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Abstract

We introduce an edge-based technique for providing dif-
ferentiated service and simple overload protection in the
case of an inhomogeneous workload and a partially over-
lapping deployment, notably including a multi-tier struc-
ture. Previous work has shown how reverse proxies do-
ing inexpensive operations, under guidance from a con-
troller, can provide differentiated service and overload
protection assuming single-tier homogenous or disjoint
deployment and, in some techniques, homogenous work-
load. We use a model-based controller with an optimiza-
tion objective. The added complexities of inhomoge-
neous workload and deployment are handled by two key
ideas: (1) the proxies classify traffic and protect against
overload at an appropriate granularity, and (2) the con-
troller solves an optimization problem subject to bounds
derived from the deployment and using coefficients that
characterize the computational intensity of the traffic.
The modeling in the controller includes quantitative rea-
soning about computational load and thus supports other
functions besides control of the proxies. We present
some experiments that demonstrate differential queuing
to manage the response times of applications with dif-
ferent intensities and changing and partially overlapping
deployment.

1 Introduction

We build on previous work [15, 18] that has shown how
to do edge-based performance management of clustered
web applications, using a controller that addresses an op-
timization problem based on performance models and
goals, assuming homogeneous or disjoint deployment
and, in some techniques, homogeneous workload. We
describe how a technique that assumes homogeneity can
make a large error when managing a heterogeneous sys-
tem. We show that an inhomogeneous deployment of
an inhomogeneous workload can be handled by suitable

granularity in the proxies and a suitable way of bound-
ing the controller’s search. We elaborate this idea in the
context of one particular system, and suspect the idea is
more broadly applicable.

The challenges faced by a real-world data center in-
clude the following. There are multiple applications de-
ployed. They are structured into multiple tiers, poten-
tially with replicated server processes in any given tier.
There is some overlap, in at least two ways: (a) two ap-
plications may overlap in one tier of machines and (b)
two applications may use the very same server processes
in another tier of machines. Within one tier of machines,
there may be too many applications for each machine to
run a server process for each application. The offered
load for each application changes over time. In addi-
tion to the changing arrival rate, the computational load
imposed by the average request of an application also
changes over time. There is some dynamism in the con-
figuration of the data center, at least due to actions by
administrators and possibly also due to on-line manage-
ment techniques. There are performance goals to be met;
those goals may be stated in terms of latency (e.g., re-
sponse time).

There are many different things that can be done to
manage such a data center, and these things differ in
scope and time scale. At the largest scope and time scale
is the activity of adding new machines to the data cen-
ter and retiring old ones. While working with a fixed
set of machines, there may be coarse-grained decisions
that dedicate each machine to use in one part of the data
center; this partitioning might be based on the customer,
the kind of processing done, the kind of finer-grained
management used, and/or other things. At a finer grain
there are decisions on the specific deployment issue we
will call placement: which processes run on which ma-
chines. For example, one machine might run an applica-
tion server dedicated to application A and an application
server dedicated to B, while another machine runs an ap-
plication server dedicated to B and an application server
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dedicated to C. There are many technologies that involve
special processing at the edge of the data center, for per-
formance as well as other (e.g., security) functions. The
performance functions at the edge include rejection and
queuing of requests, as well as routing to servers. There
may also be rejection, queuing, and routing in the inter-
nals of the data center. At the finest grain is performance
management within each machine, by its operating sys-
tem and/or other mechanisms. Note that finer grained
mechanisms generally make smaller changes but do them
faster and cheaper.

A study of a complete and integrated suite of manage-
ment techniques that do all of the above things is well
beyond the scope of this paper. We focus on a man-
agement technique that uses layer 7 reverse proxies at
the data center’s edge and optimization based on perfor-
mance models to (a) do queuing and rejection at the edge
and (b) support the coarser grained functions outlined
above. For the sake of brevity we further focus on (a),
giving only very brief mention of (b). In a commercial
product [8] we have implemented both (a) and (b) using
this technique; in companion papers [11, 10] we describe
the associated server placement controller.

The rest of this paper is organized as follows. Sec-
tion 2 presents the overall organization and characteris-
tics of our technique, including a discussion of the gran-
ularity of traffic classification and overload protection.
Section 3 fills in the key details on the controller. Section
4 presents some empirical studies. Section 5 compares
the technique in this paper to key related work. Section 6
presents our conclusion and discusses some future work.

2 System Overview

Figure 1 gives an overview of the components and com-
munication involved in our technique and a broader per-
formance management context. The solid black lines
and boxes carry and perform the useful work, the dashed
lines and boxes outline our management technique, and
the dotted lines and boxes are example parts of the
broader management context. Our technique has wide
applicability because it applies control only at the edge of
the data center and requires relatively non-invasive mon-
itoring. The useful work in the data center is done by a
collection of running server processes. Work originates
in clients, which send requests through the Internet to the
data center. Our system begins with a set of reverse prox-
ies at the edge of the data center. Between these proxies
and the clients can be various routing and load balancing
techniques such as DNS-based load balancing, layer 2-3-
4 sprayers, etc. Our proxies forward requests to some of
the server processes, which do some work and possibly
make requests on other server processes. The example
in the figure shows exactly two tiers of server processes,

but the technique supports a general flow of work within
the data center.

In addition to this flow of computational load, there
are flows of management messages. The proxies and
load balancers produce traffic statistics, which are used
by the resource controller and possibly other compo-
nents. The resource controller produces control parame-
ters that affect the operation of the proxies. The resource
controller also can produce information on the compu-
tational power requirements in the data center for use
by other components in the broader context; an example
of such a component is shown: a placement controller
that starts and stops server processes to best utilize the
available computational resources to meet the needs of
fluctuating offered load. The resource controller needs
to be given power consumption factors. These could
be configured by administrators. Alternatively, to cope
with changes in these factors over time, a broader per-
formance management context could involve continuous
(re)estimation of the power consumption factors by an
on-line work profiling component, using CPU utilization
readings from the server machines and/or processes as
well as the aforementioned traffic statistics.

Edge-based techniques for response time manage-
ment, overload protection, and a host of other functions
are not new. Layer 7 intermediation (either in separate
processes or as an early stage in server processes) is often
used for purposes besides the management that is the fo-
cus of this paper. Indeed, the general topology of server
processes, server process clusters, and machines allowed
here — and often used in real-word data centers — re-
quires layer 7 considerations for simply routing the re-
quests.

Figure 4 (in section 4) illustrates the relationships be-
tween the key concepts of (a) server processes, (b) clus-
ters, and (c) machines. The server processes are orga-
nized into clusters; each cluster is a collection of server
processes, and each server belongs to exactly one clus-
ter. In general, a cluster consists of a set of function-
ally equivalent replicas of some easily replicable ser-
vice; all the servers in a cluster can handle the same traf-
fic (although affinity, due to things like HTTP session
state, may cause a particular request to prefer a particular
server). An example would be a collection of J2EE ap-
plication servers in which the same J2EE modules have
been deployed and equivalently configured. For a service
that is non-replicable, a cluster that always contains ex-
actly one server is used. Our technique can cope with
startups and shutdowns of server processes; indeed, it
can be used to drive a controller that initiates such star-
tups and shutdowns.

The incoming traffic to each cluster is load balanced
by some technique that equalizes the response times
among the servers in a cluster. In the figure there is a

2



LB
proxy LB

proxy LB

server

LBserver

server

server

Resource
Controller

Work Profiler

Placement
Controller

client

client

network

operational
parameters

traffic
stats

power
factors

traffic & utilization stats

power
requests

placement
changes

Figure 1: System Overview (including other performance management components)

load balancing component in each client of each cluster,
but our technique can utilize any organization of com-
ponents and communication that gets the load balancing
job done.

In the course of doing its work, the software in one
cluster may invoke services of one or more other clus-
ters. For example, a cluster of simple HTTP servers may
invoke a cluster of J2EE application servers, which may
in turn invoke both (1) a singleton cluster of a relational
database server and (2) a cluster of LDAP servers; the
HTTP servers could also invoke the LDAP cluster. It is
this flow of computational load among clusters that cap-
tures the multi-tier structure of a data center.

In a data center with multiple applications deployed,
some applications may share the services of some clus-
ters. The relationships among the clusters capture the
relationships among the applications, at an appropriate
level of granularity for management. In the remainder of
this paper we will focus on the clusters rather than the
applications.

Each server process runs on a machine, and a machine
may host several running server processes at a time. For
simplicity, we assume here that there is no point in run-
ning multiple server processes for a given cluster on one
machine; thus, the servers running on a machine are all
in different clusters. Notably, we do not require that each
machine has, at a given time, a running server process for
every cluster; in some real word data centers there are so
many clusters that no machine has enough memory to run
that many server processes at once. Rather, our technique
accepts an arbitrary server placement matrix. We use the
symbol I for such a matrix. For a given machine m and

cluster d, Im,d holds a Boolean value indicating whether
that machine currently hosts a running server process for
that cluster. We suppose it is possible to automatically
sense the current value of this matrix. The resource con-
troller respects this matrix by using it to impose bounds
on the resource allocations considered.

We allow a fairly arbitrary relationship between clus-
ters and machines. Multiple clusters can overlap (i.e.,
have running servers) on a given machine; those clusters
can be directly related or unrelated by the flow of com-
putational work. Among the machines hosting a cluster,
the set of overlapping clusters can vary from machine to
machine.

Figure 2 shows the internal structure of one (“X”) of
three reverse proxies (the others are “Y” and “Z”) in an
example system. Each incoming request is first classi-
fied, to determine (a) the cluster that will serve it and (b)
the service class to apply. In the figure, “A”, “B”, and “C”
are clusters, while “Gold”, “Silver”, and “Bronze” are
service classes. Administrators define service classes,
indicating for each (i) the requests to which it applies,
(ii) the performance target of the class, and (iii) the rel-
ative importance of the class. We consider two kinds of
response-time based performance target: averages and
percentiles.

A proxy has, for each cluster to which it directly for-
wards traffic, a pipeline of (a) a set of FIFO queues, (b)
a scheduler that draws requests from these queues, (c) a
concurrency limiter, and (d) a load balancer for the clus-
ter. We use the term gateway for such a pipeline, and
the variable g to index over them. For a given gateway
g, there is a queue for each service class c that applies
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Figure 2: Internals of a proxy

to some traffic through that gateway. When asked, the
scheduler picks a queue from which to draw the next
request, using a simple weighted round-robin scheme.
That is parameterized by a weight wg,c for each queue
(we can identify a queue by the 〈g, c〉 to which it ap-
plies). The concurrency limiter provides a simple form
of overload protection. It notes the flow of both requests
and replies, and allows at most some given number Ng

of requests to be outstanding at a time. We say Ng is
the number of seats allocated to gateway g. In a given
gateway, a new request is released from a queue toward a
server process when both (1) the number of outstanding
requests is below its limit and (2) some queue holds a re-
quest. The concurrency limit and the scheduler’s round
robin weights together comprise the control parameters
of a gateway. The figure calls out those parameters for
the gateway for cluster “C” through proxy “X”. The re-
source controller periodically adjusts the control param-
eters of all the gateways.

Note that because a gateway’s concurrency limiter en-
forces only an aggregate concurrency limit, one flow may
temporarily borrow a seat from another when the latter is
not using all its allocated seats. Thus, each gateway is
work-conserving. This comes at the risk that, for exam-

ple, a low importance request may block a high impor-
tance request that arrives soon after. But that blockage
will continue only until the next completion of some low
importance request — which is generally fairly soon with
realistic traffic.

While an individual gateway conserves work, the
whole collection of them does not. If there is a sudden
large shift in load between the gateways, the manage-
ment might significantly under-load the data center until
the next time the resource controller adjusts the control
parameters of the gateways. In practice the frequency
of that adjustment is on the order of once per minute,
so the duration of the under-load will be limited. One
could reduce the risk of such under-loads by using fewer
gateways (i.e., being less discriminating in defining gate-
ways), but that raises a complementary problem: too
much borrowing.

One could imagine various ways of diving a proxy’s
incoming traffic into flows and collecting them into
groups for overload protection. A very simple way —
which is used in earlier work [14, 18] — divides only by
service class, and uses just one overload protection unit
for all of a proxy’s traffic. Alternatively, the traffic could
be classified very finely — by service class, directly-
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loaded cluster, and perhaps other things — and each flow
could be subjected to independent overload protection.
The more finely a proxy’s traffic is divided into overload
protection units, the less borrowing is allowed — and this
decrease is generally a bad thing. However, it is possi-
ble to allow too much borrowing. Specifically, if flow A
can borrow from flow B, but A imposes a different pat-
tern of computational load on the data center than does
B, then that borrowing can lead to over-loading one part
of the data center while under-loading another part. With
a sufficiently large difference in load pattern, and a suf-
ficiently large amount of borrowing, an arbitrarily large
load imbalance can result. However, as in the case of
too little borrowing, this imbalance will persist only un-
til the resource controller adjusts the control parameters
of the gateways — assuming the controller is sensitive
to the current placement. If the controller is placement-
insensitive, it will not restore balance.

In the context of the product containing our implemen-
tation we have chosen to divide each proxy’s traffic into
a flow for every relevant 〈directly-loaded cluster, service
class〉 pair and use in that proxy an overload protection
unit for every directly-loaded cluster. We chose to di-
vide based on the directly-loaded cluster because it is
both easy to determine from inexpensive request inspec-
tion and generally a pretty helpful discriminator in this
regard. In other contexts the best answer might be dif-
ferent; indeed, we may add more discrimination in the
future, based on a cost/benefit trade-off.

The focus of our work is on the response time man-
agement; we consider only a simple scheme for overload
protection. This scheme, outlined above, uses the queues
to shape traffic over short transients. To handle long-term
overload we simply impose a limit on the length of each
queue, dropping requests that would exceed this limit. A
more sophisticated treatment of overload is a topic for
future work.

3 The Resource Controller

Our response time management technique involves a
feedback control loop, in which gateways take inexpen-
sive actions to manage the request flow guided by control
parameters that are periodically adjusted by a resource
controller based on traffic statistics and configured ser-
vice classes. Figure 3 outlines how the resource con-
troller works. The key idea is this: to derive the con-
trol parameters for the gateways, the resource controller
solves a resource allocation problem with bounds derived
from the current server placement. In a broader perfor-
mance management context, this controller can also pro-
duce information on the ideal allocation of a data cen-
ter’s compute power by solving a similar resource alloca-
tion problem but with bounds derived from the potential
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Figure 3: The resource controller

placement of the servers. In this section we outline how
the resource controller works; we have a technical report
[14] that provides more details (avoiding the concept of
clusters in an attempt at brevity).

The resource allocation problem is posed as an opti-
mization problem with a fairness goal. Specifically, the
goal is to equalize the utilities of the expected perfor-
mance results of the various traffic flows. The proxies
divide the traffic into flows, one for every combination
of gateway g and service class c for which traffic of that
class actually flows through that gateway. Usually only
a subset of the possible combinations actually occur, and
we write F ⊆ G × C for the set of actual flows; here G
the set of gateways, and C the set of service classes. The
decision variables in the optimization problem are alloca-
tions of concurrency to flows: there is a decision variable
og,c for every 〈g, c〉 ∈ F . The decision for a flow is the
number requests it may have concurrently outstanding at
its gateway; we say this is the number of seats allocated
to the flow. The resource controller derives its various
outputs from the chosen values of the decision variables.

The expected performance results are estimated by a
model whose parameters are extracted on-line from mon-
itoring of the data center. The exact choice of model is
not our primary concern here. We favor a model whose
parameters can be tuned on-line based only on relatively
non-invasive instrumentation. In our implementation we
use a model that is tuned using only the traffic statis-
tics from the gateways. Other models [18, 17] could be
used. Because the model parameters are tuned on-line, it
is generally easy to make the model fairly accurate in the
neighborhood of the current operating state. The primary
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model quality issue is what happens when the model is
asked to predict the results for a very different state. As
used here in the controller that picks the operating state,
the big picture issue is what do the transients look like.
While we have not mounted a rigorous study of tran-
sients, section 4 shows some. Note that they are fairly
quick and decisive.

Given particular values for its parameters, the model
for a flow 〈g, c〉 produces a function Rg,c(·) that maps
a hypothetical resource allocation og,c to the expected
performance result. That result is either the expected av-
erage response time or (in the case of a percentile goal)
the expected percentage of requests whose response time
would exceed the goal’s threshold. Thus, these func-
tions are non-increasing. Note also that a flow’s func-
tion depends only on the allocation for that flow. This
is only an approximation of actual behavior; we make
this approximation because it, along with the convexity
of Uc(Rg,c(·)), makes the optimization problem separa-
ble — which admits efficient solution techniques. Note
that the overload protection limits the degree to which
actual behavior will deviate from this approximation.

The fairness objective is based on utility functions that
map expected performance to utility; it is the utility val-
ues that are equalized. There is a utility function Uc(·)
for each service class c. This function is derived from the
performance goal and relative importance of the service
class. The utility function is non-increasing, which when
composed with the non-increasing performance predic-
tion function gives us the desired convexity.

The resource allocation problem is primarily to pick
an integer value for each og,c in a way that maximizes

min
g,c

Uc(Rg,c(og,c)) (1)

subject to certain bounds. Those bounds say that there
exists a feasible seat placement. A seat placement O as-
signs a non-negative real number Og,c,d,m to every com-
bination of flow 〈g, c〉, cluster d that (possibly indirectly)
serves that flow, and machine m that hosts a running
server of d. That number is the number of gateway seats
through which flow 〈g, c〉 may load cluster d’s server on
machine m. For every such cluster d and flow 〈g, c〉 that
loads it, the seat placements across the machines that host
the cluster d must add up to the allocation og,c (remem-
ber that seats are always counted in terms of requests out-
standing at the gateways).

The bounds are captured by two sets of inequalities.
One set says that the current server placement must be
respected — if there is no running server for cluster d on
machine m, then the relevant seat placements must all be
zero:

∀d,m : (¬Im,d) ⇒ ∀g, c : (Og,c,d,m = 0) . (2)

The other set of inequalities says that no machine may
be overloaded:

∀m :
∑

d∈D(m),〈g,c〉∈F(d)

Og,c,d,mκg,c,d,m ≤ ρ̃mΩm (3)

where D(m) is the set of clusters that have running
servers on machine m and F(d) is the set of flows that
load (possibly indirectly) cluster d. We write Ωm for the
computational power of machine m. We allow the ad-
ministrators to configure a utilization limit ρ̃m for each
machine.

The no-overload constraint uses a power consump-
tion factor κg,c,d,m for each actual flow 〈g, c〉, cluster d
it loads (possibly indirectly), and machine m hosting a
server in d. A power consumption factor quantifies the
average compute power that would be utilized on ma-
chine m, due to a server of cluster d, by a single request
of flow 〈g, c〉 if all its work in d were done on m; this
is averaged over the whole time from the request’s en-
try to its exit at the server to which its gateway directly
sends it. For example, consider a flow of HTTP GET
requests that take an average of 100 milliseconds to run
(from entry to the HTTP server to reply from it). Suppose
such a request causes, on average, 1.5 database queries,
and these DB queries consume an average of 100 stan-
dard megacycles each. The power consumption factor
for that flow, the database cluster, and its machine is 1.5
× 100 standard MC / 0.1 seconds, which is 1,500 stan-
dard MHz. We quantify compute work and power in
machine-independent units; think of them as megacycles
and MHz on a standard kind of machine. These could
refer to computational resources besides CPUs; what is
important is that we quantify the usage of the resource
that is the bottleneck. As described in this paper, our
technique can handle any situation where the bottleneck
on a given cluster is always the same kind of resource;
it is the power of that kind of resource that should be
used here. It is straightforward to extend the resource
controller to consider multiple kinds of resource per ma-
chine (we have done so in our actual implementation, but
omit it from this paper for the sake of brevity).

We solve this optimization problem by an optimal
greedy algorithm for allocations to flows, augmented
with a heuristic technique for constructing a feasible seat
placement. The seat placement bounds make the prob-
lem NP hard, and in total our solution is heuristic. While
we have not yet mounted a rigorous study of the opti-
mality of our solution, we have noticed few suboptimal
answers in practice.

The full resource allocation problem goes beyond
maximizing the minimum of all the utility values. If only
the global minimum were maximized, any flow that “gets
stuck” before the others will hold down that maximum
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minimum, allowing arbitrary allocations (within a poten-
tially wide range) among all the other flows. A flow can
get stuck either by reaching a point of diminishing re-
turns in its composite utility-of-allocation function (i.e.,
Uc(Rg,c(·))) or by lack of available power due to that
flow having an exceptionally large power consumption
factor. To get good results for all flows, we ask for max-
imization of the minimum among successively smaller
sets of flows. This is easily handled by the greedy opti-
mization algorithm — it simply drops flows from further
consideration when they get stuck.

The control parameters for the gateways are easily de-
rived from the seat allocations. The concurrency limit
Ng is simply the sum of the allocations og,c for the rele-
vant service classes c. When fully loaded, the scheduler
divides its total throughput among its service classes in
proportion to their round-robin weights. Inspired by Lit-
tle’s Result, which says that the average concurrency in a
box is the product of the throughput and the average time
an item spends in the box, we set the round-robin weight
wg,c to be the quotient og,c/Sg,c where Sg,c is the aver-
age service time (time from (a) entry to the first server to
(b) completion) for the flow.

Since the product of seat allocation and power con-
sumption factor is a power allocation, this controller
can support additional functions that require reason-
ing about compute power. For example: the sum of
Og,c,d,mκg,c,d,m, over the flows 〈g, c〉 that load cluster
d and the machines m that host servers in that cluster,
is an estimate of the compute power that will be used by
cluster d if the current server placement remains in effect.
This quantitative compute power modeling can be used
to answer other hypothetical questions such as: (a) what
would happen if the server placement were changed in
some specific way, (b) how much power would be needed
in each cluster to achieve the highest possible utility sup-
posing the server placement could be changed within cer-
tain bounds (our implementation actually computes this,
for use by the associated placement controller), (c) what
would happen if the service class goals were changed in
some specific way, and (d) we result could be achieved
with more or fewer machines of a given kind? These are
useful in working with provisioning controllers that op-
erate on a coarser scale, and in capacity planning.

4 Experimental Results

In this section we investigate four issues over the course
of two experiments. The first experiment: (i) demon-
strates how the proposed system protects against server
overload situations by basing resource allocation deci-
sions on power consumption factors and machine power,
(ii) shows how the system achieves service level differen-
tiation, and (iii) illustrates how the system respects place-

ment constraints while making resource allocation deci-
sions. All those is done for a pair of applications with
different power consumption factors. The second exper-
iment studies the system resilience to application server
placement changes. In both experiments, we compare re-
sults obtained with and without our control mechanisms.

We study the behavior of our platform using a pair of
benchmark applications and a synthetic load. We used
the setup described in Fig. 4 to run our experiments. The
setup used two applications, TradeA and TradeB, de-
ployed on J2EE application servers and a database server.

Server B4

Server B3

Server A3

Server A2

Client

Client

Client

Proxy App Servers Database

Database

server

pxmac

df209

df211

df212

dbmac

cluster A

cluster B

cluster D

Figure 4: Experimental topology

For our applications we used two different configura-
tions of Trade6, an IBM WebSphere end-to-end bench-
mark and performance sample application. This bench-
mark models an online stock brokerage application and
it provides a real world workload driving J2EE 1.3
modules and Web Services. TradeA consists of the
Trade6 application configured to use direct JDBC con-
nections. TradeB consists of Trade6 configured to ac-
cess the database through a layer of Enterprise JavaBeans
(EJBs). We used these two different configurations to
study the effects of web requests that bring different re-
source demands to the platform.

We also configured the system with two service
classes: gold and bronze and we set an average response
time goal of 350 ms for the gold requests and 1.2 seconds
for the bronze requests. We also configured the gold re-
quest with the highest importance level and the bronze
requests with the lowest level. We mapped all the URIs
associated with Trade A onto the gold class and all the
URIs associated with TradeB onto the bronze class.

Service Response Time
Class Requests Target Importance
Gold TradeA 350 ms 1

Bronze TradeB 1,200 ms 99

Table 1: Service classes
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flow cluster machine factor
TradeA A df209 125 MHz
TradeA A df211 125 MHz
TradeA D dbmac 50 MHz
TradeB B df211 300 MHz
TradeB B df212 300 MHz
TradeB D dbmac 75 MHz

Table 2: Power consumption factors

df209, df211, df212 dbmac
Ω 1,490 MHz 8,000 MHz

Table 3: Machine power

For our experiments we used three machines running
the WebSphere J2EE application servers and one ma-
chine running DB2. We used three machines to run the
two partially overlapping clusters of application servers.
We deployed both TradeA and Trade B on df211, while
deploying only TradeA on df209 and only TradeB on
df212. We used the machine named dbmac to run the
database server. Table 3 shows that the machines running
the application servers all have the same CPU power.
The machine running the database server has greater
power. Table 2 shows the power consumption factors for
the two flows. We used a machine with power similar to
df212 to run the proxy that fronts the application tiers.
Finally we used a set of machines to run the client ses-
sion emulators.

4.1 Handling inhomogeneity
In the first experiment the generated load goes through
two phases; each phase is about 20 minutes long. In
the first phase there are 10 clients for TradeA and 10
for TradeB. In the second phase there are 40 clients for
TradeA and 20 for TradeB.

Figure 5 illustrates the number of requests permit-
ted by the proxy to execute concurrently. During the
first phase, where the number of emulated sessions of
TradeA and TradeB are equal, the concurrency of TradeB
is slightly higher than that of TradeA. During the second
phase, where the number of emulated sessions of TradeA
is double that of TradeB, the concurrency of TradeB re-
mained the same at less than half the concurrency of
TradeA. The rest of the TradeB sessions are made to wait
in the proxy queue, as Figure 6 shows. This is due to the
fact that κgwA,Gold,A,m is about half of κgwB ,Bronze,B,m

(regardless of m). This is more evident when we observe
that the CPU utilization levels in the two phases are al-
most equal, as shown in Figure 7. Thus, taking power
consumption factors into account while making resource
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Figure 5: Experiment 1, number of requests concurrently
executing
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Figure 6: Experiment 1 - Average queue length

allocation decisions enabled us to prevent machine over-
load in phase two of the experiment.

In phase two of the experiment, where the total offered
load is above the system capacity, queuing takes place.
Figures 8 shows the average response time. Since the
performance target for TradeA traffic is tighter than that
for TradeB traffic, and its importance is much higher than
TradeB, the system differentiates accordingly, favoring
TradeA over TradeB traffic, as expected.

Figure 9 illustrates the concurrent requests executing
on each machine, for each of the two applications. As
can be easily observed from the figure, TradeA requests
always executed on df211 and df209, while TradeB re-
quests always executed on df211 and df212. df211 was
the only shared machine, and its power was divided
among the two traffic classes by the resource controller.
At all times, the placement constraints were respected.

As more of the CPU power of df211 is shifted from
TradeB to TradeA, in the second phase of the experiment,
we can see that the concurrency of TradeB on df211 de-
creases by about three sessions, while that of TradeA
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Figure 8: Experiment 1 - Average response time

rises by about six sessions. This is because the power
consumption factor of TradeB requests is about double
that of TradeA requests, as previously mentioned. This
emphasizes that the heterogeneity in power consumption
factors of different request types is respected while mak-
ing resource allocation decisions, and shifting resources
from one traffic class to another.

The goal of our controller is to equalize the utility val-
ues of the various traffic classes, independent of offered
load, server placement, and available power. This is ap-
parent from Figure 10 where we see that both TradeA
and TradeB had similar high utility values during phase
one, while they both had similar lower utility values dur-
ing phase two. Without a controller, the utility values
would have been as illustrated in Figure 11, where the
utility values of TradeA goes negative (i.e. missed target)
while TradeB receives high utility values. The average
response time for TradeA and TradeB in the uncontrolled
case is illustrated in Figure 12. Note that TradeA missed
its target of 350 msec during phase two, while TradeB
was well below its target of 1,200 msec. In contrast, us-
ing our controller and as shown in Figure 8, the average
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Figure 10: Utility per flow, with control

response time for both TradeA and TradeB were slightly
below target during the second phase of the experiment.

4.2 Resilience to placement changes

In this experiment, we start with the same placement of
application servers as in the first experiment. However,
after 15 minutes from the beginning of the experiment
we emulate a machine failure scenario by bringing one
machine (df209) down, and we observe how the system
reacts to this bottleneck. After another 15 minutes, we
bring df209back up, with only TradeA placed on it. We
repeat the same scenario for an uncontrolled system (no
queuing in our proxies) and compare the results of the 2
cases.

In Figures 13 (a)–(f), we compare the performance of
the managed flows in the controlled and uncontrolled
systems side by side. Figures 13 (a) and (b) show
throughput of TradeA and TradeB. We see that, in the
uncontrolled case, the throughput of the high importance
traffic (TradeA) drops by as much as 70% when df209is
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Figure 12: Experiment 1 - Average response time, with-
out control

brought down at around 8:02. In the controlled case, the
impact of server failure at 23:58 is reduced to about 50%.
At the same time, the throughput of TradeB class is only
slightly lower in the controlled case. Furthermore, in the
uncontrolled case (Figure 13 (d)), TradeA experiences
response time which is much above its goal of 350 ms,
while in the controlled case, it almost always stays be-
low this target (Figure 13 (c)). While the machine is
down, the performance of TradeB is worse in the con-
trolled case compared to the uncontrolled case, as the
response time goal of TradeB is much higher. Neverthe-
less, even TradeB always stays below or near its response
time goal.

Recall that the objective of our system is to equalize
utilities among flows. Figures 13 (e) and (f) show that
in the controlled case the management indeed kept the
values of the objective functions for TradeA and TradeB
closer to each other than happened in the uncontrolled
system. In the controlled case, the values of both utility
functions are above 0, indicating both flows meet their
performance goals. In the uncontrolled case, the lower

importance class receives better performance at the ex-
pense of the higher importance class.

5 Related Work

During the last couple of years, we have seen a prolifer-
ation of research work in the area of QoS management
for web applications. The work may be generally di-
vided into a few categories: admission control and over-
load protection, service differentiation, low-level mech-
anisms, feedback control-based mechanisms, and utility-
based mechanisms. Due to space limitations, we will
mention some examples of prior work in the various cat-
egories and contrast our work to the prior art.

Admission Control and Overload Protection. Ur-
gaonkar and Shenoy [18] developed the Cataclysm sys-
tem for handling the case of extreme overloads in a single
tier of web application servers. They studied an admis-
sion control system that runs on a “sentry” tier and de-
cides in real-time and low overhead which flow to admit
when the resources in the application tier are overloaded.
They consider the placement control of applications on
nodes in a disjoint fashion. Assuming off-line profil-
ing of applications and invasive instrumentation, they
implement a non-work conserving priority discipline in
the sentry and provide admission control and overload
protection mechanisms. Welsh and Culler [21, 20] pre-
sented a multi-stage approach to overload control based
on adaptive per stage admission control. In this ap-
proach, the system actively observes application perfor-
mance and tunes the admission rate of each processing
stage to attempt to meet a 90th-percentile response time
target. This approach is based on the SEDA architec-
ture [22], and was extended to perform class-based ser-
vice differentiation. In such multi-staged admission con-
trol approaches, a request may be rejected late in the
processing pipeline, after it has consumed significant re-
sources in upstream stages. Blanquer et al. [4] described
Quorum, a non-invasive approach to scalable quality-of-
service provisioning that uses traffic shaping, admission
control, and response monitoring at the border of an In-
ternet site to ensure throughput and response time guar-
antees. The load controller uses a sliding window mech-
anism similar to TCP. They demonstrated that their sys-
tem is capable of dealing with sudden surges in the traffic
pattern.

Our focus is not a solution to the admission control
problem. Though concerned with overload protection,
our goal is to manage the response time QoS for service
classes in a multi-tiered server farm environment. Our
objective is to manage the end-to-end performance of re-
quest flows. We address common deployment scenarios
in which a web application may be replicated on different
but overlapping subset of machines, at each tier.
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Service Differentiation. Service differentiation in
cluster-based network servers has been studied in [2] and
[24]. There, the approach is to physically partition the
server farm into clusters, each serving one of the traffic
classes. This approach is limited in its ability to accom-
modate a large number of service classes, relative to the
number of servers. Lack of responsiveness due to the
nature of the server transfer operation from one cluster
to another is typical in such systems. Chase et al. [5] re-
fined the above approach by partitioning server resources
and quickly adjusting the proportions. Using a black-box
model, they solved a cluster-wide optimization problem,
where the utilization of a server is represented by a cost
term. Zhao and Karamcheti [23] proposed a distributed
set of queuing intermediaries with non-classical feed-
back control that maximizes a global objective. Their
technique seems to suffer from the coupling of the global
optimization cycle and the scheduling cycle.

Our approach is to control the flows at the edge of the
data center and aim for a fairness result constrained by
the current server placement. We use statistical multi-
plexing, which makes fine-grained resource partitioning
possible, and unused resource capacities can be instanta-
neously shared with other traffic classes.

Low-Level Mechanisms. The approach in this cate-
gory of work is to tackle the problem at lower protocol
layers, such as HTTP or TCP. As a consequence, mod-
ifications to the web server or the OS kernel are neces-
sary in order to incorporate the control mechanisms. Web
server overload control and service differentiation using
OS kernel-level mechanisms, such as TCP SYN polic-
ing, has been studied by Voigt et al. [19]. Harchol-Balter
et al. [7] and Schroeder and Harchol-Balter [16] studied
socket-level prioritization of packets based on a shortest
remaining processing time policy.

Basically, our approach is non-invasive, in the sense
that it does not require changes to the kernel, and applies
control only at the entrance to the system.

Feedback Control-Based Mechanisms. Another area
of research deals with performance management through
classical feedback control theory. Abdelzaher et al. [1]
used a feedback controller to limit utilization of a bot-
tleneck resource in the presence of load unpredictability.
They relied on scheduling in the service implementation
to leverage the utilization limitation to meet differenti-
ated response-time goals. They used simple priority-
based schemes to control how service is degraded in
overload and improved in under-load. Kamra et al. [9]
addressed the problem of overload protection and meet-
ing QoS requirements in a multi-tiered web environment
by employing a self-tuning PI (Proportional Integral)
controller in a proxy called Yaksha. The gain parame-
ters of the controller are calculated dynamically using a
M/G/1 processor sharing queue as a model of the multi-

tiered system. Their approach is non-invasive and col-
lects external performance measurements such as traffic
density and response time. Diao et al. [6] used feedback
control based on a black-box model to maintain desired
levels of memory and CPU utilization.

Rather than employing feedback controllers, which
may work well in the neighborhood of an operating
point, we use queuing network models to predict per-
formance as a function of load and amount of allocated
resources. The models are dynamically tuned based on
measured quantities. We believe that models provide an
educated guess of (1) the performance when there is a
significant change in the load and (2) the impact of allo-
cating a given amount of resources to a service class.

Utility-Based Mechanisms. The notion of using a
utility function and maximizing a sum [12] or a mini-
mum [13] of utility functions for various classes of ser-
vice has been used extensively to support service level
agreements in communication services. Recently, the
same concept has been applied to Web servers. Ardagna
and Zhang [3] proposed a controller for multi-tier web
data centers, which maximizes the profits associated with
multi-class service level agreements. The cost model
consists of a class of linear utility functions which in-
clude revenues and penalties incurred depending on the
achieved average response time and the cost associated
with running servers. The overall optimization problem
considers the set of servers to be turned on, the allocation
of applications to servers, and routing and scheduling at
servers as joint control variables. This problem is NP-
hard. The authors ended up dividing the problem into
smaller problems, and developed heuristics based on a
local search algorithm.

We use the concept of utility function to encapsulate
the business importance of meeting or failing to meet
performance targets for each class of service. Through
the use queuing network models, our system maps the
performance to a utility function, and constantly adapts
the resource allocation, yielding fairness among the var-
ious service classes. Our approach is to address each of
the performance management problems by a separate au-
tonomic controller, thus decomposing a large combina-
torial problem into smaller and more manageable prob-
lems.

6 Conclusions and Future Work

We have shown how to do edge-based response time
management and simple overload protection for an in-
homogeneous placement and inhomogeneous workload.
The key ideas are (1) to classify traffic and apply over-
load protection at an appropriate granularity and (2) to
bound the resource allocation space according to the
placement and the workload characteristics.
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Several interesting issues remain to be investigated,
both in terms of studying the existing technique and im-
proving it. For the former, the transient behavior and the
optimality of the resource controller’s search algorithm
have already been called out. Another interesting topic
to explore is further failure scenarios. For example, we
are working on enhancements in how the management
reacts to various subsets of the requests getting stuck in
an idle state inside the data center. There remain many
other failure modes to investigate.

It is also interesting to investigate the joint behavior of
a collection of management techniques (as suggested in
the introduction).

There are data centers containing thousands of ma-
chines, and we are interesting in developing techniques
that scale to such a size.

One (hopeful) improvement that we are pursuing is to
quantify computing power requirements by the product
of throughput and a work factor (i.e., average work per
request) rather than the product of occupancy and power
consumption factor. This has the advantage that work
factors are (a) not machine-dependent and (b) easier to
estimate from on-line observations.

The layer 7 proxies of our technique may not be the
outermost edge of the data center. We have seen data
centers with other edge components even farther out, and
some of those can tolerate only a limited number of out-
standing requests. We are working on rejecting requests
to keep the occupancy within the scope of our manage-
ment technique below a given limit.

The optimization objective should be affected by re-
quest rejections.

Many workloads include requests that are grouped into
sessions, and the utility of serving or rejecting a request
may depend on its role in its session (if it has one).

The overload protection is currently based on occu-
pancy, specifically counting occupied seats. It would
surely be an improvement to reckon with power rather
than seats. We are also interested in the alternative of
limiting throughput rather than occupancy. That is in-
triguing because it may provide a more robust approach
to handling stuck-idle requests. Making it conserve work
is an interesting challenge.
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Figure 13: Experiment 2 - Comparing a controlled system to an uncontrolled one

14


