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Abstract

In this paper we present a hybrid performance model
for modeling differentiated service of multi-tier web appli-
cations with per-tier concurrency limits, cross-tier inter-
actions, as well as a work-conserving resource allocation
model. The service dependencies between multiple tiers are
captured first using a layered queueing model. We then
show how to model per-tier concurrency limits and ser-
vice differentiation between multiple classes while main-
taining work conservation at each tier. We use a function
approximation approach combined with a coupled proces-
sor model. Our model is calibrated from an actual multi-
tier J2EE testbed, and we show the ability of the model
to accurately model common performance metrics. Our
proposed (layered) model shows 78% improvement in root
mean square error over a single-tier machine repair model
as well as a tandem queue model. We also demonstrate one
application of the model for model-based resource alloca-
tion.

1 Introduction

Many important commercial websites are designed us-
ing a component-based approach which divides the web-
site functionality according to a multi-tiered architecture.
This architecture, embodied by Sun’s J2EE and Microsoft’s
.NET specifications, partitions the processing of web re-
quests into stages or tiers concerning the presentation logic
(HTTP servers), business logic (application servers), and
persistent storage (database servers). Although this simpli-
fies the job of the application developer, the interdependen-
cies between the tiers makes it more difficult to manage the
overall website performance.

Modeling such sites is challenging because of:

• Cross-tier dependencies: inter-tier interaction is gener-

ally synchronous; the threads or processes in upstream
tiers are blocked while waiting for the completion of
processing in downstream tiers. Hence, the service rate
of upstream tiers is intimately tied to the performance
of the downstream tiers.

• Concurrency limits per tier. Administrators typically
limit the number of threads or processes created in a
tier. This is due to memory limitations as well as to
avoid thrashing. When combined with the synchro-
nous behavior discussed earlier, it results in situations
where a tier may be unutilized, yet requests are queued
up because all the allocated processes/threads are busy
waiting on downstream tiers.

• Supporting multiple classes. This challenge is further
exacerbated when it is important to provide differenti-
ated Quality of Service (QoS) to the users. For the pur-
poses of specifying QoS requirements, it is common to
group the users into different classes and then specify
service level objectives such as desired response time
or throughput for each class of users.

• Work conserving behavior. At each tier, multiple
classes share the resources available at the tier. The
work conserving property refers to the fact that even
when per-class resource shares are being enforced, re-
sources unused by one class are used up by other
classes when there is demand. This behavior improves
the tier utilization, but can be difficult to model since
the amount of resource share devoted to a particular
class depends on the utilization by the other classes.

Existing literature on modeling Internet services can be
grouped as follows.

• Single-tier. Much of the research on modeling single-
tier applications [1, 2, 3, 4]. do not trivially extend to
multiple tiers.
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• Multi-tier, single class. In the context of multi-tier
systems, [5] describe a predictive queueing model that
considers resource contention within each server and
service dependencies between different tiers. How-
ever, they do not consider multiple service classes.

• Multi-tier, multi-class. [6] present a closed queue-
ing network model that considers session-based work-
loads, and can be extended for multiple service classes.
However, this paper applies a tandem queue like struc-
ture without considering the service dependencies be-
tween different tiers; it also does not handle multiple
classes when concurrency limits exist at each tier.

To the best of our knowledge, none of the existing literature
has modeled service differentiation in a multi-tier system
that considers per-tier concurrency limits, cross-tier inter-
actions as well as modeling a work-conserving resource al-
location model.

In this paper, we develop a practical model for such
multi-tiered sites supporting differentiated services to mul-
tiple classes of users. This model can be used for multi-
ple performance-oriented tasks such as QoS prediction, re-
source control and capacity planning. Our model is a hybrid
model that combines a layered queuing approaches with
some key approximation-based simplifications for making
the model tractable for modeling multi-class service differ-
entiation. Our proposed (layered) model shows 78% im-
provement in root mean square error over a single-tier ma-
chine repair model as well as a multi-class tandem queue
model that does not capture inter-tier dependencies. More-
over, we show that our model can accurately model the re-
sponse time, throughput and utilization levels at each tier –
the other models can only capture a subset of these metrics.

The remainder of the paper is organized as follows.
Section 2 describes the service differentiation problem for
multi-tier systems in more detail. Section 3 describes the
multi-tier performance model for single service class and
Section 4 extends the model to service differentiation for
multiple classes. In Section 5, we assess the model validity
against a real multi-tier system and in Section 6, we illus-
trate one use of the performance model for model-based re-
source allocation. The conclusions are contained in Section
7.

2 Problem

In a multi-tier system, servicing a request involves sev-
eral stages. Examples of such stages are accessing static
content, server processing, access to enterprise applications,
and access to data base systems. Each stage of service is
provided by a set of hardware and software resources that
constitute a tier. Thus, in a J2EE-based web serving sys-
tem, we may have the following tiers: Web servers (HTTP),

Servlets, Enterprise Java Beans (EJB), and Data Base (DB)
servers. As a request flows through the various tiers, it uses
physical resources, e.g. CPU and disk, as well as virtual
resources, e.g. threads, DB connections and locks. Further,
a request may visit a tier multiple times and move forward
(downstream) and backward (upstream) several times until
its service is complete. Typically, threads at a given tier are
held by requests visiting that tier until the request receives
its intended service from downstream tiers and returns back
to that tier. This phenomenon is referred to as cross-tier de-
pendency [7]. Hence, other requests may have to wait at a
given tier until threads are released and become available.
Furthermore, requests running in threads may still have to
wait for other requests to complete their usage of a given
resource in the tier. This delay is referred to as resource
contention.

The flow of requests among the various tiers gives rise
to a layered structure, where the first (last) tier corresponds
to the outer (inner) layer. Due to resource contention and
cross-tier dependency, a server (and its server threads) can
be in one of the following states: 1) using a resource, e.g.
CPU or disk, of this tier, 2) waiting for a resource of this tier
to become available, 3) waiting for a response from a lower
level tier, or 4) idle after being released by a request upon
completion of service at that tier. In a multi-tier system a
service request can only be completed after it receives ser-
vices from all related tiers; this means that the service rate
of any tier depends not only on its own tier service capac-
ity (and resource contention) but also on the service rate of
downstream tiers. Therefore, one needs a model that cap-
tures resource contention within a tier as well as cross-tier
dependency. A simple tandem queue model does not cap-
ture such dependencies, and as we show later, it therefore
fails to accurately model resource utilizations in such envi-
ronments. On the other hand, a model that captures simulta-
neous resource possession at all tiers becomes complicated
rather quickly, hence inefficient to solve.

In formulating our solution, we make the following as-
sumptions.

1. There exists a tier with the largest resource usage that
constitutes the bottleneck for the system.

2. The total concurrency level at a given tier does not
change, once the model is trained. Our model does
not take the total concurrency level as a parameter, but
rather it is subsumed in the functional approximation.

3. We assume that there exist monitoring agents that pro-
vide statistics on resource usage and flow rates at the
various tiers.

For convenience of discussion, we use “bottleneck re-
source” to indicate the resource with largest usage for a
given tier, and “bottleneck tier” for the tier with the largest
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Figure 1. Layered queueing model for multi-
tier web applications (single service class).

resource usage for a given system. Since different service
classes may stress each tier differently, the above bottleneck
tier is defined by considering the aggregated effect of all the
classes. Note that we define bottleneck tier for convenience
of discussion, but the system is not required to have just a
single bottleneck tier.

3 Modeling Multi-tier Web Applications

This section describes the method of modeling a multi-
tier system with single class of requests. This approach inte-
grates a layered queueing model to capture the cross-tier de-
pendencies and a function approximation method to model
the per-tier concurrency limits and resource contention. Al-
though the function approximation model is not necessary
in modeling single class, it enables modeling service differ-
entiation of multiple service classes, which is presented in
Section 4.

3.1 Layered Model for Cross-Tier Depen-
dency

Consider a single class of requests submitted by a finite
number of clients to a multi-tier system. Figure 1 shows the
layered queueing model for multi-tier web applications.

The Internet workload is modeled as concurrent sessions
through a closed queueing network consisting of two ser-
vice centers [8]. As shown in the left part of Figure 1(a),
service center 1 has as many servers, C, as the number
of clients (and corresponding sessions). The service time,
Z, at each of the C servers corresponds to the think time
elapsed between receiving a response and submitting a sub-
sequent request. Service center 2, marked as a block in the
right part of Figure 1(a), represents the M -tier system as a
whole.

Since tiers have a nested structure, the model for tier
m,m = 1, 2, ...,M − 1, includes the model for the down-
stream tier m + 1, as depicted in Figure 1(b). This layered
queueing model captures the cross-tier dependency [7] as
discussed below. Note that the flow of a request through
the various tiers is restricted in the following way. We as-
sume that a request at a given tier may visit its adjacent
downstream tier, and hence recursively may visit any tier
in the downstream. Further, a request at tier m holds a
virtual resource (a thread) at tier m as long as it is ei-
ther receiving service at tier m or any downstream tier,
m + 1,m + 2, ..., M . The model for tier m consists of a
pool of Nm tokens, a queue for acquiring a token if none
is available, the resources of tier m, and the model for tier
m + 1 if m < M . The pool of Nm tokens is used to repre-
sent the concurrency limit such as the number of concurrent
threads. The value of Nm is not required to be known to the
model though. Actually, in certain tiers such as the data-
base server tier, it is not obvious to get Nm because it can
be composed of multiple interrelated limits (e.g., the num-
ber of database agents and the lock lists).

We denote the arrival rate of requests to tier m by λm,
the total time spent in the tier m model by Tm, the waiting
time for a token by Wm, the residence time while using or
waiting for resources at tier m by Ym, and the total time
spent at tier m + 1 model by Tm=1. Thus, the tier response
time is written as

Tm = Wm + Ym + Vm+1Tm+1 (1)

where

Vm =
λm

λm−1
, m > 1, (2)

is the visit ratio. This is to consider the fact that requests
processed at one tier may generate more (or less) requests
for a lower level tier. Note that when a service request is
accepted into Tier m, according to the concurrency limit
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Figure 2. Per-tier queuing network model.

Nm, a process, thread, or agent is allocated to execute this
service request on behalf of this client. Due to the lay-
ered queueing structure, this process cannot service other
requests, even when this request completes its service at
tier m and is being serviced by lower tiers (m + 1, m + 2,
...). Therefore, the request waiting time Wm not only de-
pends on the residence time Ym, but also the response time
of lower tier Tm+1. Due to the dependency of Tm on Tm+1,
one needs to solve the layered queueing model iteratively as
in [7].

3.2 Function Approximation for Per-Tier
Queueing

As shown in Figure 2, a closed queueing network model
is used to model per-tier queueing. We represent all re-
sources at tier m as two entities: (1) a single server queue
of the bottleneck resource and (2) an infinite server queue
of a combined resource of all other resources. The assump-
tion is that most of the waiting will be for the bottleneck
resource. The bottleneck resource has a service time of Sm;
the combined non-bottleneck resource has a service time of
Rm. The lower tier response time is also modeled as an
infinite server with service time of Vm+1Tm+1. (Even if
the lower tier response time may be significant, its compu-
tation is considered in its corresponding tier model.) We
can solve this closed queueing network model using mean
value analysis (MVA) [9]. However, regardless of the com-
putational complexity, although the MVA approach can be
extended to multiple classes, we have not seen any work
on addressing service differentiation with MVA especially
when concurrency limits exist.

In this section we propose a function approximation
method that builds an equivalent single server model for
each tier. The per-tier service rate is modeled as a function
of load, specifically, the number of clients, and the parame-
ters of this function approximator are calibrated using ac-
tual performance measurements. Having an equivalent sin-
gle server model helps to use the coupled processor model

Wm

�m �m

Figure 3. Equivalent per-tier model.

approach to further model service differentiation between
multiple service classes, which is presented in Section 4.

As shown in Figure 3, we logically set up an equivalent
single server whose service rate is

µm =
1

1
Xm

+ Vm+1Tm+1

, (3)

Note that µm depends on both the service rate at tier m
(Xm) and the total response time at tier m + 1.

Furthermore, since Xm is load dependent, we define it
as

Xm =
fm

Sm
(4)

which is invert proportional to the service time of bottleneck
resource, and uses a concurrency adjustment function fm

to capture the load dependence property. Specifically, we
approximate fm by an exponential function

fm = am

(
1− e−bmC

)
(5)

where C is the number of clients (i.e., describing the load)
and the model parameters am and bm are estimated through
curve fitting techniques to match the actual performance
measurements. An illustration of fm is provided in Fig-
ure 4. It emulates the effect that the higher the workload,
the better utilization of the multiple concurrent threads until
all threads are fully utilized.

Given the equivalent service rate µm, the tier response
time can be computed as

Tm =
hM/M/1 (λm, µm) , m > 1
hM/M/1/∞/C (C, Z, µ1) , m = 1,

(6)

where hM/M/1() represents the response time of an
M/M/1 queue and hM/M/1/∞/C() represents the response
time of an closed queue (i.e., machine repair mode).

3.3 Algorithms

In this section we present algorithms to solve the layered
queueing model and the function approximation model. We
consider two phases: model calibration and model-based
prediction (i.e., extrapolate the model for unseen workload).
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During the model calibration phase, we use measured data
to calculate model parameters. Then, we use the calibrated
model to predict performance when the load (number of
clients) changes.

• Model calibration phase

– Input and output data: The set = represents mea-
surements at epoch i, i = 1, . . . , N, N ≥ 2, for
tier m,m = 1, . . . ,M that are input to the model
calibration algorithms. We add the superscript ∗
to denote a measured quantity, as opposed to a
calculated one. The variable ρm represents the
utilization of the bottleneck resource at tier m.
The set ℵ represents the internal states of the al-
gorithm, and the set ℘ indicates the output of the
calibration. Specifically, we define the following
sets.

= = {C∗(i), T ∗1 (i), λ∗m(i), ρ∗m(i)}
ℵ = {Z(i), Sm(i), Vm(i), Tm(i), λm(i), Xm(i),

µm(i), fm(i)}
℘ = {Z, Sm, Vm, am, bm}

– Algorithms: There are three algorithms used dur-
ing the calibration phase: CA0, CA1, and CA2.
We use the notation, A : = ⇒ ℵ ⇒ ℘, to rep-
resent algorithm A that uses the input set = to
produce the internal state set ℵ and the output set
℘.

∗ CA0: {C∗(i), T ∗1 (i), λ∗m(i), ρ∗m(i)} ⇒
{Z(i), Sm(i), Vm(i)} ⇒ {Z, Sm, Vm}

∗ CA1: {C∗(i), T ∗1 (i), λ∗m(i)} +
{Z, Sm, Vm} ⇒
{Tm(i), λm(i), Xm(i), µm(i)} ⇒ {f(i)}

∗ CA2: {C∗(i)}+ {fm(i)} ⇒ {am, bm}
• Model-based prediction (extrapolation) phase

– Algorithm EA0:

∗ C + ℘ ⇒ {Tm, λm, ρm}

3.3.1 Calibration Algorithm 0 (CA0)

The think time Z, service time at the bottleneck resource
Sm, and visit ratios Vm are directly computed from the mea-
sured data using Little’s Law and flow conservation, respec-
tively.

Z(i) =
C∗(i)
λ∗1(i)

− T ∗1 (i) (7)

Sm(i) =
ρ∗m(i)
λ∗m(i)

(8)

Vm(i) =
λ∗m(i)

λ∗m−1(i)
(9)

Z =
1
N

N∑

i=1

Z(i) (10)

Sm =
1
N

N∑

i=1

Sm(i) (11)

Vm =
1
N

N∑

i=1

Vm(i) (12)

3.3.2 Calibration Algorithm 1 (CA1)

The purpose of algorithm CA1 is to compute the value of
fm(i) so that the response time of the calibrated model
matches the measured response time, i.e. T1(i) = T ∗1 (i).
Using Little’s law, this also implies λ1(i) = λ∗1(i). This
algorithm will run N times for each i, i = 1, . . . , N . With-
out loss of generality and for simplicity of presentation, we
omit the measurement epoch (i) in this subsection.

• Step 1: Given {ρ∗m}, determine the bottleneck tier de-
noted by m′. This is the one with the largest utilization.

• Step 2: Initialization. Iteration variable j = 0 and the
concurrency adjustment factor of the bottleneck tier
∆(0) = 1.

• Step 3: Determine the value of fm. That is, fm = 1 if
m 6= m′; fm = ∆(j) if m = m′.

• Step 4: Compute T1 using the layered queueing model.

– Step 4.1: Initialization. Iteration variable k = 0
and the initial predicted throughput λ

(0)
1 = λ∗1.

– Step 4.2: Determine λ
(k)
m ,m = 2, . . . , M based

on λ
(k)
1 and Vm,m = 2, . . . , M .

– Step 4.3:

λ
(k+1)
1 = SolveModel(λ(k)

m , fm, C, Z, Sm, Vm)
(13)
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– Step 4.4: If λ
(k+1)
1 = λ

(k)
1 , go to Step 5; other-

wise, k = k + 1 and

λ
(k)
1 = (1− α)λ(k−1)

1 + αλ
(k)
1 (14)

and go to Step 4.2.

• Step 5: If T1 = T ∗1 , terminate the algorithm with fm =
∆(j); otherwise, j = j + 1, find ∆(j), for example,
through line search, and go to Step 3.

The details of Step 4.3 are as follows.

1. Initialization. m = M .

2. From Equation (4), compute X
(k)
m based on fm, Sm.

3. From Equation (3), compute µ
(k)
m based on

X
(k)
m , T

(k)
m+1, Vm+1. Note that T

(k)
M+1 = 0.

4. From Equation (6), compute T
(k)
m based on λ

(k)
m and

µ
(k)
m if m > 1; otherwise, compute T

(k)
1 based on C, Z

and µ
(k)
1 .

5. If m = 1, terminate with λ
(k+1)
1 = C

Z+T
(k)
1

; otherwise,

m = m− 1 and go to 2.

Note that Sep 4.4 introduces a digital filter design to im-
prove the convergence. Also note that when the effect of
non-bottleneck tier is not negligible (i.e., their utilization is
still large), the above algorithm can be iterated to go through
different tiers with the descending order of the tier utiliza-
tion.

3.3.3 Calibration Algorithm 2 (CA2)

Given the values of fm, obtained from CA1 and the num-
ber of clients C∗, we obtain the parameters am and bm by
solving Equation (5) using a nonlinar regression analysis
algorithm [10].

3.3.4 Extrapolation Algorithm 0 (EA0)

Once the model is calibrated, we can use it to predict perfor-
mance due to changes in the number of clients C, the bot-
tleneck resource service times Sm, or the visit ratios Vm.
Extrapolation algorithm EA0 obtains Tm given in Equa-
tion (6), using the analysis provided in Section 3.2.

4 Handling Service Differentiation

In this section we extend multi-tier modeling to include
multiple service classes and introduce QoS actuators for
service differentiation. Figure 5 illustrates the architecture
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Figure 5. Architecture of a closed queueing
model for multi-tier web applications with
multiple service classes.

of the closed queueing network model for M tiers of servers
with K service classes.

As in Section 3, the behaviors of workload and concur-
rent sessions are modeled with a machine repair model and
the cross-tier dependency is modeled through the layered
queueing model. The service center 1, the solid box on the
left, contains the served concurrent clients (and their cor-
responding servers). Grouped by dotted boxes, they are
marked by 1, 2, . . . , Ck for service class k and have think
time of Zk. The service center 2, as indicated by the outer
dashed box on the right, includes multi-tier servers to ser-
vice client requests. The QoS control actuators are rep-
resented by pk,m for class k on tier m. For Application
Server tier, the QoS actuator can be the number of threads.
For Database Server tier, the QoS actuator can be the CPU
shares. In addition, we use a scaling factor vk,m to model
the behavior that the requests processed at one tier may gen-
erate multiple requests for the lower tier; the value of vk,m

can be obtained through monitoring the throughput of each
tier.

As described in Section 3, we use a function approxima-
tion approach to build an equivalent model for each class
at each tier, where the service rate is approximated using
Equation (3)-Equation (5). By doing that, we encapsu-
late the level of per-class details such as concurrent server
threads within the representation of the equivalent server,
so that service differentiation between different classes can
be studied at a compact level through a coupled proces-
sor model [11]. For the coupled processor model (CPM),
suppose a system consists of two service classes and two
servers–each server serves one service class. If customers
of both classes are available, both servers are busy and serve
with service rate µ1 and µ2. However, if only class 1 is
available but class 2 is not, server 2 is idle and server 1
acts with a service rate µ′1; whereas if only class 2 is avail-
able, server 1 is idle and server 2 acts with a service rate
µ′2. The coupled processor model shows work-conserving
behavior if µ′1 = µ′2 = µ1 + µ2, and can be solved using a
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birth-death process to determine stationary distributions of
Markov chains (e.g., with the power series algorithm [12]).

Specifically, deriving from Equation (3), the service rate
of class k at tier m is defined as

µk,m =
1

1
pk,mXk,m

+ Vk,m+1Tk,m+1

(15)

where pk,m indicates the allocated capacity portion from
the QoS control actuators,

∑K
k=1 pk,m = 1, (pk,m ≥ 0). If

class l at tier m is idle, the service rate for server k at tier m
can be defined by

µk,m =
1

1

(pk,m+
pl,m
K−1 )Xk,m

+ Vk,m+1Tk,m+1

(16)

Given the equivalent service rate µk,m, the tier response
time can be computed using the coupled processor model

Tk,m =
hCPM (λk,m, µk,m) , m > 1
hCPM (Ck, Zk, µk,1) , m = 1 (17)

and the end-to-end response time can be computed using
the layered queueing model as in Section 3.

Note that we have also modeled the system as an open
queueing model for the situations where the number of
clients and think time are difficult to obtain. Instead, we
only need to measure the arrival rate of each class. In the
interest of brevity, however, we do not discuss the open
queueing model in this paper.

5 Model Calibration and Validation

In this section we assess the model quality by conduct-
ing experiments on the testbed using the Trade [13] bench-
mark (which simulates a stock trading service). The model
is first calibrated using the measurement data (i.e., response
time, throughput, and server utilizations) from single class
runs. Afterwards, the model is extrapolated to two classes
and validated against the measurements. Furthermore, we
compare the performance of the proposed model with the
machine repair model and the tandem queueing model, re-
spectively.

5.1 Testbed Setup

The testbed is composed of a workload driver, one HTTP
proxy node, four application server nodes and one database
node connected via 100Mb Ethernet LAN. All nodes use
SUSE Linux Enterprise Server v9.3 as the Operating Sys-
tem. The proxy and application servers have Pentium 4 2.4
GHz CPU with 2GB RAM and run IBM WebSphere Appli-
cation Server (eXtended Deployment) v6.0.1 (WAS XD).
The DB2 node has a Pentium 4 1.8 GHz CPU with 1.5GB
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Figure 6. Modeling results for a multi-tier sys-
tem (single class, model calibration).

RAM and several 10,000 RPM EIDE disks, and runs IBM
DB2 v8.2.4. In all experiments, the workload driver, proxy
node and network were not saturated.

In our experiments, the two classes of work (A and B)
correspond to separate instances (TradeA and TradeB) of
the Trade application. There is one instance of each appli-
cation deployed on each of the four WAS nodes. Both ap-
plications share the same HTTP proxy node. In the experi-
ments shown here, the proxy node utilization is consistently
below 30%, and it achieves fairly uniform load balancing
across the application servers. Each Trade instance accesses
its own database on the DB2 server. The databases are set
up with the data files and logs on separate disks. We allocate
CPU shares on the DB2 server between the two databases
using the CKRM [14] facility provided with the OS.

The workload driver is a closed-loop driver that issues
requests by randomly generating query parameters and per-
forms various transactions according to a probability dis-
tribution. Response time and throughput information is
recorded from the workload driver. CPU utilization statis-
tics are collected using a reporting facility built in to WAS
XD.

5.2 Model Calibration

We start from calibrating the model from one class ex-
perimental data as shown in Figure 6. It indicates a close
fit between the measured data (marked by the asterisks and
solid lines) and the predicted values (marked by the circles
and dashed lines) of response time (in the unit of seconds),
throughput, WAS utilization (in the unit of percentage), and
DB utilization (in the unit of percentage) for different num-
bers of clients. Regardless of only using a small number of
clients, since their think time is set to zero, this still results
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Figure 7. Curve fitting during model calibra-
tion.

in a large range of workload intensity (from 65% to 99%
CPU utilization for the database tier). Figure 7 also shows
the results of Calibration Algorithm 2 (CA2) that use the
exponential function to approximate the load effect, where
the computed values from CA1 are marked by the asterisks
and solid lines, and the approximated values from CA2 are
marked by the circles and dashed lines. Note that this is
a biased approximation because of nonlinear model regres-
sion.

The model accuracy is also assessed through the R-
Square metric (R2) and the Root Mean Squared Error
(RMSE). The R-Square metric is defined as R2 = 1 −
var(y−ŷ)

var(y) where y is the response variable (e.g., the mea-
sured response time), ŷ is the estimated response variable,
and var(.) is the variance. The R2 metric quantifies model
accuracy by computing the variability explained by the
model. It can take values from 0 to 1. A value of 0 means
the response data variability is not captured at all, and a
value of 1 may suggest a perfect fit. Note that it is also
possible to get a negative R2 value if the model performs
worse than just fitting a constant. The Root Mean Squared

Error is defined as RMSE =
√

1
N

∑N
n=1 (y(n)− ŷ(n))2,

where N is the number of measurements, y(n) is the n-th
measurement, and ŷ(n) is the n-th estimated value.

For the modeling results shown in Figure 6, the R2 met-
rics are shown in Table 1. That is, for example, the model
has been calibrated to explain 99% of the variability in the
response time data and the RMSE is 0.0028.

5.3 Model Validation

After model calibration, we proceed to the model extrap-
olation phase by conducting experiments with two classes
of work (TradeA and TradeB). The model was used to an-
swer the question–if there are two classes with different
number of clients and different CPU shares, what are their

Table 1. Model assessment using the R2 met-
ric and the Root Mean Squared Error (cal-
ibration phase). The model types include
the proposed hybrid layered model and two
other comparative models, the single-tier ma-
chine repair model, and the tandem queueing
model.

Model Type RT TP UWAS UDB

R2 Layered 0.9999 0.9831 0.9743 0.9934
R2 Single-Tier 0.9998 0.9423 N/A 0.4781
R2 Tandem 0.9999 0.9279 0.8672 0.5471

RMSE Layered 0.0028 1.1944 0.4341 1.8112
RMSE Single-Tier 0.0016 1.7983 N/A 9.4864
RMSE Tandem 0.0007 2.3265 0.8825 8.9595

Table 2. Model assessment using the R2 met-
ric and the Root Mean Squared Error for
the response time (model-based prediction
phase).

Layered Single-Tier Tandem
R2 0.83 -2.55 -2.61

RMSE 0.015 0.069 0.070

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

RT
A

C
B
=

2

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

RT
B

Measured
Predicted

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

C
B
=

4

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

C
B
=

6

CPU Shares (p
A
)

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

CPU Shares (p
A
)

Figure 8. Modeling results for a multi-tier sys-
tem (two classes, model extrapolation).
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Figure 9. Modeling results for a multi-tier
system (two classes, model extrapolation):
Single-tier machine repair model.

response time? Then the estimated response time is com-
pared to the measured ones.

As shown in Figure 8, we fix the number of clients for
class A at 4 and vary the class B clients (CB) from 2 to 4
and then to 6. We also vary the CPU shares on the DB2
server from 25% to 50% and then to 75% for class A (pA).
The CPU shares for class B is pB = 1 − pA. It also indi-
cates a close fit between the measured data (marked by the
asterisks and solid lines) and the predicted values (marked
by the circles and dashed lines). For the modeling results
shown in Figure 8, R2 = 0.83 and RMSE = 0.015, as
shown in Table 2, where the response variable includes the
response time for both class A and class B. The model is
able to explains 83% of the variability in the response time
data.

5.4 Comparative Studies

By assuming that there is a single bottleneck
tier/resource (as in the above example where the CPU
in the database tier is the bottleneck), a natural question is
whether a layered model is required. We discussed earlier
in the paper that the layered queueing model is essential
because it models the structure of dependencies between
tiers. In this section, we use the experimental data to access
the quality of a single tier model. Specifically, we build a
machine repair model where the database tier is modeled
as service center 2 and its service time is computed using
the calibration algorithm 0 (CA0) as in Section 3.3.1., and
the service time of the WAS tier is modeled as part of the
think time in service center 1. The function approximation

technique (described in Section 3.2) is also used to fit for
the response time with Calibration Algorithm 1 (CA1).
The R2 metrics for model calibration are shown in Table 1.
Although, the model is able to be calibrated to get a
best fit of the response time, the machine repair model
overestimates the database tier utilization, which results
in a low R2 of 0.48. The model extrapolation results
are shown in Figure 9. Although the single-tier machine
repair model is able to capture the trend of workload and
actuator variations, the magnitude of the error is much
large. Its variance is even larger than the variance in the
measurement, which gives a negative R2 value as shown in
Table 2. With regard to the RMSE error, the layered model
shows 78% of improvement over the machine repair model.

We have also compared to a tandem queue model which
explicitly models the WAS tier. However, since the WAS
tier is a non-bottleneck tier, and tandem queue does not cap-
ture the structure of cross-tier dependencies, it does not im-
prove the modeling performance as shown in Table 1 and
Table 2.

6 Model Applications

We consider applying the model to model-based re-
source control. That is, online adjusting the resource shares
for each class in response of workload changes. As shown
in Figure 10, there are two service classes in our experi-
ments: Class A has a response time SLO of 0.2 sec; class B
has a response time SLO of 1 sec. In the first 1200 seconds
of the experiment, the number of clients for both classes is
2; after that, the number of clients for class A increase to 8.
This results in an increase of response time. At 2700 sec-
onds, the model based control adjusts the CPU share from
50% to 90% for class A and brings down its response time
so that its SLO can be achieved.

7 Conclusions

Managing Quality of Service in multi-tiered Internet ser-
vices is a challenging task. There is a lack of models that
capture the important characteristics of real-world software
stacks used for delivering such services. In this paper we
have presented a hybrid performance model for differenti-
ated services of multi-tier web applications. We use a lay-
ered queueing model to capture the service dependencies
between multiple tiers, and model the per-tier concurrency
limits and resource contention using a function approxima-
tion approach. This simplified approach allows the deploy-
ment of a coupled processor model to quantify service dif-
ferentiation between multiple classes.

The validity of our model was assessed by comparison
to a real testbed using commercial software products. We
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Figure 10. Model-based resource control.
(Place holder plot–waiting for new results.)

show that the layered model captures the inter-tier relation-
ships, and provides much better performance then a com-
parable single-tier machine repair model. Further, we also
show the value of such inter-tier modeling against a tan-
dem queue approach that does not reflect the synchronous
waiting induced by the multi-tier architecture. Finally, we
illustrate how the proposed performance model can be ef-
fectively used for model-based resource allocation.

In our future work, we seek to explore further applica-
tions of the model. In particular, the model can be used in a
closed-loop model-driven realtime resource controller. An
interesting issue is to compare control strategies that consid-
ers the request interactions between multiple tiers, against
the behavior of local control schemes used at individual
tiers. The model could also be used for capacity planning
and dynamic provisioning scenarios. Our evaluation in this
paper has been limited to a single workload – We would also
like to conduct experimental assessment for a larger variety
of workloads, as well as testing our model’s validity when
mixing heterogenous workloads.
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