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Abstract: Although feedback control is an essential part of computing systems,
computing practitioners rarely have knowledge of control theory. Further, comput-
ing practitioners interested in learning control theory are faced with the problem
that introductory texts contain unfamiliar examples and unfamiliar mathematics.
To remedy this situation, we have developed a tutorial, book, and spreadsheet
based laboratory simulations to teach control theory to computing practitioners.
Key considerations in the pedagogy are to use examples drawn from computing
systems, provide a short, self-contained introduction to discrete time modeling
and dynamic response, and incorporate case studies of how control theory has
been used in commercial computing systems.
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1. INTRODUCTION

Feedback control is an essential part of computing
systems. For example, program execution rates
can affect execution priorities, which in turn im-
pact future execution rates (Bach, 1996). Another
example is congestion control in networks where
round trip delays are used to adjust data transfer
rates, which in turn impact future round trip
delays (Tannenbam, 2002). Given the importance
of feedback design in computing systems, it is
therefore surprising that computing practitioners
know very little about control theory (probably
due to the historical emphasis of computer science
on algorithm design). This paper describes efforts
we have undertaken to teach control theory to
computing practitioners.

Existing pedagogy for introducing control theory
is well evidenced by the structure of text books
such as (Ogata, 1997) and (Franklin et al., 1994).
These introductory control theory texts provide
examples drawn from electrical and mechanical

engineering such as dash pots, electrical circuits,
and cruise control. The texts begin with a brief
review of continuous time modeling and dynamic
response (e.g., dynamic models represented by dif-
ferential equations, Laplace transform for trans-
forming the above into an algebraic form, and re-
sponse versus pole locations). The pedagogy con-
tinues with feedback controller properties, root-
locus analysis, frequency domain analysis, and
state space design. Sometimes, there is a chapter
on digital control at the end of the book.

There are several problems with using this peda-
gogy to teach control theory to computing practi-
tioners. First, most computing practitioners have
little background in mechanical or electrical en-
gineering, and so the examples provide little in-
tuition. Second, while there have been computer
science research papers that use continuous time
models (e.g., (Hollot et al., 2001)), computing
practitioners are much more comfortable with dis-
crete time models. However, discrete time consti-
tutes a small (or non-existent) part of the cur-



rent pedagogy for an introductory course. Further,
computing practitioners rarely have background
in dynamic models and dynamic response, and so
the existing pedagogy is not approachable without
a pre-requisite class. Next, there needs to be an
interactive environment in which computing prac-
titioners can use familiar tools to explore the ef-
fects of plant structure and control design on con-
trol objectives, especially stability, settling time,
and bias. Last, getting computing practitioners to
adopt methodologies based on control theory re-
quires examples of how these methodologies have
been used in for solving representative problems
in widely used commercial products.

From the foregoing, we identify several require-
ments for the pedagogy of an introductory course
on control theory for computing practitioners:

(1) The examples used should be drawn from
computing systems.

(2) The dynamic models should be in discrete
time.

(3) Any mathematical background should be
self-contained. In particular, there must be a
self-contained, intuitive introduction to dy-
namic response.

(4) There should be an interactive environment
for exploring the effects of plant structure
and control design. This environment should
be familiar to computing practitioners and
be widely available.

(5) There must be material that demonstrates
that the techniques are useful in commercial
computing systems. Otherwise, practitioners
will have little interest.

Over the last two years, we have developed a
pedagogy for teaching control theory to comput-
ing practitioners. On two occasions, we taught
a one semester class on control theory in the
Computer Science Department at Columbia Uni-
versity. In conjunction with this, we have written
a book on control theory for computing scientists
(Hellerstein et al., 2004). And, more recently, we
have refined the material into a three hour tuto-
rial that has been presented at two leading com-
puter science conferences ACM SIGMETRICS
and IEEE/IFIP Integrated Management.

The classes typically started with 15 to 20 stu-
dents and then dwindled to a half or a third of the
original size by the fourth lecture. Attendance at
the tutorials was larger—typically thirty students,
all of whom stayed for the entire session and were
fairly interactive. The comments we have received
indicate that most were interested in knowing
what control theory is and its relevance to com-
puting systems. Only a few have subsequently
applied control theory to computing systems.

The remainder of this paper is organized as fol-
lows. Section 2 discusses control challenges in
computing systems. Section 3 provides details of
the tutorial we have used, especially how we ad-
dressed the requirements listed above. Section 4
describes a spreadsheet based environment for
computing practitioners to explore control prob-
lems. Our conclusions are contained in Section 5.

2. CONTROL CHALLENGES IN
COMPUTING SYSTEMS

Recently, there has been an explosive growth in
the use of computing systems to deliver infor-
mation services, such as providing access to a
bookstore on the Internet. Increasingly, service
level objectives (SLOs) are used to specify
the desired end-user performance characteristics
of the information services delivered. For example,
an online bookstore might have an SLO requiring
that requests for the status of an order be satisfied
in less than 1 second. Here, “time in which an
order is satisfied” is a service level metric. Thus,
computing elements or resources are allocated
with considerations for SLOs and the cost of the
resources. These costs include hardware, software,
and people to operate them.

Control problems in computing systems arise from
two trends: (1) the rising cost of operating com-
puting systems to achieve SLOs, and (2) the
widespread use of the Internet for connecting busi-
nesses with customers. While the cost of hardware
and software has declined dramatically over the
last four decades, the cost of operating computing
systems continues to increase. Industry analysts
estimate that the cost of operations accounts for
60% to 90% of the total cost of ownership of
computing systems (Humphreys and Melenovsky,
2003), largely because of the human involvement
required for operations. One part of the operations
cost is configuring software systems (often consist-
ing of multiple products), a task that frequently
involves adjusting configuration parameters such
as limits on the number of connected users, buffer
pool sizes, and the number of concurrent threads
in response to changes in workloads (the volume
of requests made by end users and the resource de-
mands of these requests). In essence, configuration
parameters are the actuators by which the system
is controlled. It is complicated to manipulate these
actuators to achieve SLOs. As a result, human
experts are often needed, which increases costs.

Businesses often choose to outsource their com-
puting systems to reduce labor costs. Outsourc-
ing means that an organization such as EDS or
IBM (the service provider) provides the comput-
ing systems and skilled professionals for opera-
tions. In outsourcing, the customer specifies SLOs



that quantify the service expected from the service
provider. The service provider must enforce SLOs
so that customers receive the correct service levels.
In one way, enforcing SLOs is a regulation problem
in that resource allocations are adjusted to achieve
desired values of service level metrics. However,
enforcing SLOs is also an optimization problem in
that service providers want to minimize the cost
of the resources needed to meet SLOs.

A second trend facing computing systems is the
role that businesses have on the Internet in sup-
plying information about the company’s goods
and services and in selling these goods and ser-
vices. The broad reach of the Internet, which
has great appeal for both of these goals, exposes
computing systems to large variations in incoming
requests called flash-crowds that can vary by a
factor of twenty (LeFebvre, 2001). Handling flash
crowds is a disturbance rejection problem.

The foregoing characteristics of computing sys-
tems result in several challenges in applying con-
trol technologies. First, computing systems consist
of many resources that are shared among multiple
end-to-end services (Aman et al., 1997). Thus,
enforcing an SLO for a service often means reg-
ulating the loads applied to the resources used
to deliver the service. For example, service lev-
els are often based on end-to-end metrics such
as end-to-end response times. However, actuators
typically control an individual resource such as
CPU execution rates, the size of memory pools,
and the number of threads allocated. Thus, the
most common way to achieve an SLO is to estab-
lish response time targets for each resource, and
have controllers for each resource operate indepen-
dently to achieve these targets. An example of this
is an electronic storefront that consists of an appli-
cation server and a database server in which there
is one response time target for the application
server and another response time target for the
database server. This decomposition of an end-to-
end SLO into response time targets for individual
resources results in a kind of supervisory control.

Second, as noted earlier, computing systems ex-
hibit tremendous variability. One source of vari-
ability is having Internet-facing systems that ex-
perience rapid convergence of interest for millions
of users, such as for weather, news, and merchan-
dise. Another source of variability is the ease with
which software based systems can be changed.
Since change is easy, changes to software systems
are frequent, such as applying software patches.
These changes can result in dramatic variations
in performance characteristics.

A third challenge arises from the fact that com-
puting practitioners approach control design in
an ad hoc way. As a result, it is common for

(45 min)
Part I: Introduction

(60 min)
Part II: Theory

(45 min)
Part III: Control Analysis

(30 min)
Part IV: Applications

Fig. 1. Structure of the tutorial for teaching con-
trol theory to computer scientists.

computing systems to have unnecessarily complex
dynamics that are difficult to control.

More details on control challenges in computing
systems can be found in (Abdelzaher et al., 2003).

3. PEDAGOGICAL APPROACH

This section describes our pedagogy for teaching
control theory to computing practitioners. The
discussion is structured along the lines of a three
hour tutorial that we developed to provide com-
puting practitioners with a quick introduction to
control theory.

Figure 1 depicts the structure of the tutorial.
There are four parts: introduction, theory, control
analysis, and application to commercial systems.
Our experience is that the tutorial provides prac-
titioners with sufficient background to do control
analysis for many design problems in comput-
ing systems. The tutorial assumes a very modest
mathematical background, just knowledge of the
geometric series.

Part I, the introduction, has two purposes. The
first is to provide intuition about control theory
and its value. The second is to introduce key con-
cepts, especially the basics of block diagrams (e.g.,
plant, controller, reference input, control input,
and measured output), and control objectives (es-
pecially, stability, short settling times, accuracy,
and minimal overshoot). Each of these concepts
is new to the computing audience. Hence, we use
simple examples to show how a computing prob-
lem is represented in a block diagram. An example
using IBM Lotus Domino Server (Hellerstein et

al., 2004) is depicted in Figure 2(a). The introduc-
tion of control objectives faces a similar challenge:
in computer science, the commonly discussed ob-
jectives relate to system complexity, performance,
fault tolerance, compatibility and so on. It is
therefore important to discuss (through examples)
how these system-level objectives relate to control



objectives. We also distinguish between feedfor-
ward control (which is often used in computing
systems, e.g., based on queueing theory models)
and feedback control.

Part II, theory, provides an intuitive and self-
contained introduction to discrete time modeling
and dynamic response. This is the longest part
of the tutorial, taking about an hour to present.
There are three subparts: signals, transfer func-
tions, and composition techniques. The signals
subpart introduces the z-Transform in an intuitive
way, without discussion of continuous time. This
is accomplished by presenting the z-Transforms as
a way to represent signals as a sum instead of a
list. For example, consider a finite length signal
that has value 0.5 at time 0, 0.25 at time 1, and
0.125 at time 2. In the time domain, we have a list
representation {0.5, 0.25, 0.125}. In the z domain,
we use the summation 0.5z0 +0.25z−1 +0.125z−2.
Next, we show that representing signals as sums
in the z domain allows us to add signals, multiple
them by a constant, do time shifts, and express
time delays. Communicating these concepts usu-
ally takes less than ten minutes. After students
have a clear understanding of finite length signals
and operations on them, we introduce infinite
length signals expressed using the geometric se-
ries.

The second subpart of Part II addresses transfer
functions. We define transfer functions in terms of
operations on signals. A very effective progression
is to first show a transfer function with a constant
gain, then introduce a time delay, and then the
addition of several time delay terms with different
gains. As with signals, we first introduce transfer
functions with a finite number of terms, and then
we show how to incorporate an infinite number of
terms. We connect this with the geometric series,
which in turn leads to a discussion of poles. The
most important insight here is the relationship
between poles and stability, settling times, and
oscillations. To simplify matters, we only consider
first order systems so that no review of complex
numbers is required.

The last subpart of Part II is about composition
of systems. This is fairly easy material to com-
municate since much of computer science is about
composing components. We do not address convo-
lution directly. Rather, we use simple algebra to
show that the z-Transform of two plants in series
is the product of their z-Transforms. This in turn
leads to a discussion of reducing block diagrams,
and a derivation of several transfer functions for
feedback control systems.

Part III addresses control analysis. This is done
by introducing a series of design problems based
on the IBM Lotus Domino Server (Hellerstein et

al., 2004). We begin by introducing proportional

and integral control. The control performance of P
and I controllers is compared using a spreadsheet
simulation described in Section 4. For pedagogical
purposes, we assume that since the P controller
has shorter settling times, we should figure out
how to make it more accurate and reduce the
overshoot. To address the former, precompensa-
tion is introduced, and the results developed in
Part II are used to determine the gain of the pre-
compensator. To reduce overshoot, we introduce
filters, and discuss several issues in their design
and placement in the control system. Last, we
show that the characteristics of P and I controllers
can be combined using a PI controller, although
the design is more complicated because we must
select a gain for the P controller and another gain
for the I controller.

Part IV provides applications of control theory to
commercial computing systems. We discuss two
examples in which IBM’s database management
product has incorporated control theory based
designs. The first example is utilities throttling,
a capability for regulating high overhead admin-
istrative programs that are essential to the op-
eration of a database management system (e.g.,
backup, restore) (Parekh et al., 2004). The second
example is self-tuning memory management, a
facility for optimizing the allocation of memory in
database management systems (Diao et al., 2004).
Of particular interest in the latter example is the
use of regulatory control to solve an optimization
problem.

The tutorial is largely based on a book we have
written to teach control theory to computing
practitioners (Hellerstein et al., 2004). We have
used the book to teach a one semester class on
control theory for Computer Science graduate
students at Columbia University. As with the
tutorial, the book uses discrete time models and
examples drawn from computing systems. The
book augments the tutorial in the following ways:

• The introductory material includes more ex-
amples of control of computing systems, such
as streaming media and caching with differ-
entiated service.

• There is an extensive development of mod-
eling techniques, a critical consideration for
computing practitioners to apply control the-
ory. There is a chapter devoted to model con-
struction using system identification, and the
book includes a discussion of first principle
models (especially based on concepts from
queueing theory).

• A wider range of discrete time linear models
is included. In addition to a discussion of
first order systems, there is a separate dis-
cussion of transient behavior of higher order
systems (including a brief review of complex
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Fig. 2. A control system that regulates RPCs in System (RIS) for the IBM Lotus Domino Server.

variables), and there is a chapter devoted to
state models. Computing system examples
are used throughout.

• Control design is discussed at length, espe-
cially pole placement, root locus, and empir-
ical methods.

• There is a chapter on advanced control tech-
niques such as adaptive control, stochastic
control, and fuzzy control.

4. INTERACTIVE LAB

This section describes an interactive environment
that provides computing practitioners with a way
to explore the implications on control perfor-
mance of changes in the plant and control de-
sign. Foremost, we intended that this environment
be easy to use and enable practitioners to gain
a deeper understand of control systems. MAT-
LAB is an excellent tool for accomplishing these
goals, and there are excellent interactive programs
for providing an introduction to control theory
(e.g., http://www.engin.umich.edu/group/ctm/).
However, few computing practitioners have ac-
cess to MATLAB, and it is an expensive product
(although there are significant educational dis-
counts).

Our approach has been to use a spreadsheet to
simulate and visualize linear system dynamics.
Spreadsheets have appeal since they are widely
available, and the user interface is well under-
stood. Further, linear system dynamics are easily
expressed in spreadsheets by having time move
left to right and top to bottom.

We illustrate our interactive lab using the IBM
Lotus Domino Server. The Domino Server pro-
vides email capabilities to user machines running

a client application. The user interacts with his
client application to write, send, read, and orga-
nize their email. These interactions are translated
into Remote Procedure Calls (RPCs) that are
sent to the Domino Server. If many users are
doing email at the same time, then the server
may be processing many RPCs concurrently. An
important metric here is the number of RPCs in
the Domino Server, which we denote by RIS.
Early versions of the Domino Server had poor
performance when the RIS was too high, and
so administrators sought to reduce RIS. Unfor-
tunately, there is no way to regulate RIS directly.
However, administrators could control the number
of connected users by adjusting the tuning pa-
rameter MAXUSERS. Connected users is approx-
imately equal to RIS during busy times such as
mid-morning. But connected users is much larger
than RIS during lunch and other light periods.
Thus, controlling RIS by adjusting MAXUSERS
required on-going intervention on the part of the
administrators, which was undesirable.

Figure 2(b) displays a feedback loop to automati-
cally regulate RIS. Administrators specify the de-
sired RIS, and the controller adjusts MAXUSERS
so that measured RIS equals desired RIS. Fig-
ure 2(c) displays a spreadsheet simulation of Fig-
ure 2(b) for proportional control. The first five
rows give text description on model information.
The simulation area starts from Row 9, and the
column description is given in Row 7. The left-
most column in Figure 2(c) (i.e., Column A) is
time k. The next four columns (i.e., B-E) are
signals: reference input r(k), control error e(k),
control input u(k), and measured output y(k).
The remaining columns (i.e., F-I) are parameters
used in spreadsheet calculations: R is the reference
input, KP is the control gain, and the vector



y coeff describes a first order model of the plant
y(k) = y coeff(1)y(k−1)+ y coeff(2)u(k−1). The
spreadsheet simulation is constructed as follows.

(1) The initial signal values are specified. As we
see in cells B9 through E9, these values are
0.

(2) The time domain difference equation used to
compute each signal are entered. This is done
on Row 10. For example, Cell D10 uses the
control error to calculate a normalized value
of MAXUSERS using the formula $F$9*C10,
where $F$9 is the absolute address of the
control gain and C10 is the relative address
of the control error.

(3) Iterations of the simulation are constructed.
This is achieved by copying Row 10 to sub-
sequent rows.

(4) The plot of the simulation results is con-
structed. For example, the plot in Figure 2(c)
displays the time-varying value of the mea-
sured output y(k) in column E.

We use the spreadsheet to explore how control
gain KP affects control performance, especially
stability, accuracy, settling times, and overshoot.
This is done by changing the value in Cell F9.
First, we change the value in F9 to -1. This
makes the control loop unstable. When teaching
the tutorial, we ask students to explain what
happened in qualitative terms. The kind of answer
we look for is: “A positive control error should
result in an increase in MAXUSERS so that
measured RIS increases to desired RIS. However,
with a negative control gain, a positive control
error results in a decrease in MAXUSERS that
increases control error causing MAXUSERS to
decrease further.”

Next, we explore the relationship between KP and
settling time, accuracy, oscillations and overshoot.
When F9 value is 0.1, there is no overshoot or
oscillation. However, the settling time is long.
As F9 value is increased, settling time becomes
shorter, but there is overshoot and eventually
oscillation. Much above KP = 3, the system is
unstable. After changing the value of F9, all of
the above effects can be immediately visualized
through the plot as well as the corresponding
columns. The spreadsheet can also be used to
study the effects of changes in the plant via cells
H9 and H10. The tabs at the bottom of Figure 2(c)
are other spreadsheets that correspond to the
systems studied in Part III of the tutorial.

5. CONCLUSIONS

Feedback control is an essential part of computing
systems. Unfortunately, computing practitioners
rarely have knowledge of control theory, and ex-
isting texts are poorly suited for this audience. To

address this, we have developed a tutorial, book,
and spreadsheet based laboratory simulations to
teach control theory to computing practitioners.
Key considerations in the pedagogy are to use ex-
amples drawn from computing systems, provide a
short, self-contained introduction to discrete time
modeling and dynamic response, and incorporate
case studies of how control theory has been used
in commercial computing systems.
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