, and upgraded. Important data must be
backed up, and occasionally restored. And, when a problem occurs, time must
be spent on problem isolation, identification, and resolution.

In many ways, system administrators perform the same activities as individ-
uals. There are, however, some important differences. The first is scale. Ad-
ministrators are typically responsible for tens to hundreds of machines. This
scale means that management tools are essential to deal with repetitive tasks
such as software installation.

A second important difference is that system administrators are usually re-
sponsible for mission critical machines and applications. Seconds of downtime
at a financial institution can mean millions of dollars of lost revenue. Failures

2

in control systems for trains and aviation can cost lives. These considerations
place tremendous emphasis on the speed and accuracy with which adminis-
trators perform their jobs.

In large data centers, system administration is typically structured by technol-
ogy. Examples of these technology areas are servers, databases, storage, and
networks. Administrators will typically train and develop specialized expertise
in one technology area—for example a database administrator (DBA) becomes
an expert in the details of database installation, tuning, configuration, diag-
nosis, and maintenance. However, the different technology areas often contain
similar tasks, such as diagnosis and capacity planning, so the techniques de-
veloped in one area will often translate relatively easily to others. Even so,
the tools used to accomplish these tasks in the separate areas remain different
and specialized.

The remainder of this section is divided into four parts. The first two parts
describe system administration in the words of experts. We focus on two tech-
nology areas—database administration and network administration. The third
part of the section is a broader look at system administration based on a
USENIX/SAGE survey. The section concludes with a discussion of best prac-
tices.

2.1 Database Administration

We begin our look at expert system administration in the area of database
administration. The material in this section is based on a database adminis-
tration course [8].

The job of a database administrator (DBA) is largely driven by the needs of
the organization. But at the heart of this job is a focus on managing data
integrity, access, performance, and security/privacy. Typical tasks performed
by a DBA might include:

• designing and creating new databases
• configuring existing databases to optimize performance, for example by ma-

nipulating index structures
• managing database storage to ensure enough room for stored data
• diagnosing problems such as “stale” database data and deadlocks
• ensuring data is replicated to on-line or off-line backup nodes
• federating multiple independent database instances into a single virtual

database
• interfacing with other administrators to troubleshoot problems that extend

beyond the database (e.g., storage or networking issues)

3

• generating reports based on database contents and rolling up those reports
across multiple database systems

The tools that a DBA uses to perform tasks like these vary greatly depending
on the scale and needs of the organization. Small organizations and depart-
ments may use simple tools such as Paradox, Visual FoxPro, or Microsoft Ac-
cess to maintain data. Larger organizations and governments with corporate-
wide data requirements demand industrial-strength database tools such as
IBM DB2, Oracle database, Microsoft SQL Server, Ingres, etc. And for or-
ganizations with multiple databases (often a situation that occurs after ac-
quisitions, or when independent departments are transitioned to a centralized
system), additional tools, often called “middleware”, will be necessary to fed-
erate and integrate the existing databases across the corporation. Middleware
poses its own administration considerations for installation, configuration, op-
timization, and maintenance.

In addition to the core tools—the database engine(s) and middleware—DBAs
use many specialized administration tools. These may be scripts developed
by the DBA for specific situations, or they may be vendor-supplied tools for
monitoring, administration, and reporting.

As we look toward automation of a DBA’s system administration responsibili-
ties, we must recognize the challenges faced by a DBA. First is the integration
of large numbers of tools. It should be clear from the discussion above that
anything larger than a small department environment will involve multiple
database engines, possibly middleware, and a mix of home-grown and vendor-
supplied tools. Second is the need to “roll-up” data in large environments,
e.g., integrating department reports into corporate-wide reports. Part of the
challenge of the roll-up is the need for processes to scrub data to ensure cor-
rectness and consistency. The challenge of providing roll-ups creates a tension
between the small scale systems with ease of entry and the large scale systems
that provide robustness and scalability.

Finally, DBAs do not operate in a vacuum. There is considerable interaction
with other administration “towers”, such as network and storage management.
The following from [8] provides an illustrative example:

Unfortunately, one situation that can occur more often than planned, or
more accurately, more than it should, is when the database does not update
despite the careful steps taken or the time involved in trying to accomplish
a successful update [...]

The first step is to investigate the problem to learn the true “age” of the
data. Next, the DBA would attempt to update a recent set of data to deter-
mine what may have occurred. It could have been a malfunction that day,
or the evening the update was attempted. Assuming the situation does not

4

improve by this upload, the next step is to contact the network administra-
tor about possible server malfunctions, changes in standard record settings,
or other changes that might affect the upload of data.

Occasionally, the network server record lock settings were changed to
“disallow” any upload to a network server over a certain limit [...] If the
DBA is lucky, or has positive karma due for collection, all that may be
required is for the network administrator to reset the record lock setting at
a higher level. Updates can then be repeated and will result in current data
within the business unit database for purposes of management reporting.

However, on a bad day, the DBA may learn from the network admin-
istrator that the server was or is malfunctioning, or worse, crashed at the
precise time of the attempted update [...] In this situation the investigation
must retrace the steps of data accumulation to determine the validity of
the dataset for backup and experimental upload (network administrators at
ringside) to watch for any type of malfunction.

In environments such as the foregoing, automation usually proceeds in an
incremental manner, starting with special-purpose scripts that automate spe-
cific processes around the sets of existing tools, to generalizations of those
scripts into new management tools, to rich automation frameworks that in-
tegrate tools to close the loop from detecting problems to reacting to them
automatically.

2.2 Network Administration

Next, we look at another technology area for system administration: network
administration. The material in this section is based on a course on network
administration [36]. We have included quotes as appropriate.

Network administrators are responsible for the performance, reliability, and
scalability of corporate networks. Achieving these goals requires a substantial
understanding of the business for which these services are being delivered as
well as the nature and trends in network technologies. In particular, in to-
day’s network-connected, web-facing world, network administrators have gone
from supporting the back-office to enabling the online front-office, ensuring
the network can deliver the performance and reliability to provide customer
information, sales, support, and even B2B commerce online via the Internet.
The network administrator’s job has become a critical function in the revenue
stream for many businesses.

Typical tasks performed by a network administrator might include:

• designing, deploying, and redesigning new networks and network intercon-
nections

5

• deploying new devices onto a network, which requires a good understanding
of the network configuration, the device requirements, and considerations
for loads imposed by network traffic

• setting and enforcing security policies for network-connected elements
• monitoring network performance and reconfiguring network elements to im-

prove performance
• managing network-sourced events
• tracking the configuration of a network and the inventory of devices attached

to it
• detecting failures, diagnosing their root causes, and taking corrective actions

such as reconfiguring the network around a failed component

Network administrators make use of a variety of tools to perform these tasks.
Some are as simple as the TCP ping, traceroute and netstat commands,
which provide simple diagnostics. Administrators responsible for large cor-
porate networks frequently make use of network management systems with
sophisticated capabilities for filtering, eventing, and visualization. Examples
of such systems are Hewlett Packard’s OpenView product and IBM’s NetView
product. Administrators of all networks will occasionally have to use low-level
debugging tools such as packet sniffers and protocol decoders to solve compat-
ibility and performance problems. No matter the scale of the network, tools
are critical given the sizes of modern networks and the volumes of data that
move across them. To quote from the advice for network administrators in [36],
“A thorough inventory and knowledge of the tools at your disposal will make
the difference between being productive and wasting time. A good network
administrator will constantly seek out ways to perform daily tasks in a more
productive way.”

As we look toward automation of a network administrator’s activities, there
are two key aspects to consider. First is to provide more productive tools and
to integrate existing tools. Here, automation must help administrators become
more productive by absorbing the burden of monitoring, event management,
and network performance optimization. Again this kind of automation pro-
gresses incrementally, starting with better scripts to integrate existing tools
into situation-specific problem solvers, moving to integrated tools that, for
example, merge monitoring with policy-driven response for specific situations,
and culminating in integrated frameworks that close the loop and take over
management of entire portions of a corporate network from the human ad-
ministrator’s hands.

The second key aspect of automating a network administrator’s activities is
to improve the task of problem diagnosis. Here, we refer to both proactive
maintenance and reactive problem-solving. In the words of [36]:

Resolving network, computer, and user related issues require the bulk of

6

an administrator’s time. Eventually this burden can be lessened through
finding permanent resolutions to common problems and by taking opportu-
nities to educate the end user. Some reoccurring tasks may be automated to
provide the administrator with more time [...] However, insuring the proper
operation of the network will preempt many problems before the users notice
them.

Finally, it is important to point out that for any system administration role,
automation can only go so far. There always is a human aspect of system
administration that automation will not replace; in the case of network ad-
ministration, again in the words of [36], this comes in many forms.

Apart from the software and hardware, often the most difficult challenge
for a network administrator is juggling the human aspects of the job. The
desired result is always a productive network user, not necessarily just a
working network. To the extent possible, the administrator should attempt
to address each user’s individual needs and preferences. This also includes
dealing with the issues that arise out of supporting user skill levels ranging
from beginner to knowledgeable. People can be the hardest and yet most
rewarding part of the job.

As problems are addressed, the solutions will be documented and the
users updated. Keeping an open dialogue between the administrator and
users is critical to efficiently resolving issues.

2.3 The Broader View

Now that we have looked at a few examples of system administration, next
we move up from the details of individual perspectives to a survey of ad-
ministrators conducted by SAGE, the Special Interest Group of the USENIX
Association focusing on system administration. Other studies support these
broad conclusions, such as [4].

The SAGE study [13] covered 128 respondants from 20 countries, with average
experience of 7 years, 77% with college degrees, and another 20% having some
college. The survey focused on server administration. Within this group, each
administrator supported 500 users, 10 – 20 servers, and works in a group of 2
to 5 people. As reported in the survey, administrators have an “atypical day”
at least once a week.

With this background, we use the survey results to characterize how adminis-
trators spend their time, with an eye to assessing the opportunity for automa-
tion. This is done along two different dimensions. The first is what is being
administered.

7

• 20% miscellaneous
• 12% application software
• 12% email
• 9% operating systems
• 7% hardware
• 6% utilities
• 5% user environment

There is a large spread of adminstrative targets, and the reason for the large
fraction of miscellaneous administration may well be due to the need to deal
with several problems at once. These data suggest that to improve a system
administrator’s job, automation must be broad. Automation that targets a
single domain such as hardware will be useful, but will not solve the end-to-
end problems that system administrators typically face. Instead, we should
consider automation that takes an end-to-end approach, cutting across do-
mains as needed to solve the kinds of problems that occur together. We will
address this topic in Section 4 in our discussion of process-based automation.

Another way to view administrators’ time is to divide it by the kind of activity.
The survey results report:

• 11% meetings
• 11% communicating
• 9% configuring
• 8% installing
• 8% “doing”
• 7% answering questions
• 7% debugging

We see that at least 29% of the administrator’s job involves working with
others. Sometimes, this is working with colleagues to solve a problem. But
there is also substantial time in reporting to management on progress in re-
solving an urgent matter and dealing with dissatisfied users. About 32% of the
administrator’s job involves direct operations on the IT environment. This is
the most obvious target for automation, although it is clear that automation
will need to address some of the communication issues as well (e.g., via better
reporting).

The survey goes on to report some other facts of interest. For example, fire
fighting only takes 5% of the time. And, there is little time spent on scheduling,
planning, and designing. The latter, it is noted, may well be reflected in the
time spent on meetings and communicating. We can learn from these facts
that automation must address the entire lifecycle of administration, not just
the (admittedly intense) periods of high-pressure problem-solving.

The high pressure and broad demands of system administration may raise

8

serious questions about job satisfaction. Yet, 99% of those surveyed said they
would do it again.

2.4 The Promise of Best Practices and Automation

One insight from the foregoing discussion is that today systems administration
is more of a craft than a well-desciplined profession. Part of the reason for this
is that rapid changes in IT make it difficult to have re-usable best practices,
at least for many technical details.

There is a body of best practices for service delivery that is gaining increasing
acceptance, especially in Europe. Referred to as the Information Technology
Infrastructure Library (ITIL), these best practices encompass configuration,
incident, problem management, change management, and many other pro-
cesses that are central to systems administration [18]. Unfortunately, ITIL
provides only high level guidance. For example, the ITIL process for change
management has activities for “authorizing change”, “assign priority”, and
“schedule change”. There are few specifics about the criteria used for making
decisions, the information needed to apply these criteria, or the tools required
to collect this information.

That said, ITIL provides an important perspective on systems administra-
tion that helps lay out an automation roadmap. The key element of the ITIL
perspective is its focus on process. ITIL describes end-to-end activities that
cut across the traditional system administration disciplines, and suggests how
different “towers” like network, storage, and application/database manage-
ment come together to design infrastructure, optimize behavior, or solve cross-
cutting problems faced by users. ITIL thus provides a philosophy that can
guide us to the ultimate goals of automation, where end-to-end, closed-loop
activities are subsumed entirely by automation, the system administrators can
step out, and thus the costs of delivering IT services are reduced significantly.

We believe that installations will move through several phases in their quest to
reduce the burden on systems administrators and hence the cost of delivering
IT services. In our view, these steps are:

(1) Environment-independent automation: execution of repetitive tasks
without system-dependent data within one tower, for example static
scripts or response-file-driven installations.

(2) Environment-dependent automation: taking actions based on con-
figuration, events, and other factors that require collecting data from sys-
tems. This level of automation is often called “closed-loop” automation,
though here it is still restricted to one discipline or tower.

(3) Process-based automation: Automation of interrelated activities in

9

best practices for IT service delivery. Initially, this tends to be open-loop
automation that mimics acitivities done by administrators such as the
steps taken in a software install. Later on, automation is extended to
closed-loop control of systems such as problem detection and resolution.

(4) Business level automation: Automation of IT systems based on busi-
ness policies, priorities, and processes. This is an extension of process-
based automation where the automation is aware of the business-level
impact of various IT activities and how those IT activities fit into higher-
level business processes (for example, insurance claim processing). It ex-
tends the closed-loop automation described in (3) to incorporate business
insights.

Business-level automation is a lofty goal, but the state of the art in 2006
is still far from reaching it outside very narrowly-constrained domains. And,
at the other extreme, environment-independent automation is already well-
established through ad-hoc mechanisms like scripts and response files. Thus
in the remainder of our discussion we will focus on how to achieve environment-
dependent and process-based automation. Section 3 describes a strategy for
reaching process-based automation, and follows that with a description of some
automation techniques that allow for environment-dependent automation and
provide a stepping stone to higher levels of automation.

3 How to Automate

This section addresses the question of how to automate system administration
tasks.

3.1 Automation Strategies

We start our discussion of automating IT service delivery by outlining a best-
practice approach to process-based automation (cf. [7]). We have developed
this approach based on our experiences with automating change management,
along with insight we have distilled from interactions and engagements with
service delivery personnel. It provides a roadmap for achieving process-level
automation.

Our approach comprises six steps for transforming existing IT service delivery
processes with automation or for introducing new automated process into an
IT environment. The first step is to

(1) identify best practice processes for the domain to be automated.

10

To identify these best practices we turn to the IT Infrastructure Library
(ITIL), a widely used process-based approach to IT service management. ITIL
comprises several disciplines such as infrastructure management, application
management, service support and delivery. The ITIL Service Support disci-
pline [18] defines the Service Desk as the focal point for interactions between
a service provider and its customers. To be effective, the Service Desk needs
to be closely tied into roughly a dozen IT support processes that address the
lifecycle of a service. Some examples of IT service support processes for which
ITIL provides best practices are: Configuration Management, Change Man-
agement, Release Management, Incident Management, Problem Management,
Service Level Management, and Capacity Management.

ITIL provides a set of process domains and best practices within each domain,
but it does not provide guidance as to which domain should be an organiza-
tion’s initial target for automation. Typically this choice will be governed by
the cost of existing activities.

After identifying the best practices, the next step is to

(2) establish the scope of applicability for the automation.

Most ITIL best practices cover a broad range of activities. As such, they
are difficult to automate completely. To bound the scope of automation, it is
best to target a particular subdomain (e.g., technology area). For example,
Change Management applies changes in database systems, storage systems,
and operating systems.

We expect that Change Management will be an early focus of automation. It
is our further expectation that initial efforts to automate Change Management
will concentrate on high frequency requests, such as security patches. Success
here will provide a proof point and template for automating other areas of
Change Management. And, once Change Management is automated to an
acceptable degree, then other best practices can be automated as well, such as
Configuration Management. As with Change Management, we expect that the
automation of Configuration Management will be approached incrementally.
This might be structured in terms of configuration of servers, software licenses,
documents, networks, storage, and various other components.

The next step in our roadmap follows the ITIL-based approach:

(3) identify delegation opportunities.

Each ITIL best practice defines (explicitly or implicitly) a process flow consist-
ing of multiple activities linked in a workflow. Some of these activities will be
amenable to automation, such as deploying a change in Change Management.
These activities can be delegated to an automated system or tool. Other ac-

11

tivities will not be easy to automate, such as obtaining change approvals from
Change Advisory Boards. Thus, an analysis is needed to determine what can
be automated and at what cost. Sometimes, automation drives changes in IT
proceses. For example, if an automated Change Management system is trusted
enough, change approvals might be handled by the Change Management Sys-
tem automatically.

The benefit of explicitly considering delegation is that it brings the rigor of the
best-practice process framework to the task of scoping the automation effort.
The best practice defines the set of needed functionality, and the delegation
analysis explicitly surfaces the decision of whether each piece of functionality is
better handled manually or by automation. Using this framework helps prevent
situations like the one discussed later in Section 4 of this chapter, where the
cost of an automation process outweighs its benefits in certain situations.

With the delegated activities identified, the fourth step in our automation
approach is to

(4) identify links between delegated activities and external activities, pro-
cesses, and data sources.

These links define the control and data interfaces to the automation. They
may also induce new requirements on data types/formats and APIs for exter-
nal tools. An example in Change Management is the use of configuration data.
If Change Management is automated but Configuration Management remains
manual, the Configuration Management Database (CMDB) may need to be
enhanced with additional APIs to allow for programmatic access from the au-
tomated Change Management activities. Moreover, automation often creates
induced processes, additional activities that are included in support of the
automation. Examples of induced processes in automated software distribu-
tion are the processes for maintaining the software distribution infrastructure,
error recovery, and preparation of the software packages.

The latter point motivates the following step:

(5) Identify, design, and document induced processes needed to interface with
or maintain the automation.

This step surfaces many implications and costs of automation and provides a
way to do cost/benefit tradeoffs for proposed automation.

The last step in our automation approach is to

(6) implement automation for the process flow and the delegated activities.

Implementing the process flow is best done using a workflow system to au-

12

tomatically coordinate the best-practice process’s activities and the flow of
information between them. Using a workflow system brings the additional
advantage that it can easily integrate automated and manual activities.

For the delegated activities, additional automation implementation consider-
ations are required. This is a non-trivial task that draws on the information
gleaned in the earlier steps. It uses the best practice identified in (1) and the
scoping in (2) to define the activities’ functionality. The delegation choices in
(3) scope the implementation work, while the interfaces and links to induced
process identified in (4) and (5) define needed APIs, connections with exter-
nal tools and data sources, and user interfaces. Finally, the actual work of
the activity needs to be implemented directly, either in new code or by using
existing tools.

In some cases, step (6) may also involve a recursive application of the entire
methodology described here. This is typically the case when a delegated ITIL
activity involves a complex flow of work that amounts to a process in its own
right. In these cases, that activity sub-process may need to be decomposed
into a set of subactivities; scoped as in steps (2) and (3), linked with external
entities as in (4), and may induce extra sub-process as in (5). The sub-process
may in turn also need to be implemented in a workflow engine, albeit at a
lower level than the top-level best practice process flow.

3.2 Automation Technologies

This section introduces the most common technologies for automation. Con-
sidered here are rules, feedback control techniques, and workflows technology.

3.2.1 Rule-based Techniques

Rule-based systems provide a condition-action approach to automation. An
example of a rule is

• Rule: If there is a SlowResponse event from system ?S1 at location ?L1 within

1 minute of another SlowResponse event from system ?S2 6= ?S1 at location

?L1 and there is no SlowResponse event from system S3 at location ?L2 6=
?L1, then alert the Network Manager for location ?L1.

In general, rules are if-then statements. The if-portion, or left-hand side, de-
scribes a situation. The then-portion, or right hand side, specifies actions to
take when the situation arises.

13

Target
SystemController

Control
Input

Reference
Input

Measured
Output

Transduced
Output

Transducer

Disturbance
Input

+
−

Control
Error

Noise
Input

Fig. 1. Block diagram of a feedback control system. The reference input is the desired
value of the system’s measured output. The controller adjusts the setting of control
input to the target system so that its measured output is equal to the reference
input. The transducer represents effects such as units conversions and delays.

As noted in [35], there is a great deal of work in using rule-based techniques
for root cause analysis (RCA). [27] describes a rule-based expert system for
automating the operation of an IBM mainframe, including diagnosing various
kinds of problems. [15] describes algorithms for identifying causes of event
storms. [19] describe the application of an expert system shell for telecommu-
nication network alarm correlation.

The simplicity of rule-based systems offers an excellent starting point for au-
tomation. However, there are many shortcomings. Among these are:

(1) A pure rule-based system requires detailed descriptions of many situa-
tions. These descriptions are time-consuming to construct and expensive
to maintain.

(2) Rule-based systems scale poorly because of potentially complex interac-
tions between rules. Such interactions make it difficult to debug large
scale rule-based systems, and create great challenges when adding new
capabilities to such systems.

(3) Not all automation is easily represented as rules. Indeed, step-by-step
procedures are more naturally expressed as workflows.

There are many approaches to circumventing these shortcomings. One of the
most prominent examples is [22], which describes a code-book–based algo-
rithm for RCA. The practical application of this approach relies on explicit
representations of device behaviors and the use of configuration information.
This has been quite effective for certain classes of problems.

3.2.2 Control Theoretic Approaches

Control theory provides a formal framework and a set of analysis/design tech-
niques for regulating and optimizing systems. Over the last sixty years, control
theory has developed a fairly simple reference architecture. This architecture

14

is about manipulating a target system to achieve a desired objective. The
component that manipulates the target system is the controller.

As discussed in [10] and depicted in Figure 1, the essential elements of feedback
control system are:

• target system, which is the computing system to be controlled.
• control input, which is a parameter that affects the behavior of the target

system and can be adjusted dynamically (such as the MaxClients parameter
in the Apache HTTP Server).

• measured output, which is a measurable characteristic of the target system
such as CPU utilization and response time.

• disturbance input, which is any change that affects the way in which the
control input influences the measured output of the target system (e.g.,
running a virus scan or a backup).

• noise input, which is any effect that changes the measured output produced
by the target system. This is also called sensor noise or measurement noise.

• reference input, which is the desired value of the measured output (or trans-
formations of them), such as CPU utilization should be 66%. Sometimes,
the reference input is referred to as desired output or the setpoint.

• transducer, which transforms the measured output so that it can be com-
pared with the reference input (e.g., smoothing stochastics of the output).

• control error, which is the difference between the reference input and the
measured output (which may include noise and/or may pass through a
transducer).

• controller, which determines the setting of the control input needed to
achieve the reference input. The controller computes values of the control
input based on current and past values of control error.

The foregoing is best understood in the context of a specific system. Consider
a cluster of three Apache Web Servers. The Administrator may want these
systems to run at no greater than 66% utilization so that if any one of them
fails, the other two can immediately absorb the entire load. Here, the mea-
sured output is CPU utilization. The control input is the maximum number of
connections that the server permits as specified by the MaxClients parame-
ter. This parameter can be manipulated to adjust CPU utilization. Examples
of disturbances are changes in arrival rates and shifts in the type of requests
(e.g., from static to dynamic pages).

Many researchers have applied control theory to computing systems. In data
networks, there has been considerable interest in applying control theory to
problems of flow control, such as [21] which develops the concept of a Rate
Allocating Server that regulates the flow of packets through queues. Others
have applied control theory to short-term rate variations in TCP (e.g., [24])
and some have considered stochastic control [2]. More recently, there have

15

been detailed models of TCP developed in continuous time (using fluid flow
approximations) that have produced interesting insights into the operation of
buffer management schemes in routers (see [17], [16]). Control theory has also
been applied to middleware to provide service differentiation and regulation of
resource utilizations as well as optimization of service level objectives. Exam-
ples of service differentiation include enforcing relative delays [1], preferential
caching of data [25], and limiting the impact of administrative utilities on
production work [28]. Examples of regulating resource utilizations include a
mixture of queueing and control theory used to regulate the Apache HTTP
Server [33], regulation of the IBM Lotus Domino Server [29], and multiple-
input, multiple-output control of the Apache HTTP Server (e.g., simultaneous
regulation of CPU and memory resources) [9]. Examples of optimizing service
level objectives include minimizing response times of the Apache Web Server
[11] and balancing the load to optimize database memory management [12].

All of these examples illustrate situations where control theory-based automa-
tion was able to replace or augment manual system administration activities,
particularly in the performance and resource management domains.

3.2.3 Automated workflow construction

In section 2.4, we have observed that each ITIL best practice defines (explic-
itly or implicitly) a process flow consisting of multiple activities linked in a
workflow. Some of these activities will be amenable to automation – such as
deploying a change in Change Management – whereas others will not (such
as obtaining change approvals from Change Advisory Boards). On a technical
level, recent efforts aim at introducing extensions for people facing activities
into workflow languages [23]. The goal is to facilitate the seamless interaction
between the automated activities of an IT service management process and
the ones that are carried out by humans. Here, we summarize work in [5] and
[20] on automating system administration using workflow.

In order to provide a foundation for process-based automation, it is important
to identify the control and data interfaces between delegated activities and
external activities, processes, and data sources. The automation is provided
by lower-level automation workflows, which consist of atomic administration
activities, such as installing a database management system, or configuring
a data source in a Web Application Server. The key question is to what ex-
tent the automation workflows can be automatically generated from domain-
specific knowledge, instead of being manually created and maintained. For
example, many automation workflows consist of activities whose execution
depends on the current state of a distributed system. These activities are of-
ten not specified in advance. Rather, they are merely implied. For example,
applications must be recompiled if they use a database table whose schema is

16

to change. Such implicit changes are a result of various kinds of relationships,
such as service dependencies and the sharing of the service provider’s resources
among different customers. Dependencies express compatibility requirements
between the various components of which a distributed system is composed.
Such requirements typically comprise software pre-requisites (components that
must be present on the system for an installation to succeed), co-requisites
(components that must be jointly installed) as well as ex-requisites (compo-
nents that must be removed prior to installing a new component). In addition,
version compatibility constraints and memory/disk space requirements need
to be taken into account. All of this information is typically captured during
the development and build stages of components, either by the developer, or
by appropriate tooling. Dependency models, which can be specified e.g., as
Installable Unit Deployment Descriptors [14] or System Description Models
[26], are a key mechanism to capture this knowledge and make it available to
the tools that manage the lifecycle of a distributed system.

An example of a consumer of dependency information is the Change Man-
agement System, whose task is to orchestrate and coordinate the deployment,
installation and configuration of a distributed system. Upon receiving a re-
quest for change (RFC) from an administrator, the change management sys-
tem generates a Change Plan. A change plan describes the partial order in
which tasks need to be carried out to transition a system from a workable state
into another workable state. In order to achieve this, it contains information
about:

• The type of change to be carried out, e.g., install, update, configure, unin-
stall,

• the roles and names of the components that are subject to a change (either
directly specified in the RFC, or determined by the change management
system),

• the precedence and location constraints that may exist between tasks, based
on component dependency information,

• an estimate of how long every task is likely to take, based on the results of
previous deployments. This is needed to estimate the impact of a change in
terms of downtime and monetary losses.

The change management system exploits dependency information in order to
determine whether tasks required for a change must be carried out sequen-
tially, or whether some of them can be parallelized. The existence of a depen-
dency between two components – each representing a managed resource – in
a dependency graph indicates that a precedence/location constraint must be
addressed. If a precedence constraint exists between two tasks in a workflow
(e.g., X must be installed before Y), they need to be carried out sequentially.
This is typically indicated by the presence of a link; any task may have zero
or more incoming and outgoing links. If two tasks share the same predeces-

17

sor and no precedence constraints exist between them, they can be executed
concurrently. Typically, tasks and their constraints are grouped on a per-host
basis. Grouping on a per-host basis is important because the actual deploy-
ment could happen either push-based (triggered by the provisioning system)
or pull-based (deployment is initiated by the target systems). An additional
advantage of grouping activities on a per-host basis is that one can carry out
changes in parallel (by observing the presence of cross-system links) if they
happen on different systems. Note that parallelism on a single host system
is difficult to exploit with current operating systems as few multithreaded
installers exist today. In addition, some operating systems require exclusive
access to shared libraries during installation.

Different types of changes require different traversals through the dependency
models: If a request for a new installation of a component is received, one
needs to determine which components must already be present before a new
component can be installed. On the other hand, a request for an update, or
an uninstall of an component leads to a query to determine the components
that will be impacted by the change.

Precedence constraints represent the order in which provisioning activities
need to be carried out. Some of these constraints are implicit (e.g., by means
of a containment hierarchy expressed as ’HasComponent’ relationships be-
tween components), whereas others (typically resulting from communication
dependencies such as ’uses’) require an explicit representation (e.g., the fact
that a database client needs to be present on a system whenever a database
server located on a remote host needs to be accessed).

3.2.3.1 Example for Software Change Management The example is
based on the scenario of installing and configuring a multi-machine deployment
of a J2EE based enterprise application and its supporting middleware software
(including IBM’s HTTP Server, WebSphere Application Server, WebSphere
MQ embedded messaging, DB2 UDB database and DB2 runtime client). The
specific application we use is taken from the SPECjAppServer2004 enter-
prise application performance benchmark [34]. It is a complex, multi-tiered
on-line e-Commerce application that emulates an automobile manufacturing
company and its associated dealerships. SPECjAppServer2004 comprises typ-
ical manufacturing, supply chain and inventory applications that are imple-
mented with web, EJB, messaging, and database tiers. We jointly refer to
the SPECjAppServer2004 enterprise application, its data, and the underlying
middleware as the SPECjAppServer2004 solution. The SPECjAppServer2004
solution spans an environment consisting of two systems: one system hosts
the application server along with the SPECjAppServer2004 J2EE application,
whereas the second system runs the DBMS that hosts the various types of
SPECjAppServer2004 data (catalog, orders, pricing, user data, etc.). One of

18

the many challenges in provisioning such a solution consists in determining the
proper order in which its components need to be deployed, installed, started
and configured. For example, ’HostedBy’ dependencies between the compo-
nents ’SPECjAppServer2004 J2EE Application’ and ’WebSphere Application
Server v5.1’ (WAS) state that the latter acts as a hosting environment for
the former. This indicates that all the WAS components need to be operating
before one can deploy the J2EE application into them.

A provisioning system supports the administrator in deploying, installing and
configuring systems and applications. As mentioned above, a change plan is a
procedural description of activities, each of which maps to an operation that
the provisioning system exposes, preferably by means of a set of interfaces
specified using the Web Services Description Language (WSDL). As these
interfaces are known well in advance before a change plan is created, they can
be referenced by a change plan. Every operation has a set of input parameters,
for example, an operation to install a given software component on a target
system requires references to the software and to the target system as input
parameters. Some of the parameters may be input by a user when the change
plan is executed (e.g., the hostname of the target system that will become a
database server) and need to be forwarded to several activities in the change
plan, whereas others are produced by prior activities.

3.2.3.2 Executing the generated Change Plan Upon receiving a newly
submitted change request, the change management system needs to determine
on which resources and at what time the change will be carried out. The
change management system first inspects the resource pools of the provision-
ing system to determine which target systems are best assigned to the change
by taking into account which operating system they run, what their system
architecture is, and what the cost of assigning them to a change request is.
Based on this information, the change management system creates a change
plan, which may be composed of already existing change plans that reside
in a change plan repository. Once the change plan is created, it is submitted
to the workflow engine of the provisioning system. The provisioning system
maps the actions defined in the change plan to operations that are understood
by the target systems. Its object-oriented data model is a hierarchy of logi-
cal devices that correspond to the various types of managed resources (e.g.,
software, storage, servers, clusters, routers or switches). The methods of these
types correspond to Logical Device Operations (LDOs) that are exposed as
WSDL interfaces, which allows their inclusion in the change plan. Automa-
tion packages are product-specific implementations of logical devices: e.g., an
automation package for the DB2 DBMS would provide scripts that implement
the software.install, software.start, software.stop, etc. LDOs. An automation
package consists of a set of Jython scripts, each of which implements an LDO.
Every script can further embed a combination of PERL, Expect, Windows

19

scripting host or bash shell scripts that are executed on the remote target
systems. We note that the composition pattern applies not only to workflows,
but occurs in various places within the provisioning system itself to decouple
a change plan from the specifics of the target systems.

The workflow engine inputs the change plan and starts each provisioning op-
eration by directly invoking the LDOs of the provisioning system. These in-
vocations are performed either in parallel or sequentially, according to the
instructions in the change plan. A major advantage of using an embedded
workflow engine is the fact that it automatically performs state-checking, i.e.,
it determines whether all conditions are met to move from one activity in a
workflow to the next. Consequently, there is no need for additional program
logic in the change plan to perform such checks. Status information is used by
the workflow engine to check if the workflow constraints defined in the plan
(such as deadlines) are met and to inform the change management system
whether the roll-out of changes runs according to the schedule defined in the
change plan.

3.2.3.3 Recursive Application of the Automation Pattern The au-
tomation described in this section essentially makes use of three levels of work-
flow engines: (1) top-level coordination of the Change Management workflow;
(2) implementation of the generated change plan; and (3) the provisioning
system where the LDOs are implemented by miniature-workflows within their
defined scripts. This use of multiple levels of workflow engine illustrates a par-
ticular pattern of composition that we expect to be common in automation
of best-practice IT service management processes, and recalls the discussion
earlier in Section 3.1 of recursive application of the automation approach.

In particular, the delegated Change Management activity of Distribute and
Install Changes involves a complex flow of work in its own right — docu-
mented in the change plan. We can see that the approach to automating the
construction of the change plan follows the same pattern we used to automate
change management itself, albeit at a lower level. For example, the creation of
the change workflow is a lower-level analogue to using ITIL best practices to
identify the Change Management process activities. The execution of change
plan tasks by the provisioning system represents delegation of those tasks to
that provisioning system. The provisioning system uses external interfaces and
structured inputs and APIs to automate those tasks—drawing on information
from the CMDB to determine available resources and invoking lower-level op-
erations (automation packages) to effect changes in the actual IT environment.
In this latter step, we again see the need to provide such resource informa-
tion and control APIs in the structured, machine-readable formats needed to
enable automation. The entire pattern repeats again at a lower level within
the provisioning system itself, where the automation packages for detailed soft-

20

ware and hardware products represent best practice operations with delegated
functionality and external interfaces for data and control.

One of the key benefits of this type of recursive composition of our automa-
tion approach is that it generates reusable automation assets. Namely, at each
level of automation, a set of automated delegated activities is created: auto-
mated ITIL activities at the top (such as Assess Change), automated change
management activities in the middle (such as Install the DB2 Database), and
automated software lifecycle activities at the bottom (such as Start DB2 Con-
trol Process). While created in the context of change management, it is pos-
sible that many of these activities (particularly lower-level ones) could be
reused in other automation contexts. For example, many of the same lower-
level activities created here could be used for performance management in an
on-demand environment to enable creating, activating, and deactivating addi-
tional database or middleware instances. It is our hope that application of this
automation pattern at multiple levels will reduce the long-term costs of cre-
ating system management automation, as repeated application will build up
a library of reusable automation components that can be composed together
to simplify future automation efforts.

3.2.3.4 Challenges in workflow construction An important question
addresses the problem whether the change management system or the pro-
visioning system should perform error recovery for the complete change plan
in case an activity fails during workflow execution or runs behind schedule.
One possible strategy is not to perform error recovery or dealing with sched-
ule overruns within the change plan itself and instead delegate this decision
instead to the change management system. The reason for doing so is that
in service provider environments, resources are often shared among different
customers, and a change of a customer’s hosted application may affect the
quality of service another customer receives. Before rolling out a change for
a given customer, a service provider needs to trade off the additional bene-
fit he receives from this customer against a potential monetary loss due to
the fact that an SLA with another customer may be violated because of the
change. The scheduling of change plans, a core change management system
function, is the result of solving an optimization problem that carefully bal-
ances the benefits it receives from servicing one customer’s change request
against the losses it incurs from not being able to service other customers. In
an on-demand environment, the cost/profit situation may change very rapidly
as many change plans are concurrently executed at any given point in time.
In some cases, it may be more advantageous to carry on with a change despite
its delay, whereas in other cases, aborting a change and instead servicing an-
other newly submitted request that is more profitable may lead to a better
global optimum. This big picture, however, is only available to the change
management system.

21

Another important requirement for provisioning composed applications is the
dynamic aggregation of already existing and tested change plans. For example,
in the case of SPECjAppServer2004 and its underlying middleware, change
plans for provisioning some of its components (such as WebSphere Application
Server or the DB2 DBMS) may already exist. Those workflows need to be
retrieved from a workflow repository and aggregated in a new workflow for
which the activities for the remaining components have been generated. The
challenge consists in automatically annotating the generated workflows with
metadata so that they can be uniquely identified and evaluated with respect
to their suitability for the specific request for change. The design of efficient
query and retrieval mechanisms for workflows is an important prerequisite for
the reuse of change plans.

4 When to Automate

Now that we have identified the opportunities for automation and discussed
various approaches, we now step back and ask: when is it appropriate to deploy
systems management automation? The answer is, surprisingly, not as straight-
forward as one might expect—in particular, automation may not always be
the right choice even for costly system administration tasks.

This is not a new conclusion, though it is rarely discussed in the context of
automating system administration. Indeed, in other fields practitioners have
long recognized that automation can be a double-edged sword. For example,
early work with aircraft autopilots illustrated the dangers of imperfect au-
tomation, where pilots would lose situational awareness and fail to respond
correctly when the primitive autopilot reached the edge of its envelope and
disengaged [31], causing more dangerous situations than when the autopilot
was not present. There are many other well-documented cases where either
failures or unexpected behavior of industrial automation caused significant
problems, including in such major incidents as Three Mile Island [32, 30].

How are we to avoid, or at least minimize, these problems in automation of
system administration? One solution is to make sure that the full consequences
of automation are understood before deploying it, changing the decision of
“when to automate?” from a simple answer of “always!” to a more considered
analytic process.

In the next several subsections, we use techniques developed in [6] to consider
what this analysis might look like, not to dissuade practitioners from designing
and deploying automation, but to provide the full context needed to ensure
that automation lives up to its promises.

22

 (a) Manual Software Distribution

S
ys

te
m

 A
dm

in
is

tr
at

or

Obtain Source
Distribution

Validate
Prerequisites

Configure
Installer

Perform
Installation

Install
Succeeds?

Verify
Installation OK?

Remove
Installation
Remnants

Fix Problem

SW Request

Y Y

N N

Prereqs
Met?

Y

Fail

N

More
Targets?

Success

Y

N

 (b) Automated Software Distribution

Operation

A
ut

o
m

a
tio

n
In

fr
as

tr
u

ct
u

re

M
a

in
ta

in
e

r
S

o
ftw

a
re

P

a
ck

ag
e

r
S

ys
te

m
 A

d
m

in
is

tr
a

to
r SW Req.

Obtain
Source
Dist’n

Perform
Pilot

Install

Create
Deployment

Wrapper

Identify
Customizations

OK?Test
Wrapper

Publish
Package

Invoke
Installer

Check
Results OK?

Research
Available
Packages

Req.
Package
Exists?

Diagnose
Problem

Invoke
Wrapper

Validate
Prereqs.

Configure
Installer

Perform
Installation

Verify
Installation

Select
Targets

OK? Log
Results

Y

Y

N

N

Remove Install
Remnants

End

Package
Problem?

Diagnose
Endpoint

Repair
Endpoint

Maintenance

Y

Y

N

N

Automation
Update

Upgrade
Distribution

Servers

Upgrade
Endpoints

Identify
Affected

Packages

Wrapper
Change

Required?
End

N

Y

Y

N

Y

N

Prereqs
Met?

Fig. 2. Manual and automated processes for software distribution. Boxes
with heavy lines indicate process steps that contribute to variable (per-target) costs,
as described in Section 4.2.

4.1 Cost-Benefit Analysis of Automation

We begin by exploring the potential hidden costs of automation. While au-
tomation obviously can reduce cost by removing the need for manual systems
management, it can also induce additional costs that may offset or even negate
the savings that arise from the transfer of manual work to automated mecha-
nisms. If we take a process-based view, as we have throughout this paper, we
see that automation transforms a manual process, largely to reduce manual
work, but also to introduce new process steps and roles needed to maintain,
monitor, and augment the automation itself.

Figure 2 illustrates the impact of automation on an example system manage-
ment process, drawn from a real production data center environment. The
process here is software distribution to server machines, a critical part of op-
erating a data center. Software distribution involves the selection of software
components and their installation on target machines. We use the term “pack-
age” to refer to the collection of software resources to install and the step-by-
step procedure (process) by which this is done. We represent the process via

23

“swim-lane” diagrams—annotated flowcharts that allocate process activities
across roles (represented as rows) and phases (represented as columns). Roles
are typically performed by people (and can be shared or consolidated); we
include automation as its own role to reflect activities that have been handed
over to an automated system.

Figure 2(a) shows the “swim-lane” representation for the manual version of
our example software distribution process, and Figure 2(b) shows the same
process once automated software distribution has been introduced.

Notice that, while key parts of the process have moved from a manual role to
an automated role, there are additional implications. For one thing, the au-
tomation infrastructure is another software system that must itself be installed
and maintained, creating initial transition costs as well as periodic costs for
update and maintenance. (For simplicity, in the figure we have assumed that
the automation infrastructure has already been installed, but we do consider
the need for periodic updates and maintenance.) Next, using the automated
infrastructure requires that information be provided in a structured form. We
use the term software package to refer to these structured inputs. These in-
puts are typically expressed in a formal structure, which means that their
creation requires extra effort for package design, implementation, and testing.
Last, when errors occur in the automated case, they happen on a much larger
scale than for a manual approach, and hence additional processes and tools
are required to recover from them. These other impacts manifest as additional
process changes, namely extra roles and extra operational processes to handle
the additional tasks and activities induced by the automation.

We have to recognize as well that the effects of induced processes—for error
recovery, maintenance, and input creation/structuring—are potentially mit-
igated by the probability and frequency of their execution. For example, if
automation failures are extremely rare, then having complex and costly re-
covery procedures may not be a problem. Furthermore, the entire automation
framework has a certain lifetime dictated by its flexibility and generalization
capability. If this lifetime is long, the costs to create and transition to the au-
tomated infrastructure may not be an issue. But even taking this into account,
it is apparent from inspection that the collection of processes in Figure 2(b) is
much more complicated than the single process in Figure 2(a). Clearly, such
additional complexity is unjustified if we are installing a single package on a
single server. This raises the following question—at what point does automa-
tion stop adding cost and instead start reducing cost?

The answer comes through a cost-benefit analysis, where the costs of induced
process are weighted by their frequency and balanced against the benefits
of automation. Our argument in this section is that such analyses are an
essential part of a considered automation decision. That is, when considering

24

a manual task for automation, the benefits of automating that task (reduced
manual effort, skill level, and error probability) need to be weighed against
the costs identified above (extra work from induced process, new roles and
skills needed to maintain the automation, and potential consequences from
automation failure).

In particular, this analysis needs to consider both the changes in tasks (tasks
replaced by automation and tasks induced by it) and the changes in roles
and required human skills. The latter consideration is important because au-
tomation tends to create induced tasks requiring more skill than the tasks it
eliminates. For example, the tasks induced by automation failures tend to re-
quire considerable problem-solving ability as well as a deep understanding of
the architecture and operation of the automation technology. If an IT instal-
lation deploys automation without having an experienced administrator who
can perform these failure-recovery tasks, the installation is at risk if a failure
occurs. The fact that automation often increases the skill level required for
operation is an example of an irony of automation [3]. The irony is that while
automation is intended to reduce costs overall, there are some kinds of cost
that increase. Many ironies of automation have been identified in industrial
contexts such as plant automation and infrastructure monitoring [32]. Clearly,
the ironies of automation must be taken into account when doing a cost-benefit
analysis.

4.2 Example Analysis: Software Distribution for a Datacenter

To illustrate the issues associated with automation, we return to the example
of software distribution. To perform our cost-benefit analysis, we start by
identifying the fixed and variable costs for the process activities in Figure 2.
The activities represented as boxes with heavy outlines represent variable-cost
activities, as they are performed once for each machine in the data center. The
other activities are fixed-cost in that they are performed once per software
package.

A key concept used in our analysis is that of the lifetime of a software
package. By the lifetime of a package, we mean the time from when the
package is created to when it is retired or made obsolete by a new package.
We measure this in terms of the number of target machines to which the
package is distributed.

For the benefits of automation to outweigh the cost of automation, the vari-
able costs of automation must be lower than the variable costs of the manual
process, and the fixed cost of building a package must be amortized across
the number of targets to which it is distributed over its lifetime. Using data

25

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Targets
C

um
ul

at
iv

e
F

ra
ct

io
n

of
 P

ac
ka

ge
s

Fig. 3. Cumulative distribution of the number of targets (servers) on which a soft-
ware package is installed over its lifetime in several data centers. A larger number
of packages are installed on only a small number of targets.

from a several computer installation, Figure 3 plots the cumulative fraction
of packages in terms of the lifetimes (in units of number of targets to which
the package is distributed). We see that a large fraction of the packages are
distributed to a small number of targets, with 25% of the packages going to
fewer than 15 targets over their lifetimes.

Next, we look at the possibility of automation failure. By considering the
complete view of the automated processes in Figure 2(b), we see that more
sophistication and people are required to address error recovery for automated
software distribution than for the manual process. Using the same data from
which Figure 3 is extracted, we determined that 19% of the requested installs
result in failure. Furthermore, at least 7% of the installs fail due to issues
related to configuration of the automation infrastructure, a consideration that
does not exist if a manual process is used. This back-of-the envelope analysis
underscores the importance of considering the entire set of process changes
that occur when automation is deployed, particularly the extra operational
processes created to handle automation failures. Drawing on additional data
from IBM internal studies of software distribution and netting out the analysis
(the details can be found in [6]), we find that for complex software packages,
there should be approximately 5 to 20 targets for automated software distri-
bution to be cost effective. In terms of the data in Figure 3, these numbers
mean that from 15% to 30% of the installs in the data centers we examined
should not have been automated from a cost perspective.

The lesson here is clear, and goes back to the discussion at the start of this
section. Even in the domain of system administration, automation can be a
double-edged sword. While in these datacenters automation of software distri-
bution provided a net cost benefit for 70 – 85% of installs, it increased costs
for the remaining 15 – 30%. In this case the choice was made to deploy the
automation, with the assessment that the benefit to the large fraction of in-
stalls outweighed the cost to the smaller fraction. The insight of a cost-benefit

26

analysis allows such decisions to be made with eyes open, and full awareness
of the tradeoffs being made.

4.3 Additional Concerns: Adoption and Trust

Automation is only useful if it is used. Even the best automation—carefully
designed to maximize benefit and minimize induced process and cost—can
lack traction in the field. Often these situations occur when the automation
fails to gain the trust of the system management staff tasked with deploying
and maintaining it.

So what can automation designers do to help their automation gain trust?
First, they must recognize that automation is a disruptive force for IT system
managers. Automation changes the way system administrators do their jobs.
It also creates uncertainity in terms of the future of the job itself. And since no
automation is perfect, there is concern about the extent to which automation
can be trusted to operate correctly.

Thus adoption of automation is unlikely without a history of successful use
by administrators. This observation has been proven in practice many times.
Useful scripts, languages, and new open-source administration tools tend to
gain adoption via grass-roots movements where a few brave early adoptors
build credibility for the automation technology. But, not all new automation
can afford to generate a community-wide grass-roots movement behind it.
And in these cases we are left with a a kind of circular logic—we cannot gain
adoption without successful adoptions!

In these situations, the process-based view can help provide a transition path.
From a process perspective, the transition to automation can be seen as an in-
cremental delegation of manual process steps to an automated system. And by
casting the automation into the same terms as the previously-manual process
steps (for example, by reusing the same work products and tracking metrics),
the automation can provide visibility into its inner workings that assuages
a system administrator’s distrust. Thus the same work that it takes to do
the cost/benefit analysis for the first cut at an automation decision can be
leveraged to plan out an automation deployment strategy that will realize the
automation’s full benefits.

We believe that the process-based perspective described above can provide the
basis for making a business case for automation. With a full understanding
of the benefits of automation as well as all the cost factors described above,
we finally have a framework to answer the question of when to automate. To
determine the answer we compute or estimate the benefits of the proposed
automation as well as the full spectrum of costs, and compute the net benefit.

27

In essence, we boil the automation decision down to the bottom line, just as
in a traditional business case.

The process for building an automation business case consists of 5 steps:

(1) Identify the benefit of the automation in terms of reduction in “core”
manual activity, lower frequency of error (quantified in terms of the ex-
pected cost of errors, e.g., in terms of business lost during downtime),
and increased accuracy of operations.

(2) Identify and elucidate the induced processes that result from delegation
of the manual activity to automation, as in the software distribution ex-
ample above. “Swim-lane” diagrams provide a useful construct for struc-
turing this analysis.

(3) Identify or estimate the probability or frequency of the induced processes.
For example, in software distribution we estimate how often new packages
will be deployed or new versions released, as those events require running
the packaging process. Often estimates can be made based on existing
runtime data.

(4) Assess the possible impact of the “automation irony”. Will the induced
processes require additional skilled resources, or will they change the
existing human roles enough that new training or hiring will be needed?

(5) Collate the collected data to sum up the potential benefits and costs, and
determine whether the automation results in net benefit or net cost.

These steps are not necessarily easy to follow, and in fact in most cases a
rough, order-of-magnitude analysis will have to suffice. Alternately, a sensitiv-
ity analysis can be performed. For example, if the probability of automation
failure is unknown, a sensitivity analysis can be used to determine the failure
rate where costs break even. Say this is determined to be one failure per week.
If the automation is thought to be stable enough to survive multiple weeks
between failures, then the go-ahead decision can be given.

Furthermore, even a rough business-case analysis can provide significant in-
sight into the impact of automation, and going through the exercise will reveal
a lot about the ultimate utility of the automation. The level of needed precision
will also be determined by the magnitude of the automation decision: a com-
plete analysis is almost certainly unnecessary when considering automation in
the form of a few scripts, but it is mandatory when deploying automation to
a datacenter with thousands of machines.

28

5 Conclusions

This chapter addresses the automation of system administration, a problem
that is addressed as a set of three interrelated questions: what to automate,
how to automate, and when to automate.

We address the “what” question by studying what system administrators do
and therefore where automation provides value. An observation here is that
tasks such as configuration and installation consume a substantial fraction
of the time of systems adminisrators, approximately 20%. This is fortunate
since it seems likely that it is technically feasible to increase the degree of
automation of these activities. Unfortunately, meetings and other forms of
communication consume almost of third of the time of systems administra-
tors. Here, there seems to be much less opportunity to realize benefits from
automation.

The “how” question is about technologies for automation. We discuss three
approaches—rule-based systems, control theoretic approaches, and automated
workflow construction. All three have been used in practice. Rules provide
great flexibility in building automation, but the complexity of this approach
becomes problematic as the scope of automation increases. Control theory pro-
vides a strong theoretical foundation for certain classes of automation, but it is
not a universal solution. Workflow has appeal because its procedural structure
is a natural way for humans to transate their activities into automation.

The “when” question is ultimately a business question that should be based
on a full understanding of the costs and benefits. The traditional perspective
has been that automation is always advantageous. However, it is important to
look at the full costs imposed by automation. For example, automating soft-
ware distribution requires that: (a) the distribution infrastructure be installed
and maintained; (b) software packages be prepared in the format required by
the distribution infrastructure; and (c) additional tools be provided to handle
problems with packages that are deployed because of the large scale of the im-
pact of these problems. While automation often provides a net benefit despite
these costs, we have observed cases in which these costs exceed the benefits.

As the scale of systems adminstration increases and new technologies for au-
tomation are developed, systems administrators will have even greater chal-
lenges in automating their activities.

29

References

[1] Tarek F. Abdelzaher and Nina Bhatti. Adaptive content delivery for
Web server QoS. In International Workshop on Quality of Service, pages
1563–1577, London, UK, June 1999.

[2] E. Altman, T. Basar, and R. Srikant. Congestion control as a stochastic
control problem with action delays. Automatica, 35:1936–1950, 1999.

[3] L. Bainbridge. The ironies of automation. In J. Rasmussen, K. Duncan,
and J. Leplat, editors, New Technology and Human Error. Wiley, 1987.

[4] Rob Barrett, Paul P. Maglio, Eser Kandogan, and John Bailey. Usable
autonomic computing systems: The system administrators’ perspective.
Advanced Engineering Infomatics, 19(3):213–221, July 2006.

[5] Aaron Brown, Alexankder Keller, and Joseph L Hellerstein. A model
of configuration complexity and its application to a change management
system. In 9th International IFIP/IEEE Symposium on Integrated Man-
agement (IM 2005), pages 531–644. IEEE Press, May 2005.

[6] Aaron B. Brown and Joseph L. Hellerstein. Reducing the Cost of IT
Operations—Is Automation Always the Answer? In Tenth Workshop on
Hot Topics in Operating Systems (HotOS-X), Santa Fe, NM, 2005.

[7] Aaron B. Brown and Alexander Keller. A Best Practice Approach for
Automating IT Management Processes. In 2006 IEEE/IFIP Network
Operations & Management Symposium (NOMS 2006), Vancouver, BC,
Canada, April 2006.

[8] Peg Byers. Database Administrator: Day
in the Life. Thomson Course Technology.
http://www.course.com/careers/dayinthelife/dba jobdesc.cfm.

[9] Yixin Diao, Neha Gandhi, Joseph L Hellerstein, Sujay Parekh, and Dawn
Tilbury. Using MIMO feedback control to enforce policies for interrelated
metrics with application to the Apache Web server. In IEEE/IFIP Net-
work Operations & Management Symposium (NOMS 2002), pages 219–
234, April 2002.

[10] Yixin Diao, Rean Griffith, Joseph L. Hellerstein, Gail Kaiser, Sujay
Parekh, and Dan Phung. A control theory foundation for self-managing
systems. Journal on Selected Areas of Communications, 23(12), 2005.

[11] Yixin Diao, Joseph L Hellerstein, and Sujay Parekh. Optimizing quality
of service using fuzzy control. In IFIP/IEEE International Workshop
on Distributed Systems: Operations & Management (DSOM 2002), pages
42–53, 2002.

[12] Yixin Diao, Joseph L. Hellerstein, Adam Storm, Maheswaran Surendra,
Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano. Using
MIMO Linear Control for Load Balancing in Computing Systems. In
American Control Conference, pages 2045–2050, June 2004.

[13] Barbara Dijker. A day in the life of systems administrators.
http://www.sage.org/field/ditl.pdf.

[14] M. Vitaletti (Editor). Installable Unit Deployment Descrip-

30

tor Specification, Version 1.0. W3C Member Submission, IBM
Corp., ZeroG Software, InstallShield Corp., Novell,, July 2004.
http://www.w3.org/Submission/2004/SUBM-InstallableUnit-DD-
20040712/.

[15] Alan Finkel, Keith Houck, and A Bouloutas. An alarm correlation system
for heterogeneous networks. Network Management And Control, 2, 1995.

[16] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. A control theoretic
analysis of RED. In Proceedings of IEEE INFOCOM ’01, pages 1510–
1519, Anchorage, Alaska, April 2001.

[17] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. On designing
improved controllers for AQM routers supporting TCP flows. In Proceed-
ings of IEEE INFOCOM ’01, pages 1726–1734, Anchorage, Alaska, April
2001.

[18] IT Infrastructure Library. ITIL Service Support, version 2.3. Office of
Government Commerce, June 2000.

[19] G. Jakobson, R. Weihmayer, and M. Weissman. A domain-oriented expert
system shell for telecommunications network alarm correlation. Network
Management And Control, 2, 1995.

[20] Alexander Keller and Remi Badonnel. Automating the Provisioning of
Application Services with the BPEL4WS Workflow Language. In 15th
IFIP/IEEE International Workshop on Distributed Systems: Operations
& Management (DSOM 2004), pages 15–27, Davis, CA, USA, November
2004. Springer Verlag.

[21] Srinivasan Keshav. A control-theoretic approach to flow control. In Pro-
ceedings of ACM SIGCOMM ’91, pages 3–15, September 1991.

[22] S. Kliger, S. Yemini, Y. Yemini, D. Ohlse, and S. Stolfo. A coding ap-
proach to event correlation. In Fourth International Symposium on Inte-
grated Network Management, Santa Barbara, CA, USA, 1995.

[23] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, and D. Roller. Business
process choreography in WebSphere: Combining the power of BPEL and
J2EE. IBM Systems Journal, 43(2), 2004.

[24] K. Li, M. H. Shor, J. Walpole, C. Pu, and D. C. Steere. Modeling the effect
of short-term rate variations on tcp-friendly congestion control behavior.
In Proceedings of the American Control Conference, pages 3006–3012,
2001.

[25] Ying Lu, Avneesh Saxena, and Tarek F. Abdelzaher. Differentiated
caching services: A control-theoretic approach. In International Con-
ference on Distributed Computing Systems, pages 615–624, April 2001.

[26] Microsoft. Overview of the system description model.
http://msdn2.microsoft.com/en-us/library/ms181772.aspx.

[27] K.R. Milliken, A.V. Cruise, R.L. Ennis, A.J. Finkel, J.L. Hellerstein, D.J.
Loeb, D.A. Klein, M.J. Masullo, H.M. Van Woerkom, and N.B. Waite.
YES/MVS and the automation of operations for large computer com-
plexes. IBM Systems Journal, 25(2):159–180, 1986.

[28] S. Parekh, K. Rose, J. L. Hellerstein, S. Lightstone, M. Huras, and

31

V. Chang. Managing the performance impact of administrative utilities.
In 14th IFIP/IEEE International Workshop on Distributed Systems: Op-
erations & Management (DSOM 2003), pages 130–142, 2003.

[29] Sujay Parekh, Neha Gandhi, Joseph Hellerstein, Dawn Tilbury, Joseph
Bigus, and T. S. Jayram. Using control theory to achieve service level ob-
jectives in performance management. Real-time Systems Journal, 23:127–
141, 2002.

[30] Charles Perrow. Normal Accidents: Living with High-Risk Technologies.
Perseus Books, 1990.

[31] J. Rasmussen and W. Rouse, editors. Human Detection and Diagno-
sis of System Failures: Proceedings of the NATO Symposium on Human
Detection and Diagnosis of System Failures. Plenum Press, New York,
1981.

[32] James Reason. Human Error. Cambridge University Press, 1990.
[33] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queueing model based net-

work server performance control. In IEEE RealTime Systems Symposium,
pages 81–90, 2002.

[34] SPEC Consortium. SPECjAppServer2004 De-
sign Document, Version 1.01, January 2005.
http://www.specbench.org/osg/jAppServer2004/docs/DesignDocument.html.

[35] David Thoenen, Jim Riosa, and Joseph L Hellerstein. Event relationship
networks: A framework for action oriented analysis in event management.
In International Symposium on Integrated Network Management, 2001.

[36] Tony Woodall. Network Administrator: Day
in the Life. Thomson Course Technology.
http://www.course.com/careers/dayinthelife/networkadmin jobdesc.cfm.

32

