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GENERALIZED CONSTRAINT SATISFACTION PROBLEMS

ALEXANDER D. SCOTT∗ AND GREGORY B. SORKIN

Abstract. A number of recent authors have given exponential-time algorithms for optimization prob-
lems such as Max Cut and Max Independent Set, or for the more general class of Constraint Satisfaction
Problems (CSPs). In this paper, we introduce the the class of Generalized Constraint Satisfaction Prob-
lems (GCSPs), where the score functions are polynomial-valued rather than real-valued functions. We
show that certain reductions used for solving CSPs can be extended to identities for the “partition
function” of a GCSP, leading to relatively efficient exponential-time (polynomial-space) algorithms for
solving a GCSP. This also enables us (at the cost of only a polynomial factor in time) to modify existing
algorithms for optimizing CSPs into algorithms that count solutions or sample uniformly at random.
Using an extra variable allows us to solve Max Bisection or calculate the partition function of the Ising
Model, problems that were previously inaccessible with this approach.

1. Introduction

A wide range of decision or maximization problems, such as Max Cut, Max k-Cut, and Max 2-
SAT belong to the class Max 2-CSP of constraint satisfaction problems with at most two variables
per constraint. There is an extensive literature devoted to solving such problems with relatively
efficient exponential-time algorithms based on reductions; for example, Gramm, Hirsch, Niedermeier

and Rossmanith solve Max 2-SAT in time Õ
(
2m/5

)
and use this to solve Max Cut in time Õ

(
2m/3

)

[GHNR03], while Kulikov and Fedin solve Max Cut in time Õ
(
2m/4

)
[KF02] (where m is the number

of constraints or edges).
In this paper, we adopt a novel approach to CSP problems. Rather than working with CSPs as

such, we introduce the class of Generalized Constraint Satisfaction Problems (GCSPs), whose scores
are given by (products of) polynomials instead of (sums of) real numbers. A GCSP can be thought of
as a rather general statistical-mechanical model over a graph, and it is therefore natural to consider the
“partition function” of an instance, which sums the (polynomial) scores over all possible assignments.

The advantage of this approach comes when we consider the relationship between CSPs and GCSPs.
Given a CSP, there is a natural way to obtain a corresponding GCSP. The partition function of the
GCSP then corresponds to the generating function for (scores of) assignments in the original CSP
(and, conversely, the CSP corresponds to the “Hamiltonian” of the GCSP). Thus calculating the
partition function of the GCSP not only gives us the optimal score for the CSP, but tells us how many
assignments achieve each possible score. This enables us to count solutions, and can be used to sample
at random from solutions. (The beautifully simple new algorithm of Ryan Williams [Wil04] can also
be used to count and sample; taking an approach completely different from ours, it only delivers an
approximation for real-valued scores, and requires exponential space as well as exponential time.)

A standard approach to dealing with 2-CSP problems (which we will henceforth just call CSPs),
especially in the sparse case, is to define a sequence of reductions each of which replaces a given
problem instance by one or more “smaller” instances that are in some sense equivalent to the original
instance. The original instance can then be solved by working recursively on the reduced instances.
Surprisingly, it turns out that a number of existing CSP reductions can be carried through into the
framework of GCSPs, where they can be extended to an identity between partition functions of two
or more GCSPs (the original reductions correspond to indentities between leading terms of partition
functions).

∗ Research supported in part by EPSRC grant GR/S26323/01.
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2 ALEXANDER D. SCOTT AND GREGORY B. SORKIN

We can therefore translate some existing reduction-based algorithms for CSP (notably those from
[SS03, SS06, SS04]) to similarly efficient algorithms for calculating the partition function, thus deliv-
ering a substantial amount of additional information. For instance, if the score function is integral
and polynomially bounded, we can count the number of solutions with each possible total score; for
arbitrary score functions, we can count the number of optimal solutions; we can solve optimization
problems with multiple constraints and/or objectives, such as Max Bisection; and in any of these cases
we can sample solutions at random.

2. Outline

Section 3 defines the classes CSP and Generalized CSP. Section 4 provides examples of CSPs and
related GCSPs; because this includes problems that could not previously be solved by methods of this
kind, such as Max Bisection, it is a focal point of the paper. In Section 5, we define our reductions.
These are extensions into the GCSP framework of reductions that have previously been used for CSPs;
in this context they give identities between partition functions. In Section 6 we show algorithmic
consequences for CSP instances with polynomially bounded integer scores, and in Section 7 we extend
this to allow arbitrary real scores. In Section 8, we state a variety of results for determining a CSP’s
optimal score, and counting solutions with this and other scores; in Section 9 we note that we can also
produce (and randomly sample) the solutions themselves.

Notation: In the next section we will define the class of (simple) CSPs and our new class GCSP of
Generalized CSPs. An instance of either will utilize an underlying graph G = (V, E) (with vertex set
V and edge set E), and we will reserve the symbols G, V and E for these roles. An instance of either
also has a domain of values or colors that may be assigned to the vertices (variables), for example
{true, false} for a satisfiability problem, or a set of colors for a graph coloring problem. In general we
will denote this domain by [k], interpreted as {0, . . . , k − 1} or (it makes no difference) {1, . . . , k}. At
the heart of both of the CSP and GCSP instance will be cost or “score” terms si

v (v ∈ V (G), i ∈ [k])

and sij
xy (x, y ∈ V (G), i, j ∈ [k]). These superscripts denote indices, not exponentiation!

For CSPs the scores s are real numbers, while for GCSPs they are polynomials (we will typically
write these in the variable z if univariate, or if multivariate over z, w or z, w1, w2, . . . ). While the
notational confusion is unfortunate, a superscripted s always indicates an index, while a superscripted
z or w always indicates a power. In cases where the CSP scores s are not positive integers, the
exponents in the GCSP score “polynomials” will likewise be fractional or negative (or both).

We use ] to indicate disjoint union, so V0 ] V1 = V means that V0 and V1 partition V , i.e.,

V0 ∩ V1 = ∅ and V0 ∪ V1 = V . The notation Õ hides polynomial factors in any parameters, so for

example O(n219m/100) is Õ
(
219m/100

)
.

3. CSP and Generalized CSP

Let us begin by defining the problem class CSP over a domain of size k. An instance I of CSP with
underlying graph G = (V, E) and domain [k] has the following ingredients:

(1) a real number s∅;
(2) for each vertex v ∈ V and color i ∈ [k], a real number si

v;

(3) for each edge xy ∈ E and any colors i, j ∈ [k], a real number sij
xy.

We shall refer to these quantities as, respectively, the nullary score, the vertex scores, and the edge
scores. Note that we want only one score for a given edge with given colors assigned its endpoints, so

sij
xy and sji

yx are taken to be equivalent names for the same score (or one may simply assume that x < y).
Given an assignment (or coloring) σ : V → [k], we define the score of σ to be the real number

I(σ) := s∅ +
∑

v∈V

sσ(v)
v +

∑

xy∈E

sσ(x)σ(y)
xy .
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We want to count the number of solutions satisfying various properties, and therefore take a gener-
ating function approach. Given an instance I, the corresponding generating function is the polynomial

(1)
∑

σ:V →[k]

zI(σ).

More generally, if we want to keep track of several quantities simultaneously, say I(σ), J(σ), · · · , we

can consider a multivariate generating function
∑

σ zI(σ)wJ(σ) · · · . Calculating the generating function

in the obvious way (by running through all k|G| assignments) is clearly very slow, so it is desirable to
have more efficient algorithms.

In order to handle generating functions, we borrow some notions from statistical physics. We think
of the score I(σ) as a “Hamiltonian” measuring the “energy” of a configuration σ. Thus the edge scores
correspond to “pair interactions” between adjacent sites, while the vertex scores measure the effect of
adding a “magnetic field”. (From this perspective, the nullary score is just a constant that disappears
after normalization.) The generating function is then the “partition function” for this model.1

A crucial element of our approach is that the score I(σ) can be broken up as a sum of local interac-

tions, and thus an expression such as zI(σ) can be expressed as a product of monomials corresponding
to local interactions. In order to provide a framework for this approach, we introduce a generalized
version of constraint satisfaction where the scores are polynomials (in some set of variables) instead
of real numbers, and the score of an assignment is taken as a product rather than a sum.

An instance I of Generalized CSP, with underlying graph G and domain [k], has the following
ingredients:

(1) a polynomial p∅;
(2) for each vertex v ∈ V and color i ∈ [k], a polynomial pi

v;

(3) for each edge xy ∈ E and pair of colors i, j ∈ [k], a polynomial pij
xy.

We shall refer to these three types of polynomial as, respectively, the nullary polynomial, the vertex
polynomials, and the edge polynomials. We want only one polynomial for a given edge with given

colors on its endpoints, so again we either take pij
xy and pji

yx to be equivalent or simply assume that
x < y.

Given an assignment σ : V → [k], we define the score of σ to be the polynomial

I(σ) := p∅ ·
∏

v∈V

pσ(v)
v ·

∏

xy∈E

pσ(x)σ(y)
xy .

We then define the partition function ZI of I by

ZI =
∑

σ : V →[k]

I(σ).

This should become clearer in the next section when we give a few examples. In particular, we note
that for every CSP there is a naturally corresponding GCSP, and we indicate how different problems
can be translated into the GCSP context.

We will turn to algorithms in subsequent sections, but it is worth bearing in mind that Generalized
CSP over a graph G can be solved about as efficiently as a CSP over the same graph: as we will see,
we pay only a polynomial multiplicative factor for the “bookkeeping” of working with polynomials
rather than numbers.

4. Examples

In this section we show how some standard problems can be written in terms of instances of Gen-
eralized CSP. For convenience we sometimes call an instance I of GCSP a generalized instance.

1The partition function is usually written in the form
∑

σ exp(−βI(σ)), where β is known as the inverse temperature,

but substituting z for e−β yields the partition function in polynomial form.
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4.1. Generating function of a simple CSP.

Definition 1 (Generating function of an instance). Given an instance I of CSP, we can define a
corresponding instance I∗ of GCSP with the same underlying graph and variable domain, and polyno-
mials

p∅ = zs∅

pi
v = zsi

v i ∈ [k]

pij
xy = zsij

xy i, j ∈ [k]

The connection between I and I∗ is given by the following simple observation.

Lemma 2. Let I be an instance of CSP, and let I∗ be the corresponding generalized instance. Then
the partition function ZI∗ is the generating function (1) for the instance I.

Proof. For any assignment σ, we have

I∗(σ) = zs∅ ·
∏

v∈V

zsi
v ·

∏

xy∈E

zsij
xy = zs∅+

∑
v∈V si

v+
∑

xy∈E sij
xy = zI(σ).

It therefore follows that the partition function ZI∗ =
∑

σ zI(σ) is the generating function for the
original constraint satisfaction problem. ¤

Similar results are easily seen to hold for generating functions in more than one variable.

4.2. Max Cut and Max Dicut. Max Cut provides a simple illustration of Definition 1 and Lemma 2.
Let us first write Max Cut as a CSP; we will then construct the corresponding GCSP.

Example 3 (Max Cut CSP). Given a graph G = (V, E), set k = 2 and define a CSP instance I by

s∅ = 0 ; (∀v ∈ V ) s0
v = s1

v = 0 ; (∀xy ∈ E) s10
xy = s01

xy = 1, s00
xy = s11

xy = 0.

With σ−1(i) = {v : σ(v) = i}, note that (V0, V1) = (σ−1(0), σ−1(1)) is a partition of V , and

I(σ) =
∑

xy∈E :
σ(x)=0, σ(y)=1

1 = e(V0, V1)(2)

is the size of the cut induced by σ. The corresponding GCSP instance is obtained as in Definition 1.

Example 4 (Max Cut GCSP). Given a graph G = (V, E), we set k = 2 and define a GCSP instance
I by

s∅ = 1 ; (∀v ∈ V ) s0
v = s1

v = 1 ; (∀xy ∈ E) s10
xy = s01

xy = z, s00
xy = s11

xy = 1.

(In all such cases, a 1 on the right hand side may be thought of as z0.)
By Lemma 2, the partition function ZI is therefore the generating function for cuts:

(3) ZI =
∑

2ciz
i,

where ci is the number of cuts of size i, and the factor 2 appears because each cut (V0, V1) also appears
as (V1, V0). The size of a maximum cut is the degree of ZI , and the number of maximum cuts is half
the leading coefficient.

Note that the partition function (3) is the partition function of the Ising model with no external
field (see below for a definition). Thus we have recovered the very familiar fact that, up to a change
of variables, the partition function of the Ising model is the generating function for cuts.

We can also encode weighted instances of Max Cut with edge weights w : E → R by modifying the
third line of the definition above to

p10
xy = p01

xy = zw(xy) ∀xy ∈ E.

The Max Dicut CSP and GCSPs are encoded essentially identically, as is Max k-Cut.
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4.3. The Ising model and Max Bisection. A slight generalization of the previous example allows
us to handle the Ising model.

Example 5 (Ising model). The Ising model with edge weights J and external field h on a graph G is
defined in terms of its Hamiltonian H. For an assignment σ : V → {0, 1}, we define

H(σ) = J
∑

xy∈E

δ(σ(x), σ(y)) + h
∑

v∈V

σ(v).

Here δ(a, b) is the delta function, returning 0 if a = b, and 1 otherwise, J is the interaction strength
and h is the external magnetic field. In analogy with (2), taking Vi = σ−1(i), we may rewrite H as

H(σ) = Je(V0, V1) + h|V1|.

Note that H is an instance of (non-generalized) CSP.
The partition function of the Ising model at inverse temperature β is

ZIsing =
∑

σ

e−βH(σ) =
∑

V0]V1=V

w|V1|ze(V0,V1),(4)

where we have written w = e−βh and z = e−βJ , and the last sum is taken over ordered pairs (V0, V1)
that partition V . With this change of variables, the Ising partition function is easily expressed as
partition function of a GCSP, this time over two variables.

Example 6 (Ising GCSP). Define an Ising GCSP instance I by

p∅ = 1 ; (∀v ∈ V ) p0
v = 1, p1

v = w ; (∀xy ∈ E) p10
xy = p01

xy = z, p00
xy = p11

xy = 1.

With our usual notation, I(σ) = w|V1|ze(V0,V1), and so the partition function for this GCSP is equal
to (4).

The Ising GCSP can also be used to handle Max Bisection. This is important, because CSP
algorithms such as those in [GHNR03, KF02, SS03, SS04] solve Max Cut, but cannot be applied
to Max Bisection because there is no way to force them to generate a balanced cut. At the modest
expense of a polynomial factor in the running time, the Ising GCSP does this by tracking two variables
at once: the bisections of G correspond to terms in ZIsing that have degree bn/2c in w. (Each bisection
is counted once if n is odd, twice if n is even.) Extracting these terms gives the generating function
for bisections of G.

The same partition function also yields a sparsest cut of the graph: sparsest cuts correspond to
terms with the largest ratio of the power of z (number of cut edges) to the power of w (number of
vertices in one partition).

4.4. Max Independent Set and Max Clique. Maximum Independent Set (MIS) is easily expressed
as a 2-CSP:

s∅ = 0 ; (∀v ∈ V ) s0
v = 0, s1

v = 1 ; (∀xy ∈ E) s00
xy = s10

xy = s01
xy = 0, s11

xy = −2.

Maximum clique cannot be modeled in the same way, because the clique constraint is enforced by
anti-edges, which are not an element of the model. Of course a maximum clique in G corresponds to
a maximum independent set in its complement graph Ḡ, but for our purposes this is very different, as
the running time of our algorithm is parametrized by the number of edges, and a sparse Max Clique
instance becomes a dense MIS instance. However, as with Max Bisection, it is possible to model a
sparse Max Clique instance as a GCSP with the same input length by introducing a second variable:

s∅ = 1 ; (∀v ∈ V ) s0
v = 1, s1

v = w ; (∀xy ∈ E) s00
xy = s10

xy = s01
xy = 1, s11

xy = z

A coloring σ has score I(σ) = w|V1|ze(G|V1
), the power of w counting the number of vertices in the

chosen set V1 = σ−1(1), and the power of z counting the number of edges induced by that set. In the

partition function, k-cliques correspond to terms of the form wkz(k
2
). Of course, independent sets of
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cardinality k correspond to terms with wkz0: the GCSP simultaneously counts maximum cliques and
maximum independent sets (among other things).

4.5. Judicious partitions and simultaneous assignments. As is spelled out in the full version of
the paper, similar techniques may be applied to various judicious partitioning problems [BS99, Sco05],
such as finding a cut of a graph which minimizes max{e(V0), e(V1)}. We think of this as a case of having
more than one CSP on a single set of variables. In other examples, we might have two instances of Max
SAT that we wish to treat as a bi-criterion optimization problem; a Max SAT instance to optimize
subject to satisfaction of a SAT instance; or a partition of a vertex set yielding a large cut for two
different graphs on the same vertices. All such problems are now straightforward: use a variable z to
encode one problem and a variable w to encode the second. Initial edge scores would thus be of the
form zfirstscorewsecondscore.

5. Reductions

In this section we introduce several types of reduction. A Type 0 reduction expresses the partition
function of a GCSP as a product of partition functions of two smaller instances (or in an important
special case, a single such instance). Type I and Type II reductions each equate the generating
function of an instance to that of an instance with one vertex less. Finally, a Type III reduction
produces k instances, whose partition functions sum to the partition function of the original instance.
In each case, once the reduction is written down, verifying its validity is a simple matter of checking
a straightforward identity.

The four reductions correspond to the CSP reductions used in [SS03, SS06, SS04]. However, by
working with polynomials rather than real numbers, we are able to carry substantially more infor-
mation. A word of intuition, deriving from the earlier CSP reductions, may be helpful (though some
readers may prefer to go straight to the equations). A CSP II-reduction was performed on a vertex v
of degree 2, with neighbors u and w. The key observation is that in a maximization problem, the op-
timal assignment σ(v) is a function of the assignments σ(u) and σ(v). That is, given any assignments
σ(u) = i and σ(w) = j, the optimal combined scores of the vertex v, the edges uv and vw, and the
edge uw (if present, and otherwise taken to be the 0 score function) is

s̃ij
uw = max

l

{
sij
uw + sil

uv + sv(l) + slj
vw +

}
.(5)

By deleting v from the CSP instance and replacing the original score suw with the score s̃uw, we obtain
a smaller instance with the same maximum value. In the GCSP context we do essentially the same
thing, except that the maximization in (5) is replaced by the summation in (7) (and the sum replaced
by a product).

Type 0 Reduction. Suppose I is a GCSP instance whose underlying graph G is disconnected. Let
V = V0 ∪ V1 be a nontrivial partition such that e(V1, V2) = 0. Let I1 and I2 be the subinstances
obtained by restriction to V1 and V2, except that we define the nullary polynomials by

p
(I1)
∅ = p

(I)
∅ ; p

(I2)
∅ = 1.

A straightforward calculation shows that, for any assignment σ : V → [k], we have

I(σ) = p∅ ·
∏

v∈V

pσ(v)
v ·

∏

xy∈E

pσ(x)σ(y)
xy

=


p∅ ·

∏

v∈V1

pσ(v)
v ·

∏

xy∈E(G[V1])

pσ(x)σ(y)
xy





1 ·

∏

v∈V2

pσ(v)
v ·

∏

xy∈E(G[V2])

pσ(x)σ(y)
xy




= I1(σ1)I2(σ2),

where σi denotes the restriction of σ to Vi. It follows easily that ZI = ZI1ZI2 . Thus in order to
calculate ZI it suffices to calculate ZI1 and ZI2 .
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When one component of G is an isolated vertex v, with V ′ = V \ v, one term becomes trivial:

ZI =
(
p∅ ·

∑
i∈[k] p

i
v

)
·ZI2 . So ZI = Z

Ĩ
, where Ĩ is the instance obtained from I by deleting v, defining

pĨ
∅ = p∅ ·

∑
i∈[k] p

i
v (a trivial calculation), and leaving all other scores unchanged.

Type I Reduction. Suppose that I is an instance with underlying graph G, and v ∈ V has degree 1.

Let w be the neighbor of v. We shall replace I by an “equivalent” instance Ĩ (one with the same
partition function) with underlying graph G \ v.

We define the instance Ĩ by giving w vertex scores

(6) p̃i
w = pi

w

k−1∑

j=0

(pij
wv · p

j
v).

All other scores remain unchanged (except for p∗v and p∗∗vw, which are deleted along with v).
To show that ZI = Z

Ĩ
, let σ : V \v → [k] be any assignment and, for j ∈ [k], extend σ to σj : V → [k]

defined by σj(v) = j and σj |V \v = σ. Using (6), we have

Ĩ(σ) = p̃∅ ·
∏

x∈V \v

p̃σ(x)
x ·

∏

xy∈E(G\v)

p̃σ(x)σ(y)
xy

=


p∅ ·

∏

x∈V \{v,w}

pσ(x)
x ·

∏

xy∈E(G\v)

pσ(x)σ(y)
xy


 ·


pσ(w)

w ·
k−1∑

j=0

pσ(w)j
wv · pj

v




=
k−1∑

j=0

p∅ ·
∏

v∈V

pσj(v)
v ·

∏

xy∈E

pσj(x)σj(y)
xy

=
k−1∑

j=0

I(σj)

and so ZI =
∑

σ:V →[k] I(σ) =
∑

σ:V \v→[k]

∑k−1
j=0 I(σj) =

∑
σ:V \v→[k] Ĩ(σ) = Z

Ĩ
.

Type II Reduction. Suppose that I is an instance with underlying graph G, and v ∈ V has degree 2.

Let u and w be the neighbors of v in G. We define an instance Ĩ with underlying graph G̃, which

will have fewer vertices and edges than G. The underlying graph G̃ of Ĩ is obtained from G by

deleting v and adding an edge uw (if the edge is not already present). We then define Ĩ by setting,
for 0 ≤ i, j ≤ k − 1,

p̃ij
uw = pij

uw ·
k−1∑

l=0

pil
uvp

l
vp

lj
vw,(7)

where we take pij
uw = 1 if it is not already defined. All other scores remain unchanged (except for p∗v,

p∗∗vu and p∗∗vw, which are deleted).
To show that ZI = Z

Ĩ
, let σ : V \ v → [k] be any assignment. As before, we write σl for the

assignment with σl|V \v ≡ σ and σl(v) = l. Then

Ĩ(σ) = p̃∅ ·
∏

x∈V \v

p̃σ(x)
x ·

∏

xy∈E(G̃)

p̃σ(x)σ(y)
xy

= p∅
∏

x∈V \v

pσ(x)
x ·

∏

xy∈E(G\v)

pσ(i)σ(j)
xy ·

k−1∑

l=0

pσ(u)l
uv pl

vp
lσ(w)
vw

=
k−1∑

l=0

I(σl).
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As with Type I reductions, this implies that ZI = Z
Ĩ
.

Type III Reduction. Suppose that I is an instance with underlying graph G, and v ∈ V has

degree 3 or more. Let u1, . . . , ud be the neighbors of v in G. We define k instances Ĩ0, . . . , Ĩk−1 each

with underlying graph G̃ = G \ v. For i = 0, . . . , k − 1, the ith instance Ĩi corresponds to the set of
assignments where we have taken σ(v) = i.

We define nullary scores for Ĩi by setting

q
(i)
∅ = p∅ · p

i
v

and, for 1 ≤ l ≤ d and 0 ≤ j ≤ k − 1, vertex scores

(q(i))j
ul

= pj
ul
· pji

ulv
.

All other scores remain unchanged from I (except for p∗v and p∗∗v∗, which are deleted).
For any assignment σ : V \ v → [k], and 0 ≤ i ≤ k − 1, we write (as usual) σi : V → [k] for the

assignment with σi|V \v ≡ σ and σi(v) = i. Then, writing W = V \ (v ∪ Γ(v)),

I(σi) = p∅
∏

x∈V

pσi(x)
x ·

∏

xy∈E

pσi(x)σi(y)
xy

= p∅
∏

x∈W

pσ(x)
x ·

∏

xy∈E(G\v)

pσ(x)σ(y)
xy · pi

v

d∏

l=1

pσ(ul)
ul

pσ(ul)i
ulv

= Ĩi(σ),

since p
σi(v)
v = pi

v. Then ZI =
∑

σ:V →[k] I(σ) =
∑

σ:V \v→[k]

∑k−1
i=0 I(σi) =

∑
σ:V \v→[k]

∑k−1
i=0 Ĩi(σ) =

∑k−1
i=0

∑
σ:V \v→[k] Ĩi(σ) =

∑k−1
i=0 Z

Ĩi
. Thus the partition function for I is the sum of the partition

functions for the Ĩi.

6. Working with polynomially bounded instances

In this section we consider algorithms for calculating the partition function of an instance of GCSP.
The basic idea is that we begin with an instance I and apply a sequence of reductions to reduce it to
successively smaller instances. If we can apply a reduction of Type 0 (to an isolated vertex), Type I
or Type II then the instance is replaced with an equivalent instance I ′ with fewer vertices than I.
Otherwise, we perform a Type III reduction, and replace I with k smaller instances I0, . . . , Ik−1, such
that the partition function of I equals the sum of the partition functions of the k smaller instances. We
recursively solve the instances I0, . . . , Ik−1 and sum the partition functions to obtain I. This approach
was used in the algorithms for MAX CSP analyzed in [SS06, SS03, SS04]. Our aim in this section is
to extend the results from these papers into the generalized context.

We begin by giving bounds on the time required to effect reductions of different types. We deal
first with the single-variable case. We use the fact that two polynomials of degree d can be multiplied
in time O(d log d).

Lemma 7. Let I be an instance of GCSP with underlying graph G (with n vertices and m edges)
and domain size k. Suppose that the scores are polynomials in the variable z, and the maximum
degree of any score polynomial is c. Let I∗ be any instance obtained from I by a sequence of 0, I
and II reductions, and let D = c(m + n + 1). Then a Type 0 reduction on a single vertex can be
performed in time O(kD + D log D), a Type I reduction in time O(k2D log D), a Type II reduction in
time O(k3D log D), and a Type III reduction on a vertex of degree d in time O(k3dD log D).

Proof. Note first that any score function for an edge or vertex of I∗ is a sum of products of score
polynomials from I. Furthermore, each such product includes at most one score polynomial from each
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edge or vertex of I. Thus the degree of any score function in I∗ is at most D (corresponding to the
edge, vertex and nullary scores from I∗).

Performing a Type 0 reduction on a single vertex requires us to sum k score polynomials and
multiply by a (k + 1)st. This can be done in time O(kD) + O(D log D). We reason similarly for Type
I, II and III reductions. ¤

A similar result holds in the multivariable case. We can now carry across theorems from previous
papers. The reductions for generalized instances work in the same way as for simple instances of Max
CSP, except with an additional time factor. For instance, the expected linear time result Theorem 7.1
of [SS06] becomes the following.

Theorem 8. For any λ = λ(n) and any η ≤ 1+λn−1/3, let G ∈ G(n, c/n) be a random graph and let I
be any GCSP instance over G, with domain size 2. Let c be the maximum degree of any score polynomial
in I. Then the partition function of I can be calculated in expected time O(n) exp(1+λ3) · cn2 log(cn).

From Theorem 5 of [SS04], we get:

Theorem 9. Let G be a graph with n vertices and m edges, and let I be any GCSP instance over G
in a variable z, where the domain size is k and the maximum degree of any score function is c. Then
the partition function of I can be calculated in time O(k3c(m + n) log(cn)) · k19m/100.

7. A reduced algorithm for instances with arbitrary weights

In this section we drop the assumption that our GCSP score function powers (corresponding to CSP
weights) are polynomially bounded integers, and instead work with arbitrary weights. The problem
now is that our “polynomials” might have exponentially many terms, and we are therefore compelled
to “prune” them. (“Polynomial” is now a loose term, as we may allow non-integral and negative
powers.)

Pruning technique. Given a polynomial p in one variable z, we define the pruned polynomial pz to
be the polynomial obtained by removing all but the leading term. If p is a polynomial in variables
z, w1, w2, . . ., we obtain pz by throwing away all terms t such that there is a term of the form ctzi for
some i > 0. For instance,

(2z2 + 3z − 700 + zw1 + z2w1 + zw2 + z10w1w2)z = 2z2 + z2w1 + zw2 + z10w1w2.

Given an instance I, the z-pruned (or simply “pruned”) instance Iz is obtained from I by replacing
all score functions by their pruned equivalents. The point about pruning is that, for maximization
problems in z alone, I and Iz have the same value. More generally, if there are variables w1, w2, . . . as
well as z, then pruning removes only terms that do not contribute to the maximum value indexed by
z, for any given values of the parameters indexed by the other variables.

That is, z-pruning the final generating function ZI leaves a generating function (ZI)z for solutions
maximizing the power of z. The algorithmically essential point is that we can prune as we reduce.
This is expressed by the following lemma, but the key point is simply that for polynomials p and q (in
any set of variables) (pq)z = (pzqz)z.

Lemma 10. For any reduction R from our list, and any instance I, R(I)z = R(Iz)z. In particular, if
we perform a full sequence of reductions and z-prune at every stage, we will end up with (ZI)z.

Thus for maximization problems, we can carry across our theorems to instances with arbitrary
weights by pruning our model at every stage. Since this takes only polynomial time we retain our
time bounds.

Theorem 11. Let G be a graph with n vertices and m edges, and let I be any GCSP instance over G
in variables z, w1, . . . , wr, where the domain size is k, the maximum degree of any score function is c,
and we allow nonintegral powers of z in the score functions. Then the z-pruned partition function of

I can be calculated in time Õ((m + n)rcrk19m/100).
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8. Applications

We have shown in [SS04] that Max Cut can be solved in time Õ
(
219m/100

)
.

Corollary 12. Let G be a graph with m edges. The partition function of the Ising model on G with

edge interactions w and external magnetic field h can be calculated in time Õ(219m/100). In particular,
Max Bisection and Min Bisection can be solved in the same time.

Corollary 13. Let G be a graph with m edges. In time Õ(219m/100), we can solve Max Clique and
Max Independent Set, and count cliques and independent sets of all sizes.

For weighted versions of the problems above, we can use the algorithm from Section 7. For example
where [SS04] solved weighted Max Cut in a graph with arbitrary real edge weights, here we can count
the maximizing solutions.

Corollary 14. Let G be a edge-weighted graph with m edges of arbitrary real weights. Then in time

Õ(219m/100) we can solve Max Cut, Max Bisection and Min Bisection, and count the optimal cuts and
bisections.

Corollary 15. Let G be a vertex-weighted graph, with arbitrary real weights, having m edges. For

K > 0, in time Õ(219m/100), we can find the maximum weight of a clique of order K or an independent
set of size K and count such cliques or independent sets. In particular, we can solve Max Weighted
Independent Set and count its solutions.

9. Constructing and sampling solutions

Finally, wherever we can compute a CSP’s maximum value, we can produce a corresponding assign-
ment; and wherever we can count assignments producing a given value, we can also do exact random
sampling from these assignments. The method is standard, and we illustrate with sampling. We
construct our assignment one variable at a time, starting from the empty assignment. Given a partial
assignment σ0 : V0 → [k], and a vertex v 6∈ I0, we calculate the partition functions

ZI;σi
0

=
∑

σ : σ|V0
=σ0, σ(v)=i

I(σ),

and use these to determine the conditional distribution of σ(v) given that σ|I0 = σ0.
This enables us to sample from a variety of distributions. For instance, we get the following result.

Theorem 16. Let G be a graph with m edges. Then in time Õ(219m/100) we can sample uniformly at
random from the following distributions:

• maximum cuts, maximum bisections, minimum bisections
• maximum independent sets, cliques of maximal size
• independent sets of any fixed size, cliques of any fixed size

In the same time we can sample from the equilibrium (Gibbs) distribution of the Ising model with any
fixed interaction strength and external magnetic field.

A similar result holds for edge- or vertex-weighted graphs, except that we only sample at random
from optimal assignments.

Many other problems can be expressed in this framework. For example, we can count and sample

proper k-colorings in time Õ
(
k19m/100

)
.
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