
RC23945 (W0604-139) April 28, 2006
Computer Science

IBM Research Report

Minimizing Setup and Beam-on Times in Radiation Therapy

Nikhil Bansal, Don Coppersmith*, Baruch Schieber
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*currently at IDA Center for Communications Research
85 Bunn Drive

Princeton, NJ 08540

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Minimizing Setup and Beam-On Times in Radiation Therapy

Nikhil Bansal∗ Don Coppersmith† Baruch Schieber∗

April 18, 2006

Abstract

Radiation therapy is one of the commonly used cancer therapies. The radiation treatment poses a
tuning problem: it needs to be effective enough to destroy the tumor, but it should maintain the func-
tionality of the organs close to the tumor. Towards this goal the design of a radiation treatment has to be
customized for each patient. Part of this design are intensity matrices that define the radiation dosage in
a discretization of the beam head. To minimize the treatment time of a patient the beam-on time and the
setup time need to be minimized. For a given row of the intensity matrix, the minimum beam-on time
is equivalent to the minimum number of binary vectors with the consecutive “1”s property that sum to
this row, and the minimum setup time is equivalent to the minimum number of distinct vectors in a set
of binary vectors with the consecutive “1”s property that sum to this row. We give a simple linear time
algorithm to compute the minimum beam-on time. We prove that the minimum setup time problem is
APX-hard and give approximation algorithms for it using a duality property. For the general case, we
give a 24

13 approximation algorithm. For unimodal rows, we give a 9
7 approximation algorithm. We also

consider other variants for which better approximation ratios exist.

∗IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, {nikhil,sbar}@us.ibm.com
†IDA Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540, don.coppersmith@idaccr.org.

This work was done while at IBM T.J. Watson Research Center.

1 Introduction

Radiation therapy is one of the commonly used cancer therapies. It has been shown to be effective, especially
in cases where the tumor is localized and metastases have not yet started to form. The radiation treatment
poses a tuning problem: the radiation needs to be effective enough to destroy the tumor, but it should
maintain the functionality of the organs close to the tumor (organs at risk). Towards this goal the design of a
radiation treatment has to be customized for each patient. This design is done using computer tomography
that detects the exact location of the tumor and the organs at risk.

The radiation is done using a linear accelerator positioned in a beam head that is positioned in a gantry
that can be rotated around the patient. (See Fig. 1(a).) The treatment design specifies the angles of the
radiation and its intensity. The angles are specified by a set of positions at which the gantry stops to release
radiation. (In most models these are subset of 36 possible positions.) The desired intensity of the beam
head at each gantry position is defined using an m × n intensity matrix, denoted I , which corresponds to a
discretization of the beam head into an m × n rectangular grid, with each of its entries called a bixel. The
intensity matrix contains positive integral entries that determine the desired radiation dosage in each bixel.

The radiation generated by the accelerator is uniform. Thus, in order to achieve the varying intensity
this radiation needs to be modulated. An emerging device for modulation is the multileaf collimator (MLC).
(See Fig. 1(b).) This device consists of a pair of leafs, a left leaf and a right leaf, for each row of the intensity
matrix (often referred to as a channel). Consider a time t. If the left leaf of channel i is positioned at �, for
0 ≤ � ≤ n, and the right leaf is positioned at r, for 1 ≤ r ≤ n + 1, where � ≤ r, then the radiation is
blocked in bixels (i, 1), . . . , (i, �) and (i, r), . . . , (i, n), and a uniform amount of radiation is delivered by
bixels (i, � + 1), . . . , (i, r − 1). To achieve the desired intensity I(i, j), radiation needs to be delivered by
bixel (i, j) for I(i, j) time units.

Figure 1: (a) a linear accelerator in a gantry (b) multileaf collimator both made by Varian

The positions of the multileaf collimator in the m channels at time t define a 0-1 m×n shape matrix St.
A “0” entry in St indicates a blocked bixel and a “1” entry indicates an active bixel. Note that the multileaf
collimator function implies that each row in St satisfies the consecutive 1’s property, that is, all the 1’s in a
row are consecutive.

To achieve the desired radiation intensity in T time units we need to find T shape matrices S1, . . . , ST

such that
∑T

i=1 Si = I where the summation is done entry-wise. The beam-on time of a treatment is
determined by T , the number of shape matrices used. The setup time is determined by the time it takes to
calibrate the multileaf collimator. The setup time varies according to the technology used. In some models

1

the leafs can be calibrated simultaneously and thus the setup time is determined by the number of distinct
shape matrices (once the shape matrix is set up, it can be used any number of times without any overhead).
We call this setup time the multileaf setup time. In other models each pair of leafs needs to be calibrated
separately, and thus the setup time depends on the number of movements of each pair. We call this setup
time the leaf setup time. Observe that the leaf setup time is determined by the number of distinct rows in the
shape matrices. To minimize the treatment time for a patient a linear combination of the beam-on time and
setup time needs to be minimized. (We note that in some models the setup time is not constant but depends
on the specific “from” and “to” shape matrices, in which case a more complex term is needed to estimate
the setup time accurately.)

In this paper we consider the minimization of beam-on and setup times separately. In many cases one
of these terms is dominant and thus minimizing each one separately leads in practice to treatment times that
are close to optimal. Our results assume unconstrained multileaf collimator whose position in each channel
is independent. Note that in the unconstrained case each channel can be considered separately.

From a combinatorial point of view, our problem is that of decomposing a matrix or a vector into a
small set of matrices or vectors of a special kind. In the beam-on problem the intensity matrix needs to be
decomposed into a small set of 0-1 shape matrices, while in the leaf setup problem, each channel in the
intensity matrix needs to be decomposed into a small set of interval vectors. An interval vector is a 0-a
vector that for some a > 0, that satisfies the consecutive a’s property.

Results. First, we note that the beam-on time minimization problem can be solved in linear time using a
simple algorithm. Most of the paper deals with the leaf setup time minimization problem. We note that setup
time seems to dominate the treatment time in many cases [9]. First, we prove a “duality” relation between the
setup time minimization problem and maximum partitioning of certain type of vectors. We use this “duality”
to prove that the leaf setup time minimization problem is APX-Hard, and then give several approximation
algorithms for this problem depending on the structure of the channels in the intensity matrix. As we shall
see, there is a trivial greedy algorithm that achieves an approximation guarantee of 2. Our main contribution
is to give algorithms that achieve a guarantee better than 2. For a “unimodal” channel, i.e., a row in the
intensity matrix whose only local minima are at its two ends, we give a 9

7 approximation algorithm. For
the general case we give a 24

13 approximation algorithm. We also give two variants of our general algorithm
which are shown to have better performance in specific cases depending on the number of local minima in
the channel.

Prior work. Radiation treatment design was considered extensively in the medical physics literature. (See,
e.g., [6, 5, 9] and references therein.) Previous algorithmic analysis of the setup and beam-on minimization
problems is quite limited. Boland, Hamacher and Lenzen [7] gave a polynomial time algorithm for mini-
mizing beam-on time. Their algorithm is based on an integer programming formulation that is shown to be
solved using network flow in a graph of quadratic size. An algorithm with improved running time for the
beam-on time minimization problem was given by Ahuja and Hamacher [1]. Their algorithm is also based
on network flow but in a graph of linear size. Our algorithm is much simpler and more efficient. To the best
of our knowledge this paper is the first to algorithmically analyze the setup time minimization problem. A
heuristic for a constrained variant of the (multileaf) setup time minimization problem was given in [8].

The rest of the paper is organized as follows. In Section A (that was moved to the Appendix due to space
constraints) we consider beam-on time minimization. In Section 2 we show the connection between the leaf

2

setup time minimization problem and maximum partition of Prefix Positive Zero Sum vectors (to be defined
later). In Section 3 we prove the hardness of the leaf setup time minimization problem. In Section 4 (and
the Appendix) we present the approximation algorithms for this problem. Finally, in Section 5 we conclude
with some open problems.

2 Setup time and vector partition

In this section we consider the setup time minimization problem. To formulate the problem we first define
interval vectors. For an integer b > 0 we call a 0-b vector V = (v1, . . . , vn) an interval vector of height
b if all the b’s are in consecutive positions. We use the triple (�, r, b) to denote such a vector, where v� =
. . . = vr−1 = b and vi = 0 everywhere else. We say that the vector begins at � and ends at r. Recall that
the (leaf) setup time minimization problem can be formulated as follows. Given a vector of non-negative
integers A = (a1, . . . , an) find a minimum set of interval vectors (�i, ri, bi) that sum to the input vector.

Consider an input vector A = (a1, . . . , an). For notational convenience add one entry (a0) to the head
of A and another entry (an+1) to the tail of A and let a0 = an+1 = 0. Define the difference vector of A,
denoted ∆A, to be the vector ∆A = (a1−a0, a2−a1, . . . , an+1−an). From the definition of ∆A it follows
that for i ∈ [1..n], the prefix sums

∑i
j=1 ∆A(i) = ai ≥ 0, and the sum

∑n+1
j=1 ∆A(i) = an+1 = 0. We call

such a vector Prefix Positive Zero Sum (PPZS) vector. We say that two vectors are “disjoint” if the index sets
of their nonzero entries are disjoint. Consider the following maximum PPZS vector partitioning problem.
Given a PPZS vector ∆ find a maximum set of disjoint PPZS vectors that sum to ∆. In this section we prove
the “duality” between the above two problems as follows.

Theorem 1 The minimum setup time for a vector A is t if and only if the maximum partition of ∆A is of
size z − t, where z is the number of nonzero entries in ∆A.

To prove the theorem we need first to prove some properties of the setup time minimization problem.
For an input vector A, we say that position i is an uptick if ∆A(i) > 0 (i.e., ai − ai−1 > 0). Similarly,
position i is a downtick if ∆A(i) < 0.

Lemma 2 There exists an optimal solution to the setup time minimization problem that consists only of
interval vectors that begin at an uptick and end at a downtick.

Proof: We show that any arbitrary solution can be transformed to one that has the required property without
increasing the number of interval vectors used. Given a solution S , suppose that S contains interval vectors
that do not begin at an uptick. Consider such an interval vector V = (�, r, b) with the minimum �. Thus
a� ≤ a�−1 and hence there must be at least one other interval vector V′ = (�′, r′, b′) in S that ends at r′ = �.
As �′ < �, by minimality of �, V ′ must begin at an uptick. If b = b′ we could obtain a better solution by
replacing V and V ′ by (�′, r, b). If b < b′, we replace V and V ′ by (�′, r′, b′− b) and (�′, r, b), both of which
begin at an uptick. If b > b′, we replace V and V ′ by (�′, r, b′) and Ṽ = (�, r, b− b′). Note that the height of
Ṽ is strictly less than that of V and hence applying this transformation repeatedly, we get a solution where
all interval vectors begin at upticks. An identical argument implies that all interval vectors end at downticks.

We call a solution that consists only of interval vectors that begin at upticks and end at downticks a
canonical solution. We now show how to view any canonical solution to the setup problem as a graph,

3

which will allow us to characterize the value of an optimum solution exactly. Let Iu denote the index set of
the upticks and Id denote the index set of the downticks.

Consider a canonical solution S = {V1, . . . , Vt}, where Vi = (�i, ri, bi) are interval vectors. Since all
interval vectors begin at upticks and end at downticks if some position j is an uptick, then the sum of heights
of all interval vectors that begin at position j is exactly equal to ∆A(j). Similarly, if j is a downtick then
the sum of heights of all interval vectors that end at j is exactly equal to |∆A(j)| = −∆A(j).

Associate a weighted bipartite graph G(S) = (Iu, Id, E) with a canonical solution S as follows. The
vertex sets are Iu and Id, a vertex i (corresponding to position i) has a positive weight equal to |∆A(i)|. For
each interval vector Vj ∈ S , we have an edge ej = (�j , rj) with weight bj .

We will show that each connected component of G(S) corresponds to a PPZS vector. Observe that G(S)
has t edges and z vertices. As S is canonical, the total weight of edges incident at a vertex is equal to the
weight of the vertex. Consider a connected component (Cu, Cd, EC) of G(S). Notice that all the edges that
are adjacent to vertices in C = Cu ∪Cd are in EC . It follows that every interval vector that begins at any of
the upticks in Cu must end at a downtick in Cd, and vice versa.

Consider the vector ∆ defined by the entries of the difference vector ∆A in the set of positions C; that
is, ∆(i) = ∆A(i), for i ∈ C , and ∆(i) = 0 otherwise. We claim that ∆ is a PPZS vector. To see this
consider any prefix sum

∑i
j=1 ∆(j). It is not difficult to see that the value of this sum is exactly the total

height of all interval vectors that begin at an uptick in positions Cu∩ [1..i] and end at a downtick in positions
Cd ∩ [i + 1..n + 1]. Thus,

∑i
j=1 ∆(j) ≥ 0, for i ∈ [1..n], and

∑n+1
j=1 ∆(j) = 0. It follows that a canonical

solution S to the setup problem for vector A induces a set of size p of disjoint PPZS vectors that sum to ∆A,
where p equals the number of connected components in G(S). Since G(S) has z vertices and p connected
components, the number of interval vectors in S (which equals the number of edges in G(S)) is at least
z − p. We conclude that a setup time t for vector A implies a partition of ∆A into at least z − t disjoint
PPZS vectors.

To complete the proof of Theorem 1 we show that a partition of ∆A into p disjoint PPZS vectors implies
setup time at most z − p for the vector A. Consider a PPZS vector ∆ in the partition. Let S∆ be the prefix
sum vector of ∆; that is A∆(0) = 0, and for i ∈ [1..n + 1], S∆(i) =

∑i
j=1 ∆(i). Since the sum of all

the prefix sum vectors S∆, for all PPZS vectors ∆ in the partition, is exactly A. It is sufficient to prove the
following lemma.

Lemma 3 Let ∆ be a PPZS vector with z nonzero entries and let S∆ be its prefix sums vector. There are
z − 1 interval vectors that sum to S∆.

Proof: We prove by induction on z. The base case is z = 2. In this case ∆ consists of two nonzero entries at
positions � < r. From the definition of a PPZS vector it follows that ∆(�) > 0 and ∆(r) = −∆(�). Hence,
the vector S∆ is exactly the interval vector (�, r,∆(�)).

For the inductive step consider z > 2 assume that the lemma holds for z′ < z. We simply show how to
generate a single interval vector V such that the difference vector ∆′ of the vector S∆−V has no more than
z − 1 nonzero entries. Consider a nonzero entry in ∆ with the minimum absolute value. Let the index of
this entry be j. If ∆(j) > 0, then generate the interval vector (j = �, r,∆(j)), where r > j is the minimum
index such that ∆(r) < 0. Similarly, if ∆(j) < 0, then generate the interval vector (�, j = r,−∆(j)),
where � < j is the maximum index such that ∆(�) > 0. Note that S∆(i) ≥ |∆(j)|, for i ∈ [�, r − 1]. Thus
V is a valid interval vector. Also the difference vector of S∆ − V has zero in position j and also has zeroes
in all positions ∆ has zeroes.

4

3 APX Hardness of the setup minimization problem

Theorem 4 The setup minimization problem is APX-Hard even for vectors with entries polynomially bounded
in n.

Proof: The proof is by showing a gap preserving reduction from the 3-partition problem. The 3-partition
problem is defined as follows. Given a threshold B and 3m integers p1, . . . , p3m such that

∑3m
i=1 pi = mB

and B/4 < pi < B/2 for each i, is there a partition of the 3m integers into m triples each of which sums
exactly to B.

Petrank [14] showed that unless P=NP, there exists an ε > 0 such that it is impossible to distinguish in
polynomial time whether there are exactly m or whether no more than (1 − ε)m disjoint triples that sum to
exactly B. This is true even for instances where B is polynomially bounded in m.

Given an instance of the 3-partition problem we define an instance of the setup minimization problem.
The input vector A consists of 4m − 1 entries A = (s1, s2, . . . , s3m, (m − 1)B, (m − 2)B, . . . , B), where
si =

∑i
j=1 pj . Note that this instance is unimodal and each uptick has value pi for some i and each downtick

has value B. The corresponding difference vector with 4m entries is ∆A = (p1, . . . , p3m,−B, . . . ,−B).
Suppose that for any ε′ > 0 it is possible to distinguish in polynomial time whether the setup time

for vector A is 3m or at least 3m(1 + ε′). This implies by Theorem 1 that it is possible to distinguish in
polynomial time whether the disjoint partition of ∆A into PPZS vectors is of size 4m− 3m = m or at most
4m− 3m(1+ ε′) = m(1− 3ε′). Note that each triple pi1 , pi2 and pi3 that sums to B corresponds to a PPZS
vector with four nonzero entries in positions i1, i2 and i3 and any one of the positions 3m + 1, . . . , 4m. As
each pi has size strictly between B/4 and B/2, each PPZS vector in the partition must have at least four
nonzero entries: at least three positive and at least one negative (of value −B). Moreover, each PPZS vector
that has more than four nonzero entries must have at least seven nonzero entries: at least five positive and at
least two negative (of value −B).

Set ε′ = 1
7ε. If the partition of ∆A is of size m then clearly all the PPZS vectors have exactly four

nonzero entries and thus there are m disjoint triples that each sums to B, and vice versa. On the other hand,
suppose there is a disjoint partition of ∆A into m(1 − 3ε′) or more PPZS vectors. Let x denote the number
of PPZS vectors with four nonzero entries and let y denote the number of vectors of size at least seven.
Thus we have than x + y ≥ m(1 − 3ε′) and that 4x + 7y ≤ 4m which together imply that x is at least
m(1 − 7ε′) = m(1 − ε), Thus, there are least m(1 − ε) triples in the partition problem that sum to exactly
B.

4 Approximating the minimum setup time

In this section we describe several approximation algorithms for the minimum setup time for an input vector
A. First, note that Lemma 3 implies a simple algorithm that finds z − 1 interval vectors that sum to A,
where z is the number of nonzero entries in ∆A. This is since ∆A is a PPZS vector. On the other hand, the
maximum size of any partition of ∆A into disjoint PPZS vectors is at most �z

2�, since each such vector must
have at least two nonzero entries, implying that the minimum setup time is at least z − �z2� = �z

2	. Thus a
factor two approximation is trivial. Below, we show approximation algorithms with better ratios.

The basic idea for our algorithms will be the following. Note that a PPZS vector may be in a partition of
∆A if its nonzero entries are a subset of the nonzero entries of ∆A. We call such a vector a part of ∆A. We

5

compute the collection of all possible PPZS vectors with at most y nonzero entries that are parts of ∆A. This
can be done in time O(ny) and hence is polynomial for constant y. We then find a large (close to optimum)
cardinality subset S of disjoint PPZS vectors from the collection such that either S is a partition of ∆A or in
case it is not a partition of ∆A, the vector V consisting of all the nonzero entries of ∆A that are not entries of
vectors in S is a PPZS vector. In this case S ∪{V } is a disjoint partition of ∆A. Our algorithms depends on
the “shape” of the vector A. Roughly speaking, if the vector A has too many local minima, this complicates
the task of finding the right set of PPZS vectors S such that the remaining vector V is also PPZS. We begin
by considering the (simplest) unimodal case in which the only local minima of A are at its two ends. Then,
we consider the general case and some of its variants.

4.1 Unimodal input vectors

Consider a unimodal vector A and let ∆A be its corresponding difference vector. Note that ∆A consists
of a block of nonnegative entries followed by a block of non-positive entries. A useful property of such
difference vectors is the following.

Lemma 5 Consider a PPZS vector ∆ that consists of a block of nonnegative entries followed by a block of
non-positive entries. Let S be any set of disjoint PPZS vectors, each of which is a part of ∆A. The vector V

consisting of all the nonzero entries of ∆A that are not entries of vectors in S is a PPZS vector.

Proof: Note that the vector V also consists of a block of nonnegative entries followed by a block of non-
positive entries. Also, the sum of all these entries is zero since the sum of all entries of the vectors in S is
zero. Hence, each prefix sum must be nonnegative and V is a PPZS vector.

It follows that in order to find a good approximation we need to find a large cardinality set of disjoint
PPZS vectors, each of which is a part of ∆A. We will find such a set consisting only of PPZS vectors with
at most y nonzero entries. Identify each such vector with the set of indices of its nonzero entries. Then
the problem is reduced to the following set packing problem: Given a collection C = {S1, S2, . . .} of sets
where each set Si has size at most y, find a maximum cardinality sub-collection C′ ⊆ C of disjoint sets.

The best known approximation algorithm for this set packing problem is an elegant local search based
algorithm due to Hurkens and Schrijver [11] which achieves an approximation ratio of y/2.

Our algorithm for unimodal vectors is the following: Compute the set Sy of all PPZS vectors with at
most y nonzero entries that are part of ∆A, for y = 2, 3 and 4. Apply the algorithm of [11] to find a subset
Cy ⊆ Sy of disjoint vectors, for each y = 2, 3 and 4 and choose the subset Cy with the maximum cardinality.

Theorem 6 The algorithm described above is a 9
7 approximation algorithm for the minimum setup time

problem for unimodal input vectors.

Proof: Let Opt denote the optimum setup time for input vector A. By Theorem 1, ∆A can be partitioned
into z − Opt PPZS vectors, where z is the number of nonzero entries in ∆A. Let nk denote the number of
PPZS vectors with k nonzero entries in the partition defined by Opt. By definition ni satisfies∑

i>1

i · ni = z and Opt =
∑
i>1

(i − 1) · ni (1)

For a fixed choice of y, the algorithm of [11] guarantees that we can find at least
∑y

i=2
2
y ni disjoint vectors

in Sy , and hence a solution with setup cost at most
∑y

i=2(i − 2/y) · ni +
∑

i>y i · ni. To show that our

6

algorithm is a 9
7 approximation, it suffices to show that for any choice of n2, n3, . . . that satisfies condition

(1), the inequality
y∑

i=2

(i − 2
y
) · ni +

∑
i>y

i · ni ≤
9
7

∑
i≥2

(i − 1)ni

holds for at least one of y = 2, y = 3 or y = 4.
Without loss of generality, we can assume that ni = 0 for i ≥ 5, because Opt incurs a setup time of at

least i − 1 for any PPZS vector with i nonzero entries while our algorithm incurs a setup time of at most i.
As 5

4 ≤ 9
7 , an instance where ni > 0 for i ≥ 5 can only improve the approximation ratio. Thus it suffices to

show that one of the following inequalities holds. (The first corresponds to y = 2, the second to y = 3 and
the third to y = 4.)

n2 + 3n3 + 4n4 ≤ 9
7
(n2 + 2n3 + 3n4)

4
3
n2 +

7
3
n3 + 4n4 ≤ 9

7
(n2 + 2n3 + 3n4)

3
2
n2 +

5
2
n3 +

7
2
n4 ≤ 9

7
(n2 + 2n3 + 3n4)

Multiplying the first inequality by 2, second by 3 and third by 2 and summing each side of the resulting
inequalities gives an identity which implies that one of these inequalities always holds for any n2, n3 and
n4.

It is easily seen that the analysis for the above algorithm is tight by considering an instance where the
optimum solution has n2 = 2(n+1)/11, n3 = (n+1)/11 and n4 = (n+1)/11. As 2n2+3n2+4n4 = n+1,
this is a valid choice of ni and the optimum setup time is n+1−n2−n3−n4 = 7(n+1)/11. Our algorithm
on the other hand, finds n2 = 2(n + 1)/11 vectors for y = 2, 2/3 · (n2 + n3) = 2(n + 1)/11 vectors for
y = 3, and (n2 + n3 + n4)/2 = 2(n + 1)/11 vectors for y = 4. In either case, our solution has setup time
equal to (n + 1) − 2(n + 1)/11 = 9(n + 1)/11.

4.2 Arbitrary input vectors

For unimodal input vectors we used the key fact (Lemma 5) that any collection of disjoint PPZS vectors that
are parts of ∆A can be used in the solution. However, this is not true in general. Consider for example when
A = (10, 5, 10) and hence ∆A = (10,−5, 5,−10). In this case, the PPZS vector S = (10, 0, 0,−10) is a
valid part of ∆A. However we cannot choose this in the solution, because V = ∆A − S = (0,−5, 5, 0)
which is not a valid PPZS vector (the second prefix sum is negative).

Given an input vector A to the setup minimization problem, let z denote the number of non-zero entries
in ∆A. We say that position i is a local minima if ∆A(i) < 0 and ∆A(j) > 0 where j is the smallest index
greater than i such that ∆A(j) is non-zero. Note that the number of local minima can be no more than z/2.
We will show the following three results:

1. We give a 3/(2 − ε) approximation when the number of local minima is no more than εz.

2. We improve this guarantee slightly when ε is o(1/ log z). In particular, we give a (11 + 9e−2 −
2e−3)/(8 + 6e−2 − 2e−3) ≈ 1.391 approximation when the number of local minima is o(z/ log z).

7

3. Finally, we give a 24/13 ≈ 1.846 approximation in the general case in which the number of local
minima could be arbitrary.

Recall that our goal is to find a large cardinality set of PPZS vectors that are part of ∆A, such that (1)
no two vectors share a nonzero position, and (2) the vector given by subtracting all the prefix sum vectors of
these vectors from A does not have any negative entries. We call property (1) the independence property and
property (2) the packing property. Note that such a set of cardinality p induces a solution of size z − p − 1,
where z is the number of nonzero entries in ∆A.

Our first and the second algorithms above are based on rounding the solution of a certain linear program
(LP) that models the properties above. We also show certain structural properties of these linear programs
which are essential to our rounding scheme. For lack of space we defer the description of these algorithms
to Section B in the Appendix.

We describe here the algorithm for the general case, where the number of local minima could be arbi-
trary.

4.2.1 The algorithm for the general case:

Our main idea is the following. We will only be interested in PPZS vectors of size 2. Note that if some
fixed optimum solution Opt does not use size 2 vectors, then the setup time is at least 2z/3 and hence we
trivially have a 3/2 approximation. Thus we will focus on the case when Opt uses at lot of size 2 vectors
(in particular it chooses close to z/2 such vectors). Our goal then will be to obtain a large subset of such
vectors that simultaneously satisfies the independence and the packing properties.

We do not know how to find such a set of size 2 PPZS vectors directly and hence adopt an indirect
approach. Recall that each such vector ∆ with non-zeroes in positions � and r (for � < r) corresponds to an
interval vector (�, r,∆(�)) in the solution. Call such interval vectors candidate interval vectors. We show
that there exists a certain “minimal” set of independent interval vectors R2, such that any feasible collection
of candidate interval vectors can be transformed (without any loss) into one that only uses vectors from R2.
Since R2 only contains independent vectors, |R2| ≤ z/2. Now, if Opt uses close to z/2 vectors in its
solution, then it must have discarded very few vectors from R2. This allows us to use the known results for
the generalized caching problem considered by [2, 3], and hence find a solution where number of discarded
intervals is no more than a constant times that under Opt.

We now describe the details. The following lemma describes the properties of the set R2. Due to space
constraints its proof appears in Section C of the Appendix.

Lemma 7 Given a vector A, there exists a set R2 of interval vectors that satisfies the following properties:

1. No two interval vectors in R2 begin or end at the same position (hence they are independent).

2. For any set S of candidate interval vectors that satisfies the independence and packing properties,
there exists another set S′ ⊆ R2, such that |S′| ≥ |S| and S′ satisfies the packing property. (Since
S′ ⊆ R2 it also satisfies the independence property.)

The set R2 is of linear size and can be obtained in linear time.

8

To find a large subset of Rh
2 that satisfies the independence and packing properties we use known results

for the general caching problem defined below.
In the general caching problem (with unit profit) we are given a vector A = (a1, . . . , an) where ai

denotes the amount of cache available at time i. There is collection of tasks T = {T1, . . . , Tm}, where each
task Ti, specified by (�i, ri, hi), requires hi units of cache during the interval [�i, ri − 1]. A set of tasks is
feasible if the required cache size for these tasks does not exceed the available cache size at any time. The
goal is to find a feasible collection of tasks such that the total number of tasks not included in the collection
is minimized.

This problem was first considered by [2] who gave a logarithmic approximation for the problem. Later
[3] gave an algorithm with an approximation ratio of 4. Note that the approximation ratio is for the number
of tasks excluded rather than included in the collection.

Our algorithm is as follows. We construct an instance of the general caching problem where T = R2.
We apply the algorithm of [3] to this instance and obtain a collection S of interval vectors that satisfy the
independence and packing properties. We use this to construct a solution with setup time at most z−|S|−1,
where z is the number of nonzero entries in ∆A.

Theorem 8 The algorithm stated above is a 24
13 ≈ 1.846 approximation algorithm for the setup minimization

problem.

Proof: Consider an optimal canonical solution S for the setup problem. Let S2 be the set of interval vectors
in the solution that begin at an uptick and end at a downtick of the same value. By the definition of ni,
we have n2 = |S2|. By Lemma 7 the set R2 contains a subset of size n2 that satisfies the independence
and packing properties. Thus, the solution returned by the algorithm of [3] for the general caching problem
contains at least max{0, |R2| − 4(|R2| − n2)} interval vectors. Moreover, since

∑
i≥2 i · ni = z, we have

that
∑

i≥3 ni ≤ (z − 2n2)/3. Since Opt =
∑

i≥2(i− 1) · ni, we have opt =
∑

i≥2 i · ni − n2 −
∑

i≥3 ni ≥
z − n2 − (z − 2n2)/3 = (2z − n2)/3.

We consider two cases based on the magnitude of α = 4((|R2| − n2). If α ≥ |R2|, or equivalently,
n2 ≤ 3|R2|/4 ≤ 3z/8, the approximation ratio is most

z

Opt
≤ z

(2z − n2)/3
≤ 3z

2z − 3z/8
=

24
13

.

If α < |R2|, let β denote |R2| − α. Then, the approximation ratio is at most

z − β

(2z − n2)/3
=

3(z − β)
2z − (R2 − α/4)

=
3(z − β)

2z − β/4 − 3R2/4

As |R2| ≤ z/2 this is at most
24(z − β)
13z − 2β

which is clearly maximized when β = 0 and hence is at most 24
13 .

5 Conclusions and open problems

In this paper we considered the beam-on time and setup time minimization problems in radiation therapy.
We presented an efficient linear time algorithm for the beam-on time minimization problem. We proved that

9

the setup time minimization problem is APX Hard, and gave approximation algorithms for the problems
that are better than the naive 2 approximation for the problem.

The area still has a lot of open problems, such as maximizing the combination of beam-on and setup
times, considering multileaf rather than leaf setup time, considering constrained shape matrices and more.

References

[1] R.K. Ahuja and H.W. Hamacher. A network flow algorithm to minimize beam-on time for unconstrained multi-
leaf collimator problems in cancer radiation therapy. Networks, 44 (2005), 36–41.

[2] S. Albers, S. Arora and S. Khanna. Page replacement for general caching problems. Proc. 10th ACM-SIAM
Symp. on Discrete Algorithms, 31–40, 1999.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and B. Schieber. A unified approach to approximating resource
allocation and scheduling. Journal of the ACM, 48 (2001), 1069–1090.

[4] S. Bernstein. Theory of Probability. Moscow, 1927.

[5] A.L. Boyer. Use of MLC for intensity modulation. Medical Physics, 21 (1994), 1007.

[6] T.R. Bortfeld, D.L. Kahler, T.J. Waldron and A.L. Boyer. X-ray field compensation with multileaf collimators.
Int. Journal of radiation Oncology, Biology, Physics, 28 (1994), 723–730.

[7] N.H. Boland, H.W. Hamacher and F. Lenzen. Minimizing beam-on time in cancer radiation therapy using
multileaf collimators. Networks, 43 (2004), 226–240.

[8] D.Z. Chen, X.S. Hu, S. Luan, C. Wang and X. Wu. Mountain reduction, block matching, and applications in
intensity modulation radiation therapy. Proc. 21st ACM Symp. on Computational Geometry, 35–44, 2005.

[9] J. Dai and Y. Zhu. Minimizing the number of segments in a delivery sequence for intensity modulated radiation
therapy with multileaf collimator. Medical Physics, 28 (2001), 2113–2120.

[10] H.N. Gabow, J.L. Bentley and R.E. Tarjan. Scaling and related techniques for geometry problems. Proc. 16th
ACM Symp. on Theory of Computing, 135–143, 1984.

[11] C.A.J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application
to the worst-case ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics, 2 (1989),
68–72.

[12] S. Kamath, S. Sahni, J. Palta and S. Ranka. Algorithms for optimal sequencing of dynamic multileaf collimators.
Physics in Medicine and Biology, 49 (2004), 33–54.

[13] S. Kamath, S. Sahni, J. Palta, S. Ranka and J. Li. Optimal leaf sequencing with elimination of tongue-and-groove
underdosage. Physics in Medicine and Biology, 49 (2004), N7–N19.

[14] E. Petrank. The hardness of approximation: gap location. Computational Complexity, 4 (1994), 133–157.

[15] J. Vuillemin. A Unifying Look at Data Structures. Comm ACM, 23(1980), 229–239.

10

Appendix

A Beam-on time minimization

The beam-on minimization problem is defined as follows. Given an intensity matrix I find a minimum set of
0-1 shape matrices S1, S2 . . . such that for every i ∈ [1..m] and j ∈ [1..n], we have

∑
x=1 Sx(i, j) = I(i, j).

Assuming unconstrained multileaf collimator the problem can be solved for each channel separately. The
single channel problem is: given a vector of non-negative integers A = (a1, . . . , an) find a minimum set
of 0-1 vectors with the consecutive 1’s property that sum to the input vector. We note that without loss of
generality we may assume that all entries are positive since the problem can be solved separately for each
consecutive sequence of positive entries.

To define our algorithm it is enough to specify for every input vector A = (a1, . . . , an) a 0-1 vector,
denoted VA, that is in an optimal solution. In order to find a complete solution we can continue in the
same manner; that is, find next the 0-1 vector that is in a solution for the input vector A′ = A − VA =
(a1 − VA(1), . . . , an − VA(n)), then the vector VA′−VA′ , and so forth until we reach the all zeroes vector.

All left to be done is to specify how to find VA given A. For convenience assume that A has n+1 entries
and that an+1 = 0. Note that VA is defined by the half open interval [L(VA), R(VA)) of its consecutive
“1”s, i.e., L(VA) and R(VA) − 1 are the indices of the leftmost and rightmost “1”s in VA. The following
“greedy” algorithm finds VA: L(VA) is the minimum index i such that ai > 0 and R(VA) is the minimum
index j ≥ L(VA) such that aj = 0. The correctness follows from the following claim.

Claim 9 There is an optimal solution for A that includes VA.

Proof: Note that any optimal solution for A must include at least one 0-1 vector whose leftmost “1” is
in position L(VA). Consider a solution that includes such a vector U with the maximum number of 1’s.
We prove by contradiction that U = VA. To obtain a contradiction assume that R(U) �= R(VA). Clearly
R(U) < R(VA). In this case there must be another vector U′ in the solution that has a “1” in position
R(U). Clearly, L(U ′) > L(U) and R(U ′) > R(U). However, in this case we can construct another
optimal solution by replacing the pair of vectors U and U′ by the pair U ∨ U ′ and U ∧ U ′, where the ∨
and ∧ operations are done entry-wise. However, L(U ∨ U′) = L(U) and R(U ∨ U ′) = R(U ′) > R(U),
contradicting our choice of the solution.

To compute the solution in linear time we use the Cartesian tree data structure. The Cartesian tree is a
binary search tree proposed by Vuillemin [15] that is defined recursively for a vector A = (a1, . . . , an) as
follows. Each node t of the tree corresponds to an entry t(A) in A. The root corresponds to the minimum
entry in A (ties are broken arbitrarily). Suppose that ai is the minimum entry. The left subtree of the
root is the Cartesian tree defined for (a1, . . . , ai−1), and the right subtree is the Cartesian tree defined for
(ai+1, . . . , an). It is well known [10] that a Cartesian tree can be constructed in linear time. Associate an
pair (L(v), R(v)) with each node of the tree where L(v) is the index of the leftmost entry in the subtree
rooted at v, and R(v) is one plus the index of rightmost entry in the subtree. It is not difficult to see that
the solution computed by our algorithm for the vector A consists of the following 0-1 vectors defined by
the nodes of the Cartesian tree. For the root node t the solution contains t(A) vectors (L(t), R(t)), for each
non-root node t the solution contains t(A) − t′(A) vectors (L(t), R(t)), where t′ is the parent of t in the
tree.

i

We note that given a solution to the beam-on minimization problem, any feasible matching of the left
endpoints in the solution to the right endpoints (i.e., a matching that always matches a left endpoint to a right
endpoint with a larger of equal index) yields also a solution. This observation is useful in case there are side
constraints that need to be satisfied by the solution.

B LP based approximations

Let Sy denote the set of all PPZS vectors that are parts of ∆A and have size at most y. Clearly, the cardinality
of Sy is O(ny). We consider the following Integer Programming formulation to find a maximum cardinality
subset of Sy that satisfies the independence and packing properties. We have a binary variable xi for each
PPZS vector ∆Vi in Sy . Let Vi(j) denote jth prefix sum of ∆Vi . Finally, let ci(j) be a constant which is 1
if ∆Vi has a non-zero entry at j, and 0 otherwise. Consider the following formulation.

max
∑

i

xi subject to

∑
∆Vi∈Sy

Vi(j)xi ≤ A(j) ∀1 ≤ j ≤ n (2)

∑
∆Vi∈Sy

ci(j)xi ≤ 1 ∀1 ≤ j ≤ n (3)

xi ∈ {0, 1} ∀i ∈ [1, . . . , |Sy|] (4)

Note that constraints 2 in the IP ensure that the subset of Sy satisfies the packing property, thus we call
these constraints the packing constraints, and the constraints 3 ensure that the PPZS vectors are disjoint,
thus we call them independence constraints. In the LP formulation we replace constraint 4 by 0 ≤ xi ≤ 1,
for each i ∈ [1, . . . , |Sy|].

B.1 Simplifying the LP further

We now show how to reduce the number of packing constraints without affecting the quality of the solution.

Lemma 10 It suffices to consider packing constraints (2) only at positions j that are a local minima in A.

Proof: Consider an (infeasible) solution xi, for i ∈ [1, . . . , |Sy|]. We show that if there is a position where
the packing constraint is violated for this solution, then there is some local minima where the packing
constraint is also violated.

Let A∗ denote the vector
∑

i xiVi, Let j be some position that is not a local minima where A∗(j) > A(j).
Let j1 < j and j2 > j be the indices of the closest local minima to j. Suppose that ∆A(j) > 0, we show
that the packing constraint is also violated at j1. (If ∆A(j) < 0, a symmetric argument shows that the
packing constraint is also violated at j2.) As ∆A(j) > 0, and by definition of j1, we have ∆A(y) > 0
for y ∈ [j1 + 1..j]. Note that A(j) = A(j1) +

∑j
y=j1+1 ∆A(y). Also the total height of the interval

vectors in a canonical solution that begin in a position in [j1 + 1..j] is bounded by
∑j

y=j1+1 ∆A(y). Thus

A∗(j) ≤ A∗(j1) +
∑j

y=j1+1 ∆A(y). Hence, A∗(j) > A(j) implies A∗(j1) ≥ A∗(j) −∑j
y=j1+1 ∆A(y) >

A(j) −∑j
y=j1+1 ∆A(y) = A(j1).

We now describe our algorithms.

ii

B.2 At most εz local minima

We will consider the LP described in Section B for PPZS vectors of size 2 (i.e. Sy = S2). In this case, we
can eliminate the independence constraints completely by using Lemma 7 and restricting the set of candidate
PPZS vectors to R2. Observe that by Lemma 7, this leaves the solution unaffected.

Let M denote the positions of all local minima of A. By Lemma 10 it suffices to consider the following
linear programming relaxation that we call LP2:

max
∑

i

xi subject to (5)

∑
∆Vi∈R2

Vi(j)xi ≤ A(j) ∀j ∈ M (6)

0 ≤ xi ≤ 1 ∀i ∈ [1, . . . , |R2|] (7)

As LP2 has at most M non-trivial constraints (6), any basic feasible solution to LP2 has at at most |M|
variables that are set fractionally, i.e. their value is strictly between 0 and 1. Let n2 denote the maximum
number of vectors of size 2 that can be packed feasibly in any integral solution. This implies the following,

Lemma 11 A basic feasible solution to LP2 has at least n2 − |M| variables integrally set to 1.

Theorem 12 If |M| ≤ εz, the algorithm that just solves LP2 and chooses the interval vectors for which
xi = 1 is a 3/(2 − ε) approximation.

Proof: Let Opt be the value of an optimum solution for input vector A, and let z be the number of non-
zeros in ∆A. Then,

∑
i≥2 i · ni = z and Opt = z − (

∑
i≥2 ni). Now the algorithm described above chooses

x = max(0, n2−|M|) interval vectors from R2, and thus has a setup time of z−x. Thus the approximation
ratio is

z − x

z − (
∑

i≥2 ni)

As
∑

i≥3 ni ≤ (z − 2n2)/3), the optimum can be lower bounded by z − n2 − (z − 2n2)/3 = (2z − n2)/3.
Finally, as n2 ≤ x + |M| ≤ x + εz, optimum is at least ((2 − ε)z − x)/3. Thus the approximation ratio is
at most

z − x

((2 − ε)z − x)/3

The above term is maximized when x = 0, and hence is at most 3/(2 − ε).

B.3 o(z/ log z) local minima

Consider S3, the set of all PPZS vectors ∆ that have at most 3 non-zero entries and whose entries are a
subset of ∆A. Let ε be an arbitrarily small constant. We call a PPZS vector ∆Vi ∈ S3 bad if there is some
local minima j ∈ M such that Vi(j), is greater than ε2A(j)/(10 log(z)). Let R be the set obtained by
removing all the bad PPZS vectors from S3.

Our algorithm is as follows:

1. We begin by solving the linear programming relaxation of the integer program defined by 2-4, with
the set of PPZS vectors restricted to R. Let x∗ denote the LP solution.

iii

2. Let R+ denote the set of PPZS vectors Vi for which x∗
i > 0. For each i ∈ R+, let ti denote the

quantity 1
x∗

i
ln(1

1−x∗
i (1−ε)). We say that two vectors i and j are neighbors there is some position k

where both ci(k) = cj(k) = 1, i.e. if they share some uptick or downtick.

3. We round the solution as follows: We initialize each xi = 0. For each i ∈ R+, we begin a Poisson
process at time 0, that chooses i (i.e. sets xi = 1) with with rate x∗

i . That is, if xi = 0 at time t, then
the probability that i is chosen during the infinitesimal time interval (t, t + dt) is x∗i dt.

The process for i continues until one the following event happens:

(a) The PPZS vector i gets chosen.

(b) Some neighbor of i gets chosen.

(c) Time reaches ti.

Note that though the above algorithm is stated in terms of time being continuous, it can be implemented
in time polynomial in z in a straightforward way. We now analyze the above algorithm. Let S denote
the solution obtained after rounding. Let Opt denote the cost of some fixed optimum solution and let n2
and n3 be the number of PPZS vectors with 2 and 3 non-zero entries used by Opt. We can assume that
n2 + n3 = Ω(z), since otherwise Opt will have a setup time of at least 3z/4 − o(z) and hence even if
S = ∅, we have a 4/3 approximation (which is better than what we are aiming for). As at most 10 log z/ε2

PPZS vectors are bad for any local minima, at most |M| · 10 log z/ε2 = o(z) vectors are removed by
restricting our attention to R instead of S3. Thus the value of the LP solution is at least n2 + n3 − o(z)
which is at least (1 − ε)(n2 + n3) as n2 + n3 = Ω(z).

Clearly, the rounding procedure ensures that if i is chosen then, no neighbor of i is chosen, and thus all
PPZS vectors in S will be disjoint. We first show that S satisfies the packing constraints at the local minima
(and hence at all 1 ≤ j ≤ n, by Lemma 10) with high probability. Let pi denote the probability that i is
chosen in S. Since the process for i definitely stops by time ti, clearly pi ≤ 1 − e−tix

∗
i = (1 − ε)x∗

i .
Consider a particular local minima k. Let Y (i) be the random variable that denotes the height contributed

by Vi to position k in the solution S. Thus Y (i) = Vi(k) with probability pi and 0 otherwise. Since pi is
at most (1 − ε)x∗

i it follows that E[
∑

i Y (i)] ≤ (1 − ε)A(k). We are interested in the upper bound the
probability of the event that

∑
i Y (i) > A(k). We use the following tail inequality due to Bernstein [4].

Theorem 13 (Bernstein’s Inequality) Let X1, . . . ,Xn be independent random variables with Xi−E[Xi] ≤
d for all i ∈ {1, . . . , n}. Let S = X1 + . . . + Xn, and t > 0. Then, with σ2

i = E[X2
i] − E[Xi]2 we have

that

Pr[S − E[S] ≥ t] ≤ exp

(
−t2

2
∑n

i=1 σ2
i + 2td/3

)

We apply Theorem 13 with Xi = Y (i). As none of the vectors in R is bad, Vi(k) ≤ ε2A(k)/(10 log z),
thus Xi − E[Xi] ≤ Xi ≤ ε2A(k)/(10 log z) for all i. The variance

σ2
i ≤ E[Xi]2 ≤ piVi(k)2 ≤ (1 − ε)x∗

i Vi(k)2 ≤ x∗
i Vi(k)2

Thus, ∑
i

σ2
i ≤

∑
i

x∗
i Vi(k)2 ≤

∑
i

x∗
i Vi(k) · ε2A(k)/(10 log z)

iv

which is at most ε2A2(k)/(10 log z) as x∗
r satisfy the packing the constraints. As E[

∑
i Y (i)] ≤ (1−ε)A(k),

by Theorem 13 it follows that

Pr

[∑
i

Y (i) > A(k)

]
≤ Pr

[∑
i

Y (i) − E[
∑

i

Y (i)] > εA(k)

]

≤ exp

(
−ε2A(k)2

2ε2A2(k)/(10 log z) + 2εA(k) · ε2A2(k)/(30 log z)

)

≤ z−3

As there are at most z/2 local minima, by the union bound it follows that the rounded solution satisfies
the packing constraints with probability at least 1 − 1/2z2.

We now analyze the number of vectors present in S after the rounding.

Lemma 14 Let n∗
2 and be n∗

3 the contribution of vectors with size 2 and 3 respectively to the objective
function in the optimum LP solution. Then, S contains at least (1 − ε)(n∗2(1 − e−2)/2 + n∗

3(1 − e−3)/3)
intervals in expectation.

Proof: Consider a vector ∆Vi with two non-zero entries and let N(i) denote its neighbors. Due to the
independence constraints 3, the quantity

∑
i′∈N(i) x∗

i′ is at most 2 − 2x∗
i . Thus at any time the rate at which

either ∆Vi or some vector in N(i) is chosen is at most 2 − x∗i and hence at most 2. Hence the probability
that none of these vectors is chosen by time t is at least e−2t. Thus the probability that i is chosen during the
infinitesimal interval [t, t + dt] is equal to xidt times the probability that none of i or N(i) has been chosen
during [0, t] which is at least xie

−2tdt. Thus the probability that i is chosen in S is at least∫ ti

0
xie

−2tdt =
xi

2
(1 − e−2ti) =

xi

2
(1 − (1 − (1 − ε)xi)

2
xi)

≥ xi

2
(1 − e−2(1−ε))

> (1 − ε)
xi

2
(1 − e−2)

Thus S contains at least (1 − ε)n∗2((1 − e−2)/2) vectors of with two non-zero entries. A similar argument
shows that S contains at least (1 − ε)n∗3((1 − e−3)/3) vectors with three non-zero entries.

Let α2 denote (1 − e−2)/2 and let α3 denote (1 − e−3)/3. As n∗
2 + n∗

3 ≥ n2 + n3 − o(z), and
conditional on the fact that S satisfies the packing constraints, S contains at least (1 − 2ε)(α2n2 + α3n3)
PPZS vectors. As ε is arbitrarily, this quantity approaches α2n2 + α3n3. By Theorem 12, we can also find
n2 − |M| = n2 − o(z) disjoint PPZS vectors with two non-zero entries

Consider the algorithm that chooses the best of the two guarantees. Thus our algorithm has a setup time
which is the minimum of n2 + 3n3 + o(z) and (2 − α2)n2 + (3 − α3)n3 + o(z). Since n2 + n3 = Ω(z),
we will henceforth ignore the o(z) term above.

Let α denote the desired approximation ratio 1 + 1−α2
2−2α2+α3

= 11+9e−2−2e−3

8+6e−2−2e−3 ≈ 1.391. It suffices to
show that for any value of n2 and n3 at least one of the following inequality holds:

n2 + 3n3 ≤ α(n2 + 2n3)

(2 − α2)n2 + (3 − α3)n3 ≤ α(n2 + 2n3)

Multiplying the first equation by (1 − 2α2 + α3) and adding to the second, and doing some algebraic
manipulation gives the identity 0 ≤ 0, which implies our result.

v

C The algorithm for the general case

Proof of Lemma 7: We first show how to construct R2, and then show how to map a set S of candidate
interval vectors to a set S′ ⊆ R2 with the required properties.

By the definition of candidate interval vectors any two such vectors with different heights do not begin
and end at the same position. Thus, it suffices to show how to construct Rh

2 , the set R2 restricted to
interval vectors of height h. Let Sh denote S restricted to interval vectors of height h. To find S′ ⊆ R2,
it suffices to show that we can find a set S′

h ⊆ Rh
2 such that |S′

h| ≥ |Sh| and for each entry i ∈ [1..n],∑
V ∈S′

h
V (i) ≤∑

V ∈Sh
V (i).

To construct Rh
2 , we start with Rh

2 = ∅ and an empty stack T . For i = 1, 2, . . . , n, we repeat the
following: If ∆A(i) = h, then we push i on to the stack, If ∆A(i) = −h and the stack if not empty, we
pop the top entry t on the stack and add the interval vector (t, i, h) to Rh

2 . If ∆A(i) = −h, and the stack is
empty, we discard i and move to i + 1.

It is easy to see that the sets Rh
2 , for all possible heights, can be constructed simultaneously in O(n) time.

By construction no two interval vectors in Rh
2 begin or end at the same position. Moreover, any two intervals

corresponding to two interval vectors in Rh
2 are either non-overlapping or nested. Thus, these intervals form

a laminar family of intervals and hence Rh
2 can be viewed naturally as a collection of trees. The intervals

along any path in this tree are nested. Finally, since Rh
2 is constructed greedily, it is maximal in the sense

that no interval vector V ∈ Rh
2 can be replaced by another interval vector V ′ �= V such that the interval

corresponding to V ′ is contained in that corresponding to V , without violating the independence property
of Rh

2 . Similarly, no interval vector can be added to Rh
2 without violating the independence property.

Given Sh, we now show how to obtain S′
h ⊆ Rh

2 with the required properties. We construct S′
h recur-

sively. Start with S′
h = Sh ∩ Rh

2 and remove these vectors from Sh and Rh
2 . From now on assume that

Sh ∩Rh
2 = ∅.

Consider an interval vector U ∈ Sh. Due to maximality of Rh
2 , there is some interval vector V ∈ Rh

2

that either begins at the same position as U or ends at the same position as U . Hence, there is some interval
vector (�, r, h) ∈ Rh such that (�, r) is contained in the interval corresponding to U . Note that in the tree
representation of the laminar family Rh

2 , the interval L = (�, r, h) is a leaf in the subtree rooted at V .
If no interval vector in Sh either begins at position � or ends at position r, then we add L to S′h and

remove U from Sh. Note that L ≤ U entry-wise and thus this maintains the properties. None of the
remaining vectors in Rh

2 and Sh begin at � or end at r, and thus we can proceed recursively.
Suppose that there is a vector U′ = (�, r′, h) ∈ Sh that begins at position �. (The case where U′ ends at

r is symmetric.) By our assumption U′ /∈ Rh
2 . Since (�, r, h) is a leaf it must be that r′ > r. We consider

two cases: If no interval vector in Sh ends at position r, then we add L to S′
h and remove U ′ from Sh. Note

that L ≤ U ′ entry-wise and thus this maintains the properties. None of the remaining vectors in Rh
2 and Sh

begin at � or end at r, and thus we can proceed recursively.
If there is an interval vector (�′, r, h) ∈ Sh that ends at position r, then we must have �′ < �. Replace

the interval vectors (�′, r, h) and (�, r′, h) in Sh by the interval vectors (�, r, h) and (�′, r′, h). Clearly this
maintains the properties of Sh. Now, since (�, r, h) ∈ Sh ∩ Rh

2 remove it from both sets and add it to S′
h.

None of the remaining vectors in Rh
2 and Sh begin at � or end at r, and thus we can proceed recursively.

vi

