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Abstract 
With the growing complexity of e-business 

applications and the urgent need for ensuring its 
reliability and trustworthiness, much effort has been 
made to advocate the application of model checking in 
probing hidden flaws in these applications. This work 
devotes itself to the performance enhancement in 
reasoning e-business processes with model checking, 
which is a critical issue for making the reasoning of 
complex e-business applications more realistically 
applicable. Our major contribution lies in: (1) A set of 
business bug patterns are extracted from workflow 
patterns to exploit existing business knowledge in 
probing undesired violations in e-business processes; 
(2) The semantics of business bug patterns are formally 
captured with the IEEE standard of PSL; (3) Guided 
verification algorithms are development based on the 
above findings to enhance the performance of 
reasoning complex e-business applications. Their 
efficiencies are testified with three concrete business 
cases in banking and manufacturing domains with our 
business process verification toolkit of OPAL. 
 
1. Introduction 

As the Web is becoming a popular platform for 
implementing complex process centric e-business 
applications, e-business is facing with tremendous 
uncertainty due to its internal complexity and large 
scale interconnectivity. Urgent needs have arisen to 
assure highly secure and reliable e-business process 
development. Model Checking [1] has been shown to be 
a useful technique for probing potential bugs and 
finding hidden flaws in the e-business domain [2][3]. 

The basic idea of model checking is to search the 
state space of industrial application to witness its all 
violations of specific logical constraints defined by 
users. Therefore to make model checking more 
applicable to realistic large-scale models like e-business 
processes, its performance enhancement is a critical 
research direction. In this paper, we address this issue 
by introducing the idea of guided search of business 
bug patterns into model checking e-business processes. 
Though the idea of guided search itself is not new, the 
creativity and contribution of this work is concluded as: 
1) A set of Business Bug Patterns are extracted from 
existing knowledge of workflow patterns as anti-
patterns for e-business process enactment to detect its 
undesired behaviors and falsify its correctness.; 
2) The semantics of these business bug patterns are 
formally captured with the IEEE standard of Property 
Specification Language (PSL) [4]; 

3) Consequently, corresponding guided search method 
is developed to enable a more efficient and less costly 
probing of business violations. The effectiveness of the 
method is proved by three different industrial business 
cases. Results show that our guided search gains radical 
performance enhancement in detecting business bugs 
especially for complex e-business applications. 
 
2. Related Work 

The basic idea of guided search in model checking is 
to constrain the traversal of system state space to the 
most “interesting” states so that system property can be 
proved more efficiently. In [5], 4 general heuristics are 
tested to speed up the probing of system bugs. [6] takes 
a next step by applying the empirical Bayes method to 
guide state space searching for explicit model checking. 
On the other hand, [7] and [8] focus on guided 
symbolic invariant checking and guided model 
checking of CTL respectively. Under-approximations 
and over-approximations of system models are obtained 
by “hints”, the restriction on system behaviors, during 
the fix point iteration procedure. However, the No Free 
Lunch Theorem (NFLT) for optimization [9] has already 
taught us that “one cannot a priori expect an approach 
to yield good performance unless it explicitly specific 
system structures and knowledge”. Hence, the 
difference between our work and the above ones is that 
we start from exploiting existing domain knowledge, i.e. 
the workflow pattern, for process-centric e-business 
applications. A set of anti-patterns called business bug 
patterns are identified and corresponding guided search 
algorithms are designed. Our guided search for model 
checking e-business process is implemented in the 
business process verification toolkit of OPAL [10], and 
its efficiency is tested in industrial cases with different 
sizes in hunting their potential pitfalls.  

The organization of the paper is as follows. Section 
3 investigates our identified Business Bug Patterns. In 
section 4, the guided verification of e-business process 
is implemented and tested in three different business 
cases. The verification results are also discussed. 
Conclusion of the paper can be found in section 5. 

 
3. E-business Process and Its Bug Patterns 
3.1. Preliminaries 

In the process community, a similar approach as 
design patterns for object-oriented system development 
is taken to identify and codify the most useful and 
commonly occurred (control flow) relations in e-
business processes. These relations are well categorized 
in the well known workflow patterns [11]. In this paper, 



the major concern of possible violations in e-business 
process is also focused on the control flow relations, i.e. 
the different ways that activities in an E-business 
process can be assembled to fulfill the application. 

NotStarted Start InExecution

Cancel

Exit

 
Figure 1. State transition for an activity 

As extracted from [11] and [12] for capturing the 
semantics of workflow patterns, figure 1 illustrates the 
set of state transition relations for each activity in an e-
business process. An activity is in its Start state if it is 
ready to be executed. The execution of an activity can 
be finished normally or possibly Canceled by some 
cancellation events. Either way, the activity will 
eventually remain being Exited until it is restarted again. 
Activities interact with each other with control 
structures like sequence, fork, join, decision, merge, etc. 
Each of these structures decides exactly how the change 
of state for one activity affects the state change of 
others. As a result, the enactment of an e-business 
process can be considered as all possible combinations 
of state transitions of its activities according to figure 1 
(technical details of generating the state space of an e-
business process can be found in our separate work [13]). 
Here it is reasonably assumed that each activity (and its 
instance) in a process can be uniquely identified by its 
own ID (denoted as uppercase letters: A, B, …). 

While workflow pattern concludes the most common 
behaviors in a business process, its anti-pattern of 
Business Bug Pattern identifies the common behavioral 
violations in e-business processes. This is important 
since for complex e-business process, it is in practice 
more useful to probe its bugs (hence the name Business 
Bug Pattern) than prove its correctness [5]. It must be 
emphasized that business bug pattern is NOT used to 
model e-business processes and is independent of 
existing process modeling techniques. Rather, it 
specifies possible behavioral violations for defined e-
business process models in order to reason about their 
reliabilities. In the rest of this section, the business bug 
patterns will be proposed according to the categories of 
workflow patterns. To have an intuitive and precise 
understanding of these bug patterns, their semantics are 
formally captured with the IEEE standard of PSL [4]. 

 
3.2. Basic Control Bug Pattern 
3.2.1. Sequential Bug 

 
A simple sequential relation indicates that the 

execution of an activity B is always guarded by another 
activity A. To falsify this relation, it is focused on 
finding out (1) both A and B starts their execution 
simultaneously, or (2) B is never executed after A is 
exited. These two aspects are defined with two atomic 
bugs SimultaneousStart(A, B) and NoResponse(A, B) 
respectively, with their semantics captured in PSL [4] as: 

SimultaneousStart(A, B)={[*];!A.Exit & B.Start} 
/*After some steps of execution, a state is reached in 

the process where B is started while the execution of A 
is not exited yet. 
NoResponse(A, B)= {[*];A.InExecution; A.Exit}  

|->{B.InExecution[=0]} 
/*If A is finished in the process, no B will be 

executed afterwards 
Therefore, a SequentialBug holds when either 

SimultaneousStart or NoResponse is satisfied (as 
indicated with “∨”). Note that SequentialBug does not 
necessarily check whether A is possibly executed after 
B (because this is acceptable, e.g. B cycles back to A 
with the Arbitrary Cycle workflow pattern).  

 
3.2.2. ParallelSplit Bug 

 
The ParallelSplit pattern branches the execution of a 

process from an activity (A) to Multiple parallel paths 
(B, C). It is interesting to notice that the union of two 
SequentialBugs is sufficient to reverse the parallel split 
pattern, because in ParallelSplit two parallel activities 
do not necessarily imply that they are simultaneously 
executed. Hence the ParallelSplitBug pattern only 
specifies that A, B and A, C are both in sequential 
relation (i.e. B, C respond to the exit of A and will only 
be started after A exits), it does not constraint the 
execution order between B and C. This is the difference 
between this bug and InterleavedParallelRoutingBug as 
will be introduced in 3.6.2, which forbids the 
simultaneous execution of B and C. 

 
3.2.3. Synchronization Bug 

 
Contrary to ParallelSplit, Synchronization pattern 

converge All parallel paths (B, C) on a single activity (A) 
and continues the process. It orders that not only the 
execution of B and C be already exited when A starts 
(no SimultaneousStart), but also when B, C both exit 
their execution, A will be eventually started. Therefore 
a new atomic bug MultipleNoResponse is introduced to 
help capture the latter situation. 
MultipleNoResponse({B, C, …, Z}, A)=  

{[*];B.InExecution|C.InExecution|…|Z.InExecution;  
B.Exit &C.Exit &…& Z.Exit} |->{A.InExecution[=0]} 
/* If B, C,…, Z are all exited in the process, no A 

will be eventually started afterwards 
As a result, the SynchronizationBug is the union of 

MultipleNoResponse and SimultaneousStart. Note that 
it does not check whether B and C can both be exited 
eventually in the process (because this is an acceptable 
case, e.g. when either of the activity is forced to be 
canceled by the Cancellation pattern in 3.7). 

 
3.2.4. ExclusiveChoice Bug 

SynchronizationBug({B, C}, A) = 
MultipleNoResponse({B, C}, A) ∨  
SimultaneousStart(B, A)∨SimultaneousStart (C, A)

ParallelSplitBug(A, {B, C})=  
SequentialBug(A, B) ∨ SequentialBug(A, C)

SequentialBug(A, B) =  
SimultaneousStart(A, B)∨NoResponse(A, B) 



 
The ExclusiveChoice pattern branches the execution 

of a process from an activity (A) to One of several 
alternative paths (B, C). An ExclusiveChoiceBug 
contrarily indicates the situation in which either (1) 
both B and C starts after A exits (OverExecute); or (2) 
neither B nor C starts after A exits (NoResponses); or (3) 
either A, B or A, C executes simultaneously. Therefore, 
the ExclusiveChoiceBug is constructed by the union of 
the above three aspects. Here “∧” indicates that both 
NoResponse(A, B) and NoResponse(A, C) need be 
satisfied to identify an ExclusiveChoiceBug. The 
semantics of the new atomic bug of OverExecute is: 
OverExecute(A,{B,C})={[*];A.InExecution; A.Exit} 

|-> {{[*];B.InExecution } & {[*]; C.InExecution }} 
/*If A is finished in the process, both B and C will be 

eventually executed afterwards 
 

3.2.5. SimpleMerge Bug 

 
The SimpleMerge pattern converges parallel paths (B, 

C) on a single activity (A) and continues the execution 
of the process. It is enough to falsify this pattern if one 
can find an execution path in the process on which (1) 
there is a state where A is in execution and neither B nor 
C exits; or (2) both B and C are exited; or (3) B, A and 
C, A both satisfy the NoResponse bug (because of the 
exclusive relation between the alternative paths). While 
the specification of the third situation is obvious, the 
first two are specified with the atomic bug of 
PrematureStart and InclusiveExit respectively. 
PrematureStart ({B, C, …, Z}, A)= {[*]; A.Start & 

(!B. Exit & !C. Exit & …& !Z. Exit)} 
/*When A is started in the process, none of its 

precedent activities B, C … and Z exit 
InclusiveExit (B, C, …, Z)=  

{[*];B.Exit & C.Exit … & Z.Exit } 
/* B, C and Z can all be exited in the process on a 

same state 
 
3.3. Advanced Branching & Synchronization 
Bug Pattern 
3.3.1. MultiChoice Bug 

 
Different from ExclusiveChoice, MultipleChoice 

pattern allows the choice of one or more branches (m-
out-of-n for any m<=n) to execute based on the 
satisfaction of run-time conditions that are associated 
with each branch. Consequently, it is necessary to 

anticipate all possible scenarios for the different choice 
of branches in order to verify an e-business process 
against this behavior in all circumstances. Following 
this idea, the only indispensable scenario to falsify the 
multiple choice behavior is that none of the branch is 
ever chosen in the process model after the exit of the 
execution A (∧Act∈{B,…,Z}NoResponse(A, Act)), or there 
exists an activity in the branch that simultaneously 
starts with A (∨ Act∈{B,…,Z} SimultaneousStart (A, Act)) . 

 
3.3.2. SynchronizingMerge Bug 

 
SynchronizationMerge joins branches that are 

spawned by a MultipleChoice Pattern. Similarly, it is 
also necessary to anticipate all possible scenarios for 
the successful execution of activities in different 
branches in order to find a SynchronizingMergeBug. 
Therefore, the only indispensable scenario in a 
SynchronizingMergeBug is that A already starts when 
none of the activities in branches is exited 
(PrematureStart({B,C,D,……, Z}, A)).  

Note that in SynchronizingMergeBug it is not 
required that A must respond to the exit of any 
Act∈{B,…,Z} due to two reasons: (1) it is not possible 
to foresee which activity will definitely guard the start 
of A; (2) it is not possible to foresee which activity in 
the branches will definitely be exited eventually. 

 
3.3.3. MultiMerge Bug 

 
Similar to SynchronizingMerge, MultipleMerge 

pattern is also used to merge one or more enabled 
branches. However, while SynchronizingMerge waits 
for all enabled incoming branches to complete before 
continuing, in MultipleMerge each enabled incoming 
branch can independently trigger the start of the 
remaining e-business process. Therefore, the reverse of 
the above semantics is that there exists an Act∈{B,…,Z} 
such that Act and A follow the SequentialBug (either 
they start simultaneously or A does not respond to the 
finish of any Act). The result of the MultiMergeBug is 
the union of the SequentialBug for all Act∈{B,…,Z} in 
the branches and A. 

 
3.3.4. ComplexJoin Bug 

 
The ComplexJoin, a.k.a the M-out-of-N Join (or its 

special case, the Discriminator pattern), lets through 
exactly the first m parallel branches at the convergence 
of n different branches. Any additional branch is 
blocked. The violation of ComplexJoin can be asserted 

ComplexJoinBug({B,C,……,Z}, A, m, n)= 
∨ Acti∈{B,…,Z}PrematureStart({Act1,…,Actn-m+1}, A) ∨ 

∨ Acti∈{B,…,Z}InclusiveExit(Act1,…,Actn+1) ∨ 

∧ Acti∈{B,…,Z}MultipleNoResponse({Act1,…,Actn}, A) 

MultiMergeBug({B,C,……,Z}, A)= 
SequentialBug(B, A)∨ ……∨SequentialBug(Z, A)

SynchronizingMergeBug({B,C,……,Z}, A)= 
PrematureStart({B,C,……,Z}, A)

MultiChoiceBug(A, {B,…,Z})=  
∧Act∈{B,…,Z} NoResponse(A, Act) ∨  

∨ Act∈{B,…,Z} SimultaneousStart (A, Act) 

SimpleMergeBug({B, C}, A)= 
PrematureStart({B, C}, A)∨InclusiveExit(B, C) ∨
(NoResponse(B, A) ∧ NoResponse(C, A)) 

ExclusiveChoiceBug(A, {B, C}) =  
OverExecute (A, {B, C}) ∨  
(NoResponse(A, B) ∧ NoResponse(A, C)) ∨ 
SimultaneousStart(A, B)∨SimultaneousStart (A, C)



under any of the following 3 situations: (1) A is started 
before enough (m) activities in the preceding branches 
are exited (∨Acti∈{B,…,Z} PrematureStart({Act1,…,Actn-

m+1}, A)); (2) More than m activities in different 
branches are exited (∨ Acti∈{B,…,Z} InclusiveExit 
(Act1,…,Actn+1)); (3) A does not respond to the m exited 
branches. The corresponding ComplexJoinBug is thus 
the union of the above three aspects. 
 
3.4. Structural Bug Pattern 
3.4.1. ArbitraryCycle Bug 

 
The ArbitraryCycle just loops back (from B) to an 

activity (A), or continues the execution (from B) to 
another activity (C). It is simple to falsify it by asserting 
either (1) if B exits, neither C nor A actually starts; or 
(2) possible SequentialBug is satisfied between A, B or 
B, C. Note that here a SimultaneousStart(B, C) is used 
instead of SequentialBug(B, C) because the semantics 
of NoResponse(B, C) is already explicitly specified in 
ArbitraryCycleBug. 

 
3.4.2. Implicit Termination Bug 

 
Implicit Termination is the only pattern from which 

no corresponding bug patterns are found. This is 
because the intention of Implicit Termination is to help 
reduce the redundancy of the termination in a process 
by relaxing the restriction for a single global exit point. 
It essentially does not add expressiveness or impose any 
constraint on the behavior of an e-business process. 
 
3.5. Multiple Instance Bug Pattern 
3.5.1. WithoutSynchronization Bug 

 
The WithoutSynchronization allows performing 

multiple instances of an activity (B) after A with no 
overall synchronization of all the instances. As 
suggested in [11][12], it can be implemented as a 
parallel split in a loop. Denote the loop condition as b, 
WithoutSynchronization not only orders the sequential 
execution of A and B, but also iterates multiple 
executions of B when b is satisfied. Therefore, the 
SequentialBug is directly used to reverse the former 
semantics and a new atomic bug of RedundantInstance 
is introduced to falsify the latter. 
RedundantInstance(b, A, B)= {[*];A.Exit & !b} 

|->{[*];B.Exit;B.Start} 
/*When A is finished and b no longer holds, B still 

keeps to be re-executed 
 

3.5.2. WithDesignTimeKnowledge Bug 

 
The WithDesignTimeKnowledge performs a constant 

number (n) of instances of an activity (Bi) after A and 
synchronizes all these instances before the remaining e-
business process (C) continues. This pattern can be 
simply realized by a ParallelSplit and Synchronization 
[12], with all activities between the two patterns to be the 
same. Therefore, a WithDesignTimeKnowledgeBug is 
thus defined by the union of the corresponding 
ParallelSplitBug and SynchronizationBug. Note that 
here the semantics of ParallelSplitBug(A, {B1, B2, …, 
Bn}) and SynchronizationBug({B1, B2, …, Bn}, C) are 
directly extended from 3.2.2 and 3.2.3 respectively: 
ParallelSplitBug(A, {B1, B2, …, Bn})=  

∨ Act∈{B1, B2, …, Bn} SequentialBug(A, Act) 
SynchronizationBug({B1, B2, …, Bn}, C) =  

NoResponse({B1, B2, …, Bn}, C) ∨  
∨ Act∈{B1, B2, …, Bn} SimultaneousExecution (Act, C) 
 

3.5.3. WithRunTimeKnowledge Bug 

 
The WithRunTimeKnowledge specifies a similar 

behavior with 3.5.2, except that the actual number of 
activity instances is known at runtime. Therefore, the 
difference between WithRunTimeKnowledgeBug and 
WithDesignTimeKnowledgeBug is that the 
MultiChoiceBug and SynchronizingMergeBug are used 
to replace the ParallelSplitBug and SynchronizationBug 
respectively. The purpose of the replacement is to 
consider the case for any possible number of activity 
instances while it is still unknown due to the runtime 
dependent nature of this pattern. Note that a maximum 
allowed instance number (n) is needed here for 
WithRunTimeKnowledgeBug in order to avoid the state 
space of the e-business process to be infinite. 

 
3.5.4. WithoutRunTimeKnowledge Bug 

 
The WithoutRunTimeKnowledge further generalizes 

3.5.3 by leaving the required number of activity 
instances undetermined as late as possible until some 
evaluation point during the actual processing of the 
activity. As suggested in [12], its implementation is 
similar to 3.5.3 expect that the governing loop is not a 
for loop implying the required number of instances but 
a while loop with the evaluation of condition b for the 
iteration of activity instances. As a result, the definition 
of WithoutRunTimeKnowledgeBug not only checks the 
existence of WithRunTimeKnowledgeBug, but 
additionally falsifies whether B can be re-instantiated 

WithoutRunTimeKnowledgeBug(A, B, b, n, C)=
WithRunTimeKnowledgeBug(A, B, n, C) ∨ 
RedundantInstance(b, A, B) 

WithRunTimeKnowledgeBug(A, B, n, C)= 
MultiChoiceBug(A, {B1, B2, …, Bn}) ∨ 
SynchronizingMergeBug({B1, B2, …, Bn}, A) 

WithDesignTimeKnowledgeBug(A, B, n, C)= 
ParallelSplitBug(A, {B1, B2, …, Bn})  
∨  SynchronizationBug({B1, B2, …, Bn}, C) 

WithoutSynchronizationBug (b, A, B)= 
RedundantInstance(b, A, B) ∨  
SequentialBug(A, B)   b is a Boolean condition 

No Related Bug Patterns Found. 

ArbitraryCycleBug(A, B, C)= 
SequentialBug(A, B) ∨ (NoResponse(B, A) ∧ 
NoResponse(B, C))∨SimultaneousStart(B, C)



after the evaluation of b is failed by the 
RedundantInstance bug defined in 3.5.1. 

 
3.6. State-Based Bug Pattern 
3.6.1. DeferredChoice Bug 

 
A DeferredChoice is much like an ExclusiveChoice 

except that the branch to be taken to execute is not 
chosen immediately but is instead deferred until an 
event (b, c for activity B, C respectively) occurs. To 
implement a DeferredChoiceBug, revisions should be 
made based on the ExclusiveChoiceBug. A new 
NoResponseOnEvent bug is introduced instead of the 
simple NoResponse bug to fulfill the semantics of 
waiting external events in DeferredChoiceBug: 
NoResponseOnEvent(A, b, B)=  

{[*];A.InExecution; A.Exit}|-> 
{B.InExecution[=0]} & {[*]; b} 

/*After A is (possibly) finished in the process, event 
b occurs but no B is ever in execution 

 
3.6.2. InterleavedParallelRouting Bug 

 
The intention of an InterleavedParallelRouting is to 

perform several activities (B, C) in arbitrary sequential 
orders after A. The natural implementation of the 
InterleavedParallelRoutingBug is shown above. Two 
SequentialBugs are used to make sure whether B or C 
will be eventually executed after A exits and whether 
they are simultaneously started with A. Meanwhile, 
SimultaneousStart is also used to identify whether the 
execution of B and C is against the interleaving mode. 

 
3.6.3. Milestone Bug 

 
The Milestone pattern describes the scenario that an 

activity (A) can be executed after an enabling event (en) 
occurs and before the occurrence of a disabling event 
(dis). The definition of MilestoneBug is straightforward, 
with PrematureStart falsifying “enabling” semantics 
and RedundantInstance falsifying the “disabling” 
semantics. Note here PrematureStart(en, A) is defined 
as: PrematureStart(en, A)= {[*]; A.Start &(!en)}. 
 
3.7. Cancellation Bug Pattern 
3.7.1. CancelActivity Bug 

 

In CancelActivity, an activity (A) is cancelled on a 
specific cancellation trigger (cancel). Since no previous 
bug patterns can be used directly to falsify this behavior, 
a CancelActivityBug is independently introduced below: 
CancelActivityBug(cancel, A)= {[*];cancel& 

(A.InExecution| A.Start)}|->{A.Cancel[=0]} 
The above definition asserts that when A is started or 

in its execution and the cancellation trigger (cancel) 
arrives, A is never cancelled afterwards. 

 
3.7.2. CancelCase Bug 

 
CancelCase specifies the behavior of stopping the 

execution of the entire process on a specific 
cancellation trigger. Therefore a CancelCaseBug holds 
if any of the activity in the process satisfies the 
CancelActivityBug. It means when a cancellation trigger 
is arrived, there exists an activity within the range of 
Process which is started or in execution but will not be 
canceled afterwards. Note that the behavior of the 
activities after cancellation (when and how they will be 
reinitiated) is left unspecified in CancelCaseBug. 
 
4. Guided Search of Business Bug Patterns 
4.1. Guided Search of Interesting States 

The previously concluded business bug pattern 
enjoys two characteristics: (1) all of them are evaluated 
on a single execution path in the e-business process 
model (no universal qualifier is needed); (2) the 
specifications of these bug patterns involves only the 
evaluation on paths where time advances monotonically. 
Besides, the business bug patterns provide us the 
conditions for target states which can be used to assert 
the discovery of the corresponding business bug in e-
business processes (e.g. !A.Exit & B.Start in 
SimultaneousStart). We call these states the 
Commitment States. Based on these features, it is 
enlightened to develop a guided search mechanism to 
enhance the efficiency of model checking e-business 
process models for common behavioral violations. 

The idea of guided search is to always find and 
follow “interesting states” during the traversal of model 
state space to quickly detect the existence of a business 
bug in e-business processes. Given a commitment state 
CS, an interesting state in a state set SS is defined as 
the state that can transit to CS within the least steps. 
More specifically, denote: 
M(m): the complete state space (universe) of an e-
business process m, with its initial state on which all of 
the activities are NotStarted; 
S(m)={s(act1),s(act2),…}: A state in M(m) which is 
encoded as the states of all activities in m, where acti∈ 
m & s(acti)∈{acti.NotStart, acti.Start, acti.InExecution, 
acti.Cancel, acti.Exit}; 

Thus the distance between two states on a same 
activity D(s(act)1, s(act)2) is defined as the least number 
of transitions in figure 1 that s(act)1 can get to s(act)2. 

CancelCaseBug(cancel, Process)=  
∨Act∈Process CancelActivityBug (cancel, Act) 

 cancel is a Boolean condition 

CancelActivityBug(cancel, A) 
cancel is a Boolean condition

MilestoneBug (en, dis, A)= PrematureStart(en, A) 
∨ RedundantInstance(dis, A, A) 

en, dis are Boolean conditions 

InterleavedParallelRoutingBug (A, {B, C})= 
SimultaneousStart(B, C)∨SimultaneousStart(C, B)
∨SequentialBug(A, B) ∨ SequentialBug(A, C)

DeferredChoiceBug(A, {b, B, c, C})= 
OverExecute(A, {B, C}) ∨  
(NoResponseOnEvent(A, b, B)  
∧ NoResponseOnEvent(A, c, C)) ∨  

SimultaneousStart(A, B)∨SimultaneousStart(A, C)
 b, c are Boolean conditions 



E.g. D(act.Start, act.Exit)=2 (in the case when a simple 
Boolean value is considered (e.g. en, dis), the result is 
either 0 or 1). Therefore, the distance between two 
states in process m is defined as the average of D: 
D_S(S(m)1, S(m)2)=∑i D(s(act)1i, s(act)2i) / | S(m)| 

The interesting states for a given commitment state 
CS in state set SS are thus: 
S(m)_CS={S(m)|S(m)∈SS, ∀S’(m)∈SS, there holds: 

D_S(S(m), CS)< D_S(S’(m), CS)} 
The definition implies that interesting states to a 

commitment state CS always hold the shortest distance 
to CS. Naturally, the interesting level of states for CS in 
state set SS can also be defined. Define the interesting 
level of S(m)_CS1= S(m)_CS is 1 (write as 
Lv(S(m)_CS1)=1), then S(m)_CSn is the level n 
interesting states in SS iff S(m)_CSn is the level 1 
interesting states in {SS- S(m)_CS1-…- S(m)_CSn-1}.  

Practically, multiple commitment states are often 
considered when evaluating business bug patterns. E.g., 
for SimultaneousStart bug (3.2.1), there can be multiple 
states satisfying !A.Exit & B.Start. Arriving each state 
may witness its occurrence. For OverExecute in 3.2.4, 
on the other hand, commitment states for B.InExecution 
and C.InExecution should both be reached to witness its 
satisfaction. Therefore, it is further defined: 
S(m)_CS’= min{S(m)_CS1, S(m)_CS2}, where CS’ 
implies either CS1 or CS2; and 
S(m)_CS’= max{S(m)_CS1, S(m)_CS2}, where CS’ 
implies both CS1 and CS2. 

With the above definitions, a guided model checking 
algorithm for e-business processes is implemented by 
further improving the breadth-first symbolic model 
checking in [1]. Two major revisions are made in the 
newly implemented algorithm of GuidedBugHunting 
(GBH) and GuidedBugHuntingBackTrace (GBH-BT), 
as illustrated in figure 2: (1) A forward iteration of 
process traversal is implemented instead; (2) Additional 
distance information is used to define interesting states 
to guide the search of the process. (Pre)Image(P) is 
used to indicate the functions for computing formulas 
of (pre)images (i.e. predecessors / successors of a state). 

The essence of GBH and GBH-BT is 
CompInteresting(fP, CSs, Lv), which computes the 
formula representation for interesting states in the 
image of current states (fP) from target commitment 
states CSs under interesting level Lv. Consequently the 
algorithms always stick to the interesting states first, 
and thus reduce the size of states evaluated in each step 
of state traversal and the time for bug hunting. The 
difference between GBH and GBH-BT is that GBH 
always (and only) considers the interesting states during 
verification. Therefore, it does not traverse the 
complete state space of an e-business process and 
probes its violations on its under-approximation. GBH-
BT, on the other hand, traces back to uninteresting 
states and uses them as the initial points for re-
evaluating process models when bugs are not found on 
interesting states. Note both two algorithms are self-
adaptive, in that when no interesting states are found 
(fP=Guided), it will restrict the evaluation condition by 

either reduce the interesting level or renew the 
commitment states by computing their preimages. 

The computation complexity of CompInteresting is 
O(m*n), where m is the size of the current traversing 
states (fP) and n is the size of the considered 
commitment states. While the size of n remains small 
for each iteration of the e-business process, m is also a 
small number due to two reasons: (1) microscopically m 
is restricted by traversing only the interesting states; (2) 
macroscopically, different from hardware or software 
designs, the state space for E-business processes is 
often large in its depth and small in its breadth.  
 
4.2. Application of Guided Bug Searching 
As shown in figure 3 and 4, three business scenarios of 
different complexities, an abstract open account e-
business process for banking system (SimpleBancking), 
its detailed implementation (ComplexBanking) and an 
e-business process for sofa-manufacturing (SofaManuf), 

Init: the formula representation for initial set of states;  
CSs: the formula representation for commitment states; 
Gate: the maximum number for computing preimages; 
MLv: the maximum interesting level; 
Procedure GuidedBugHunting (GBH) 
1: Define P=Init=Reached, pre=1, Lv=MLv 
2: Define fP=Image(P) 
3: Define fI=CompInteresting(fP, CSs, Lv)  
4: Define Guided= fP∧fI 
5: If Witness(Guided) 
6: Report CS found, return Guided 
7: If fP= Guided 
8: If Lv>1     Lv--, goto 3; 
9: If pre<Gate 
10:     pre++;  CSs=PreImage(CSs), goto 3 
11: Define Union=Guided∨Reached 
12: If Union=Reached 

Report Bug not found, return false 
13: P= Guided∧¬Reached 
14: Reached=Union, goto 2 
Procedure GuidedBugHuntingBackTrace (GBH-BT) 
1: Define P=Init=Reached, pre=1, Lv=MLv 
2: clean stack to make it empty 
3: Define fP=Image(P) 
4: Define fI=ComInteresting(fP, CSs, Lv) 
5: Define Guided= fP∧fI 
6: If Witness(Guided) 
7: Report CS found, return Guided 
8: If fP= Guided 
9: If Lv>1  Lv--, goto 3 
10: If pre<Gate 
11:     pre++;  CSs=PreImage(CSs), goto 4 
12: Define UnInterested= fP∧¬fI 
13: If UnInterested!=false 
14:  Insert UnInterested into stack 
15: Define Union=Guided∨Reached 
16: If Union=Reached 
17:  If stack is not empty 
18:     P= remove Head of stack 
19:     Union=Reached=P∨Reached;  goto 3 
20: Else Report Bug not found, return false 
21: P= Guided∧¬Reached 
22: Reached=Union, goto 3 

Figure 2. Algorithms for Guided Search 



are used as test cases. The models are built with IBM’s 
Websphere Business Integrator (WBI). Detailed 
introduction of the above process can also be referred in 
[10]. Our OPAL[10] (Open Process AnaLyzer) toolkit is 
the implementation environment for showing the 
efficiency of our approach. OPAL is a model checking 
based verifier tuned for business processes. It accepts 
WBI process models as input and automatically records 
and manages the state of the process by monitoring the 
transition of corresponding activities. Details of the 
formalization and verification methodology of OPAL 
can be found in [10]. To prove the effectiveness of our 
proposed approach, both the original Breadth-First 
Symbolic Model Checking (BF-SMC) of CTL[1] and our 
GuidedBugHunting (GBH and GBH-BT) are 
implemented in OPAL. Tables 1-3 illustrate the results 
(Gate=1, MLv=2) for different business bug patterns, 
which are run on the PC of 1.73GHz and 2.5G RAM.  
 
4.3. Result Discussion 
The above choice of business scenarios and business 
bug patterns shows the diversity in their complexity 
(reachable states varies from 10^3 to 10^6). For 
SimpleBancking, GBH does not show much advantage 
over BF-SMC, the performance of GBH-BT is even 
worse than BF-SMC. This is because the scale of this e-
business process is so small that makes the additional 
computation of interesting states comparatively costly. 
However, the small application is surely not our focus. 
The advantage of our approaches becomes more 
obvious for latter two complex applications. For models 
where bugs do exist (Result=false), GBH-BT can 
always detect these bugs faster than BF-SMC since it 
always focuses on the most promising paths on which 
bugs can be found. However, when specific bugs do not 
exist in the model (e.g. B3 and B9 in table 1-3), GBH-
BT terminates slower than BF-SMC since GBH-BT not 
only traverses the whole model state space, but also 
does additional computation for interesting states and 
stack operations. On the other hand, GBH out-performs 
BF-SMC in both cases in the application. This is 
because GBH follows only the interesting paths that 
may lead to a bug and wastes no time on the un-
interesting ones. However, the drawback of GBH is that 
it only evaluates a bug on an under-approximation of 
the target application. Consequently, GBH can be used 
to falsify an e-business process with specific bugs, but 
it cannot fully prove the correctness of the process even 
if the approach returns the result of true.  

As a matter of fact, GBH can be regarded as a special 
case for GBH-BT with the stack size set to be 0 (line 14 
in GBH-BT). Therefore, three conclusions can be 
drawn based on the above results: (1)Both GBH and 
GBH-BT can be used to effectively detect behavioral 
violations in complex e-business processes by guiding 
the search to interesting states first; (2)GBH is most 
efficient for complex e-business process where the 
application is too large for model checking to run to 
completion; (3) The verification performance and 
completeness of state space traversal can be balanced 

by setting the allowed stack size in GBH-BT (line 14) 
according to the complexity of target e-business process. 
 
5. Conclusion 

In accordance to existing workflow patterns, a set of 

Reachable  States 958 (2^9.904) 
Total States 8.941*10^11 (2^39.702) 
BF-SMC GBH GBH-BT 
Result Time Result Time Result Time 
B1: SequentialBug(IdentifyCustomer, OpenAccount) 
false 0.140 false 0.156 false 0.189 
B2:ParallelSplitBug(RetainCustomerInfo, {SelectService, 
PrepareOpening }) 
false 0.116 false 0.078 false 0.136 
B3: SynchronizingMergeBug({RetrieveCustomerDetail,  
SelectService, PrepareOpen}, OpenAccount ) 
true 0.265 true 0.141 true 0.357 
B4: WithDesignTimeKnowledgeBug 
(RetrieveCustomerInfo, Review, IdentifyCustomer, 2) 
false 0.359 false 0.384 false 0.429 
B5: MilestoneBug(OpenAccount.Finish, 
 ActivateAccount.PreStart, ValidateAccount) 
false 0.209 false 0.186 false 0.215 

Table 1. Results for SimpleBancking (in seconds) 
Reachable  States 82612 (2^16.334) 
Total States 4.213*10^13 (2^45.260) 
BF-SMC GBH GBH-BT 
Result Time Result Time Result Time 
B1: SequentialBug(IdentifyCustomer, OpenAccount) 
false 82.678 false 26.624 false 36.233
B2:ParallelSplitBug(RetainCustomerInfo,  
{SelectService, PrepareOpening }) 
false 72.656 false 28.187 false 38.078
B3: SynchronizingMergeBug({RetrieveCustomerDetail,  
SelectService, PrepareOpen}, OpenAccount ) 
true 59.016 true 10.152 true 72.598
B4: WithDesignTimeKnowledgeBug( 
RetrieveCustomerInfo, Review, IdentifyCustomer, 2) 
false 164.92 false 27.422 false 40.506
B5: MilestoneBug(OpenAccount.Finish, 
 ActivateAccount.PreStart, ValidateAccount) 
false 90.360 false 22.671 false 29.219

Table 2. Results for ComplexBanking (in seconds) 
Reachable  States 193524 (2^17.5622) 
Total States 1.133*10^14 (2^46.69) 
BF-SMC GBH GBH-BT 
Result Time Result Time Result Time 
B6: SequentialBug(setslipover, fixchairshape) 
false 143.08 false 16.422 false 23.578
B7: ExclusiveChoiceBug(SendProductionOrder, 
 {GetSewingMaterial, GetSamplingMaterial}) & 
( SequentialBug(GetSamplingMaterial, Sampling) | 
InterleavedParallelRoutingBug(GetSewingMaterial, 
CutSponge, SewLeather) ) 
false 401.38 false 63.488 false 268.99
B8: WithoutSynchronizationBug(BindSponge,  
FinishNailing.NotStarted, setslipover) 
true 465.35 true 27.891 true 303.92
B9: CancelActivityBug(ReportOOS.PreStart, Sampling) | 
CancelActivityBug(ReportOOS. PreStart, CutSponge) 
true 294.50 true 42.281 true 332.30

Table 3. Results for SofaManuf (in seconds) 



business bug patterns are identified in this paper to 
capture the common behavioral violations in complex 
e-business processes. The precise semantics of the bug 
patterns are formally captured with IEEE standard of 
PSL. Guided searching for these bug patterns is also 
proposed to enhance the efficiency of reasoning e-
business applications to ensure their trustworthiness. 
The approach is implemented in our business process 
verification toolkit of OPAL and testified on three 
different business scenarios in both banking and sofa-
manufacturing domain. Results show that our approach 
is especially useful for large e-business applications 
compared to traditional model checking approach.  

As previously concluded, our future work involves 
the careful study of the relation between stack size in 
GBH-BT and verification performance to make it a 
more systematic approach. 
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Figure 3. Sample Banking E-business Application (detailed behaviors in dotted rectangles can be abstracted) 

 
Figure 4. Sample Manufacturing E-business Application 


