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Abstract

The need for service differentiation in Internet services
has motivated interest in controlling multi-tier web appli-
cations. This paper describes a tier-to-tier (T2T) manage-
ment architecture that supports decentralized actuator man-
agement in multi-tier systems, and a testbed implementa-
tion of this architecture using commercial software prod-
ucts. Based on testbed experiments and analytic models,
we gain insight into the value of coordinated exploitation
of actuators on multiple tiers, especially considerations for
control efficiency and control granularity. For control effi-
ciency, we show that more effective utilization of tiers can
be achieved by using actuators on the bottleneck tier rather
than only using actuators on the entry tier. For granularity
of control (the ability to achieve a wide range of service
level objectives) we show that a fine granularity of con-
trol can be achieved through a coordinated, cross-tier ex-
ploitation of coarse grained actuators (e.g., multiprogram-
ming level), an approach that can greatly reduce controller-
induced variability.

1 Introduction

Most Internet service sites have a multi-tier architecture
that partitions the processing of web requests into stages
for HTTP servers, application servers, and database servers.
Recently, there has been interest in providing differentiated
quality of service (QoS) for web requests as part of fee-
for-service business models and other considerations. This
paper describes a tier-to-tier management architecture that
provides a transparent way to deploy and control QoS actu-
ators in multiple tiers. We show the value of having actua-
tors in multiple tiers in terms of resource efficiency and the
ability to achieve service level objectives.

For a multi-tier system, each tier consists of one or more
nodes (hardware entities) that are dedicated to a specific
kind of processing. The first Edge Server tier provides load
balancing and request routing; the second HTTP Server tier
does HTTP parsing and response generation; the third Ap-

plication Server tier contains application servers typically
providing a J2EE environment for business logic; the fourth
Database Server tier contains database server nodes that
manage persistent data. Sometimes, there is a fifth tier as
well if a separate storage system is used such as a stor-
age area network. Client requests enter the first tier and
are routed to an HTTP Server; some fractions of the HTTP
requests also require processing by Application Servers. A
fraction of the requests processed by Application Servers
also require services from a Database Server. Because the
inter-tier interaction is synchronous, threads/processes in
upstream tiers are blocked while waiting for the completion
of processing in downstream tiers. Thus, requests may si-
multaneously consume resources in the HTTP, Application,
and Database server nodes.

The QoS of requests is managed by specifying perfor-
mance targets or service level objectives (SLOs) such as
desired response times that the Internet service system must
enforce. Typically, SLOs are specified for service classes.
For example, web requests to list the best selling books, re-
cently announced children’s toys, and the top renting action
movies can all be classified as browse requests. Achieving
SLOs requires one or more control mechanisms or actua-
tors that provide a means to give preferential treatment to
designated classes of requests. Examples of actuators in-
clude CPU priorities, JVM memory allocations, multipro-
gramming levels, server assignments, and request routing.

In such multi-tier systems, most proposals call for man-
aging these actuators centrally in order to provide proper
coordination [1, 2, 3, 4]. However, centralized management
can impose significant coordination overheads due to mes-
sages exchanged, and there is concern about controllability
(and stability) if there are communication delays [5]. In
addition, because upstream threads wait for replies from
downstream tiers, it is feasible to control the system QoS
using actuators only at the entry tier [6] since it changes
the effective arrival rate for all the downstream tiers. This
approach is attractive since it can be implemented non-
invasively (using a proxy as in [6]), and independent of the
internal architecture of multi-tier systems. Our studies show
that compared to using actuators at all the tiers, doing only



front-end control is a poor choice since it can significantly
reduce performance and impair the ability to achieve service
level objectives.

This paper describes a management architecture that
supports distributed management of actuators in multi-tier
systems. Our tier-to-tier (T2T) management architec-
ture is structured so that each tier only communicates with
its upstream and downstream neighbors. Such an approach
avoids the congestion associated with centralized manage-
ment and improves scalability. We implement the T2T
management architecture in a testbed consisting of appli-
cation and database tiers using the IBM WebSphere Appli-
cation Server and DB2 Universal Database Server, and we
demonstrate the value of using actuators in multiple tiers
through the testbed experiments. Specifically, we gain in-
sight into control efficiency and control granularity from
analytic models calibrated from testbed data. For control
efficiency, we show that more effective utilization of tiers
can be achieved by using actuators on the bottleneck tier
rather than only using actuators on the entry tier. These ef-
ficiencies result from avoiding queueing delays imposed on
requests at non-bottleneck tiers. To the best of our knowl-
edge, none of such analysis has been conducted in the ex-
isting literature, especially in a multi-tier system. Granu-
larity of control is the ability to achieve a wide range of
SLOs, something that can be difficult with coarse actuators
such as multiprogramming level (a commonly used tech-
nique because of the ease with which it can be manipu-
lated). Our results show that a fine granularity of control
can be achieved through a coordinated, cross-tier exploita-
tion of coarse grained actuators.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the tier-to-tier management architecture
and overviews the testbed setup and experiments. Section
3 studies efficiency considerations in actuator placement.
Section 4 studies the effect of control granularity. The con-
clusions are contained in Section 5.

2 Tier-to-Tier Management Architecture

This section describes the T2T management architecture
that provides a decentralized approach to achieving SLOs
in multi-tier systems. Figure 1 displays the components of
this architecture. There is an InterTier Manager that man-
ages QoS interactions between tiers. This includes: (a)
collecting measurements from downstream nodes and for-
warding them to upstream nodes, (b) accepting SLOs for
downstream nodes from upstream nodes and resolving con-
flicts, and (c) communicating reconciled goals to down-
stream nodes. The Upstream InterTier Manager and Down-
stream InterTier Manager in the figure are both instances of
InterTier Managers with this function.

Each node in the T2T management architecture is struc-
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Figure 1. Tier-to-tier architecture for a multi-tier system.
T2T provides coordinated control of actuators in multiple
tiers in which each tier only knows its upstream and down-
stream neighbors so as to avoid centralized knowledge of
actuators.

tured as indicated in the blow-up in tier m in Figure 1.
There are three layers: tier function (e.g., HTTP process-
ing, database processing), T2T QoS management, and node
services (e.g., QoS actuators for adjusting process CPU pri-
orities). There are four interacting components in the T2T
QoS management. The Upstream Proxy provides the inter-
face between T2T components in a node and its upstream
InterTier Manager. The abstract resource manager supports
the abstract resource management interface provided to the
Autonomic Controller. This interface includes APIs for:
adding/removing a service class to manage, setting the re-
source share for the service class, and querying the perfor-
mance metrics for the service class. The Autonomic Con-
troller (a) accepts SLOs for a service class and (b) uses per-
formance measurements of the node and downstream delays
to control local resources and specify SLOs for downstream
tiers. The Downstream Proxy: (a) provides the interface
between T2T components in a node and its downstream In-
terTier Manager and (b) provides measurements of down-
stream delays.

Normal operation of the T2T QoS management layer is
as follows. The Upstream InterTier Manager receives an
SLO from tier m − 1 and forwards this to the appropriate
nodes in tier m, where the Upstream Proxy provides the
SLO to the Autonomic Controller. The SLO contains in-
formation about performance metrics available on that node
and target values (e.g., response times for request entering
the node should be less than 2 seconds). This information
is used to subscribe to metric values from the Abstract Re-
source Manager. The Autonomic Controller also subscribes
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Figure 2. Instantiation of the T2T architecture in Figure 1
for a two tier system.

to metrics provided by the Downstream Proxy regarding the
contribution of downstream tiers to delays. Based on these
data, the Autonomic Controller constructs an SLO for the
downstream tier. This SLO is communicated to the Down-
stream Proxy, which in turn provides it to the Downstream
InterTier Manager.

The Autonomic Controller monitors the performance
metrics indicated in the SLO. If the Autonomic Controller
determines that the SLO metric is too high or too low, the
Autonomic Controller determines whether the problem is
local to its node or is due to downstream tiers. For the
former, the Autonomic Controller invokes the Abstract Re-
source Manager to adjust local resource allocations (e.g.,
CPU priorities). If the latter is the case, the Autonomic
Controller specifies a new SLO for the downstream tier.

In practice, the architecture in Figure 1 must be pack-
aged in an existing system. To understand the issues in do-
ing this, we built a two tier testbed consisting of an Ap-
plication Server Tier and a Database Server tier. As de-
picted in Figure 2, IBM’s Websphere Application Server
(WAS) is used for the Application Server and installed on
four nodes, and the IBM DB2 Universal Database Server is
employed for the Database Server Tier and installed on one
node. The Abstract Resource Manager function is instan-
tiated by a Websphere Node Agent. The WAS Autonomic
Controller is packaged in the On Demand Router (ODR), a
component that assigns incoming requests to WAS nodes.
Since there are only two tiers, we packaged the InterTier
Manager with the DB Autonomic Controller and incorpo-
rated them into the Websphere Deployment Manager, an
existing administrative component that, among other things,
provides configuration information. This structure had the
additional advantage of minimizing impact on the Database
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Figure 3. Testbed measurements illustrating the ability of
the T2T Testbed to achieve SLOs.

server. Note that the Websphere Node Agents in the WAS
nodes communicate with the Deployment Manager to pro-
vide measurement data. The DB tier Node Services adjust
the CPU shares through different OS level mechanism such
as dynamic logical partitions (DLPAR) and class-based ker-
nel resource management (CKRM).

We demonstrate the ability of the T2T management ar-
chitecture to provide effective control by conducting exper-
iments on the testbed in Figure 2 using the industry stan-
dard benchmark Trade [7] (a database intensive workload).
There are two service classes in our experiments. Class 1
has a response time SLO of 25 msec; class 2 is a best effort
class without specific SLO. In the first experiment depicted
in Figure 3, load is light, and class 1 achieves its SLO. In
the second experiment, load is heavy, and we use the same
actuator settings as in the first experiment. We see that class
1 has a response time of 60 msec, which is well above its
SLO. In the third experiment, actuator setting have been ad-
justed, and we see that class 1 again has a response time
of 25 msec. Note that the response time of class 2 has in-
creased substantially from experiment 2 to experiment 3,
which is not surprising since preferential treatment is given
to class 1 so that its SLO can be achieved.

3 Control Efficiency

Besides the management architecture, placement of con-
trol actuators also affects the quality of controlling multi-
tier web applications. In this section we study efficient con-
trol actuator placement. We start from providing a brief de-
scription and motivation of the problem. Afterwards, we
investigate the control scheme based on an analytical model
calibrated from testbed data, and show that we get better
performance with actuators in multiple tiers.

Internet service requests for a multi-tier system can re-
ceive service from multiple tiers. Although it may be suffi-
cient to only have control actuators at the bottleneck tier,
it is preferred to have actuators at all tiers as the bottle-
neck tier can vary for different workloads. However, such
a scheme can increase the implementation cost since not all
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Figure 4. Architecture of a closed queueing model for
multi-tier web applications with multiple service classes.

tiers have the actuators already. An alternative is to have
actuators only at the entry tier. The rationale comes from
the cross-tier dependency of a multi-tier system: since the
threads/processes in upstream tiers are blocked while wait-
ing for the completion of processing in downstream tiers,
differentiated service can be achieved through controlling
the threads/processes at the entry tier which changes the ef-
fective arrival rate for all the downstream tiers including the
bottleneck tier. This alternative seems appealing since it
can reduce the actuator implementation cost and make this
control approach general.

3.1 Modeling Multi-Tier Systems

In the following, we investigate different control strate-
gies based on an analytical model. Using a model-based
approach facilitates the generality of the results, and allows
us to explore more system/workload variability and to avoid
corruption from measurement noise.

Figure 4 illustrates the architecture of the closed queue-
ing network model for M tiers of servers with K service
classes. The behaviors of workload and concurrent sessions
are modeled using a machine repair model [8], which is
a closed queueing network consisting of two service cen-
ters. As indicated in Figure 4 by the solid box on the left,
the service center 1 contains as many servers as concurrent
clients–the served concurrent clients and their correspond-
ing servers are marked by 1, 2, . . . , Ck for service class k
and grouped by a dotted box. The service center 2, as indi-
cated by the outer dashed box on the right, includes multi-
tier servers to service client requests. A request sent by a
client in service center 1 enters the queue in front of the
service center 2, and is serviced by servers in multiple tiers
after admission. The completed request comes back to the
client in service center 1, and this client will issue a new
request after a think time Zk for class k. (We have also
modeled the system as an open queueing model for the sit-
uations where the number of clients and think time are dif-
ficult to obtain. In the interest of brevity, however, we do
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Figure 5. Modeling results for a multi-tier system.

not discuss the open queueing model in this paper.) The
QoS control actuators are represented by pk,m for class k
on tier m. For Application Server tier, the QoS actuator can
be the number of threads. For Database Server tier, the QoS
actuator can be the CPU shares.

Due to cross-tier dependency, a server (and its server
threads) can be in one of the following states: 1) using CPU
or disk of this tier, 2) waiting for CPU or disk of this tier,
3) waiting for response from a lower level tier, 4) idle after
completing the request service. In a multi-tier system a ser-
vice request can only be completed after it receives services
from all related tiers; this means the service rate of any tier
not only is affected by its own tier service capacity (and
resource contention) but also depends on the service rate of
successive tiers, so that a tandem queue model is inappropri-
ate (which fails to represent such dependency). The cross-
tier dependency is modeled through the layered queueing
model and solved iteratively [1, 9]. In addition, we use a
scaling factor vk,m to model the behavior that the requests
processed at one tier may generate multiple requests for the
lower tier; the value of vk,m can be obtained through moni-
toring the throughput of each tier.

We calibrate the model from the experimental data as
shown in Figure 5. It indicates a close fit between the mea-
sured data (marked by the asterisks and solid lines) and the
predicted values (marked by the circles and dashed lines)
of response time (in the unit of seconds), throughput, WAS
utilization (in the unit of percentage), and DB utilization
(in the unit of percentage) for different numbers of clients.
Although only a small number of clients are present in the
system, their think time is set to close to zero. This results in
a large range of workload intensity (from 45% to 95% uti-
lization for the database tier). More details on the modeling
algorithm and validation results can be found in [10].

3.2 Selecting Efficient Control Actuators

This section studies the effect of control actuator place-
ment based on the calibrated model built above. While dif-
ferent workload scenarios have been considered, below we
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Figure 6. Performance comparison of different control
actuator placement when the Database tier is the bottleneck.

illustrate using two service classes with different numbers
of clients C1 = 6, C2 = 10; the service rate for the WAS
tier is x1,1 = x2,1 = 856 and the service rate for the DB
tier is x1,2 = x2,2 = 373. Clearly, the Database Server
tier is the bottleneck tier. Figure 3.2(a) compares the re-
sponse time (in the unit of seconds) from different control
actuator placement. The horizonal axis is the response time
for class 1, and the vertical axis is the response time for
class 2. The solid line indicates the effect from the front-
end control, which uses WAS tier actuators to control the
fraction of threads dedicated to class 1 (p1,1) versus class
2 (p2,1); the asterisks indicate nine p1,1 values from 0.1 to
0.9 (while p2,1 is computed as 1 − p1,1. No service differ-
entiation is provided at the back-end Database Server tier,
that is, we represent the DB server with a single server and
a first-come-first-served single queue. Note that this is not a
symmetric curve because two classes have different num-
bers of clients. Next, we consider the back-end control
scheme as represented by the dashed line in Figure 3.2(a),
where no service differentiation is provided in the front-end
WAS server and the DB tier actuators adjust the fraction of
CPU shares allocated for each class (p1,2 and p2,2). Simi-
larly, the circles indicate nine p1,2 values from 0.1 to 0.9 and
p2,2 = 1 − p1,2. Note that no request will be dropped even
if the control occurs at the back-end tier; thus, no consumed
resource will be wasted.

As shown in Figure 3.2(a), although front-end control
at the entry tier can still differentiate the service, it is not
as effective as the back-end control executed at the bottle-
neck Database Server tier. Given any response time value
for class 1 (or class 2), the back-end control can always
achieve an equal or smaller response time for the other class
than that can be achieved by the front-end control. The ef-
ficiency of the back-end control can be further illustrated
from Figure 3.2(b), which compares the utilizations (in the
unit of percentage) of the WAS server and DB server from
the same model-based study. The back-end control at the
bottleneck tier shows more effective utilizations not only at
the bottleneck tier, but also at the entry tier.

These efficiencies of bottleneck tier control result from
avoiding queueing delays imposed on requests at non-

bottleneck tiers. Due to request synchronization between
multiple tiers, the thread in the WAS server cannot process
a new request when it is waiting for request completion in
the DB tier. When the DB tier is the bottleneck tier, using
front-end control causes the requests from the low prior-
ity class to queue prior to the WAS tier; this is conducted
through limiting the allocation of WAS tier threads. This
reduces the effective arrival rate to the DB tier so that more
DB tier resources can be utilized by the high priority class.
However, when DB tier resources become available, they
cannot be utilized immediately to service the low priority
class. Even if requests can be dequeued immediately at the
front tier, they can only be serviced at the DB tier after they
complete service at the Application Server tier first. The
WAS tier service time introduces a delay, which lowers the
utilization of the database server.

The effect of the delay can be further illustrated through
an M/M/1 model. As shown in Figure 7(a), if the control
is executed in the front-end to block the requests and build
the queue, a delay (z) will occur after the request departs
from the queue and before it is serviced by the back-end
server. This delay comes from the service time at the front
end and the dependency between layers. Since this delay
occurs prior to the back end server, we call it back-end delay
and its effect on the response time Tb can be expressed as

Tb =

1
µ

+ z

1 − λ
�

1
µ

+ z
� (1)

where λ is the arrival rate, µ is the service rate, and z is the
delay. In contrast, as shown in Figure 7(b), if the control is
executed in the back-end (i.e., achieving service differenti-
ation by manipulating the DB tier resources), the requests
will be blocked and the queue be built just before the back-
end server, and the front-end service delay (WAS tier ser-
vice time) will occur before the request enters the queue.
We call it front-end delay. Its effect on the response time
Tf can be expressed as

Tf =

1
µ

1 − λ
µ

+ z (2)

Since Tb > Tf , back-end control is a more effective ap-
proach than front-end control when back-end is the bottle-
neck tier.

As shown in Figure 3.2, this effect is more apparent
when a longer queue is formed as in the two ends of the
curve; the back-end control can still maintain the same high
utilization of the server, while the front-end control results
in lower server utilization due to the effect of delay, which is
exaggerated when the queue is longer. The front-end con-
trol behaves the same as the back-end control in the mid-
dle of the curve where there is no service differentiation.
Also note that the front-end control affects the utilization
of both tiers because an ineffective control brings down the
throughput.
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Figure 7. Different control and delay positions as illus-
trated in an M/M/1 model, where λ is the arrival rate, µ is
the service rate, and z is the delay.

4 Control Granularity

Section 3 discusses control efficiency using actuators
with continuous settings such as CPU shares. Unfortu-
nately, many common actuators have discrete settings. An
excellent example of this is multiprogramming level (MPL),
which is one of the most widely used actuators. This sec-
tion addresses the performance implications of using actu-
ators with discrete setting, especially MPL, and the benefit
provided by using discrete actuators in a coordinated way
across multiple tiers.

MPL regulates the number of concurrently executing re-
quests for a service class, and hence controls service rates.
For example, if the MPL for class 1 is 3 and the MPL for
class 2 is 2, then class 1 receives 60% of the server capacity
and class 2 receives the remaining 40% (assuming heavy
load and that the server being controlled is a bottleneck).
Another example of a discrete actuator is the assignment of
requests to nodes in distributed systems. In this case, we in-
crease service rates for a class by reserving more nodes for
requests made by that class. A discrete valued actuator can
only achieve a limited number of SLOs. We can achieve
additional SLOs by dynamically switching between actua-
tor settings, a technique that results in controller induced
variability. Controller induced variability is very undesir-
able, especially for interactive users. We show that finer
grain control is achieved by using actuators at multiple tiers,
and hence control variability is reduced.

We define the control granularity of an actuator (or set
of actuators used in combination) for a performance metric
as the smallest increase in the metric that can be achieved
in units of percent. We will qualify this by system state,
typically by the response time of the system. Let R be the
current value of the performance metric. Then, the control
granularity g is defined in terms of the R′ that is the smallest
increase in R. That is,

g = min
R′>R

R′ − R

R
× 100 (3)

To study the control granularity of MPL, we must con-
sider the performance achieved for all possible combina-

Table 1. Assessment of the Markov Model. Entries are in
the form measured/predicted.

C RT TP UWAS UDB

4 0.024/0.14 158/226 18/19 68/97
8 0.039/0.030 204/233 24/20 84/99

16 0.071/0.060 223/233 26/20 96/100

tions of MPL for the service classes on each tier. This is a
large number. For example, consider a two tier system with
two service classes. If each service class has five customers,
there are 54 = 625 possible settings of the MPL actuators.

It is impractical to conduct such a large number of ex-
periments on a testbed. Hence, we develop a model of
a system using T2T management of QoS. Since we must
model MPL explicitly, the layered queueing network de-
scribed previously in Section 3 is not sufficient. Rather, we
use a closed queueing network with M tiers and K classes
in which class k has Nk customers, and there are per class
settings of MPL in each tier. For simplicity, we assume that
there is a single server at each tier (although it is not difficult
to generalize to multiple servers). In our model, a customer
has at most one request outstanding and so we use the terms
customer and request interchangeably. A customer is in one
of the following states: (1) thinking (no request pending);
(2) waiting to execute at tier m; and (3) executing at tier m.
Note that if a customer is waiting to execute or executing at
tier m, then it cannot be waiting to execute or executing at
any other tier. After a customer completes its execution at
tier m, the customer continues to tier m + 1 ≤ M . Once a
customer enters the tier m server, it consumes an MPL slot
until it has completed its execution at tiers m + 1, · · · , M .
An execution completion at tier M results in a service com-
pletion, and the customer returns to the thinking state.

By assuming that think times and execution times are
exponentially distributed, the above queueing network is a
Markov Model. We use µkm to denote the service rate of
class k requests at tier m. The mean think time of a class
k customer is 1/µk0. The state transitions in this model
consist of (a) arrivals at tier m as a result of an execution
completion at tier m − 1 and (b) execution completions at
tier M , which then results in service completions in tiers
1, · · · , M−1. Table 1 compares testbed measurements with
predictions obtained from the Markov Model on response
time (in the unit of seconds), throughput, WAS utilization
(in the unit of percentage), and DB utilization (in the unit
of percentage) for different numbers of clients. While the
fit is not exact, it is close enough to ensure that the Markov
Model provides reasonable insights.

Figure 8 uses the Markov Model to plot response times
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Figure 8. Response times for a two class, two tier system.
Squares indicate instances of one tier actuation.

(in the unit of seconds) for different numbers of customers.
Figure 8(a) plots response times for low think rates (i.e.,
light workload), and Figure 8(b) plots response times for
high think rates (i.e., heavy workload). (“Low” and “high”
are based on utilizations observed in our testbed.) In each
figure, there are plots in which N1 = N2 ∈ {3, 5, 8}. The
horizontal axis is the response time of class 1 (R1) and the
vertical axis is R2. Each dot represents a different setting
of the four MPL actuators (2 on each tier). The squares in-
dicate actuator settings in which only the entry tier is used
to control MPL. We refer to as one tier actuation. It is
apparent that MPL settings that provide lower R1 result in
larger R2, and the converse is true as well. The resulting
curve appears to be a parabola that is symmetric around the
line R1 = R2. Observe that there is a large number of MPL
settings close to the center of the parabola, and few settings
as we move further from the center of the parabola. Over-
all, there are far fewer settings for one tier actuation than
settings that use actuators on both tiers.

We gain further insights by plotting g. Recall that
g depends on state, which in our case means (R1, R2).
From Figure 8, feasible values of (R1, R2) mostly lie on
a parabola. Hence, state can be reasonably approximated
by R1 since R2 is a function of R1. Thus, Figure 9 plots R1

on the horizontal axis and g on the vertical axis. As before,
the dots indicate that MPL is controlled at both tiers, and
the squares indicate instances of one tier actuation. Observe
that for all plots, one tier actuation results in a significantly
larger granularity of control.

If one tier actuation is used, then the control granularity
may be coarse. Hence, we must oscillate between MPL set-
tings to achieve intermediate values of response times. For
example, consider Figure 8(b) in which N1 = N2 = 3. If
one tier actuation is used, then there is no single setting of
MPLs that provides a class 2 response time of 0.05. How-
ever, there are MPL settings such that R2 ∈ {0.046, 0.053}.
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Figure 9. Control granularity for a two class, two tier
system. Squares indicate instances of one tier actuation.

Hence, we achieve an average of R2 = 0.050 by switching
between these MPL settings in a way so that p = 0.57 of
the time R2 = 0.053 and 1 − p of the time R2 = 0.046. In
fact, the Autonomic Controller in Figure 1 would do exactly
this.

Our motivation for studying granularity of control is that
if it is too coarse, then we expect a substantial amount of
controller induced variability. We investigate this using a
simple analytic model. Let xt be the value of the perfor-
mance metric (e.g. response time) at time t. We want to
set our actuators in a way that at steady state xt = x∗.
However, due to the granularity of control of the actuators
employed, the steady state value of xt is either x and x′

such that x < x∗ or x∗ < x′. That is, from Equation (3),
g = x′−x

x 100.
To analyze controller induced variability, we make the

simplifying assumption that the xt are independent random
variables and that measurement and control intervals are
long enough so that it suffices to use steady state values.
The distribution of xt changes over time as a result of
changes in control settings needed to enforce SLOs when
control granularity is coarse. We consider two settings of
the actuators. In the first, the steady state value of xt is x,
and the variance of xt is c2x2, where c is the coefficient
of variation for xt. In the second setting of the actuators,
the steady state value of xt is x′ and its variance is c2x′2.
Let p denote the fraction of time that actuators are set
to achieve x′ and so (1 − p) is the fraction of time that
actuators are set to achieve x. The variance of xt is σ2

xt
=

(1− p)c2x2 + pc2x′2 + (1− p)(x− x∗)2 + p(x′ − x∗)2 =
x2

(
(1 − p)c2 + pc2(1 + g)2 + p(g − p)2 + (1 − p)(pg)2

)
,

where x∗ = x(1 − p) + px(1 + g) = (1 + pg)x. Thus, the
fractional increase in variance fv due to controller induced
variability is

fv =
(1 − p)c2 + pc2(1 + g)2 + p(g − p)2 + (1 − p)(pg)2

c2(1 + pg)2
−1

(4)



We use Equation (4) to study controller induced variability
as a result of the control granularities in Figure 9. We see
that if one tier actuation is used, then g often exceeds 25%
and may be larger than 30%. With p = 0.5 and c = 0.25
(a low variance system due to good regulation), fv is be-
tween 10% and 20%, which is a substantial increase in vari-
ance. We can gain further insight into the factors affecting
fv by examining Equation (4). Note that fv = 0 if either
p = 0 or p = 1. This makes sense since in both cases x∗

can be achieved by a fixed setting of the actuators. Further,
note that if we have a very fine granularity of control, which
means that g ≈ 0, then fv = 0. Also, note that fv increases
with g and c. The former is intuitive since a large g means
that there are big changes in the performance metric in or-
der to enforce the SLO. The latter is a consequence of being
able to better detect changes in the variability of xt if the co-
efficient of variation of xt is small. The effect of changing p
is more complicated. In general, values of p such as p = 0.5
that are distant from both x and x′ result in the largest fv .

5 Conclusions

The tier-to-tier (T2T) management architecture supports
decentralized management of actuators in multi-tier sys-
tems. The appeal of a decentralized approach is reducing
message overheads and communication delays that occur
in centralized schemes. We describe the elements in the
T2T management architecture and a testbed implementation
consisting of application and database tiers using the IBM
WebSphere Application Server and DB2 Universal Data-
base Server. Based on testbed experiments and analytic
models, we gain insight into the value of coordinated ex-
ploitation of actuators on multiple tiers, especially consid-
erations for control efficiency and control granularity. For
control efficiency, we show that more effective utilization
of tiers can be achieved by using actuators on the bottle-
neck tier rather than only using actuators on the entry tier.
These efficiencies result from avoiding queueing delays im-
posed on requests at non-bottleneck tiers. Granularity of
control is the ability to achieve a wide range of service level
objectives, something that can be difficult with coarse ac-
tuators such as multiprogramming level (a commonly used
technique because of the ease with which it can be manipu-
lated). Our results show that a fine granularity of control can
be achieved through a coordinated, cross-tier exploitation of
coarse grained actuators. Doing so can greatly reduce the
controller-induced variability that results from oscillating
between actuator settings in order to achieve service level
objectives with coarse grain actuators.

Our future work will provide more insight into the trade-
offs between centralized and distributed control of actua-
tors on multiple tiers, especially regarding to the message
overheads and communication delays and for a three-tier

architecture. Further, we will investigate Autonomic Con-
troller design that involves the interaction between control
schemes used at different tiers (where bottleneck may ap-
pear at more than one tier) and consider experimental as-
sessment for heterogenous workloads.
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