
RC23948 (C0605-003) May 2, 2006
Computer Science

IBM Research Report

Guided Reasoning of Complex E-Business Process with
Business Bug Patterns

Ke Xu1,2, Ying Liu1, Cheng Wu2

1IBM Research Division
China Research Laboratory

HaoHai Building, No. 7, 5th Street
ShangDi, Beijing 100085

China

2Automation Department
Tsinghua University

Beijing, China 100084

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Guided Reasoning of Complex E-Business Process with Business Bug Patterns

Ke Xu 2 1 (xk02@mails.thu.edu.cn), Ying Liu 2 (aliceliu@cn.ibm.com), Cheng Wu 1
Automation Department, Tsinghua University, Beijing, China, 100084

IBM China Research Laboratory, Beijing, China, 100085

Abstract
With the growing complexity of e-business

applications and the urgent need for ensuring its
reliability and trustworthiness, much effort has been
made to advocate the application of model checking in
probing hidden flaws in these applications. This work
devotes itself to the performance enhancement in
reasoning e-business processes with model checking,
which is a critical issue for making the reasoning of
complex e-business applications more realistically
applicable. Our major contribution lies in: (1) A set of
business bug patterns are extracted from workflow
patterns to exploit existing business knowledge in
probing undesired violations in e-business processes;
(2) The semantics of business bug patterns are formally
captured with the IEEE standard of PSL; (3) Guided
verification algorithms are development based on the
above findings to enhance the performance of
reasoning complex e-business applications. Their
efficiencies are testified with three concrete business
cases in banking and manufacturing domains with our
business process verification toolkit of OPAL.

1. Introduction

As the Web is becoming a popular platform for
implementing complex process centric e-business
applications, e-business is facing with tremendous
uncertainty due to its internal complexity and large
scale interconnectivity. Urgent needs have arisen to
assure highly secure and reliable e-business process
development. Model Checking [1] has been shown to be
a useful technique for probing potential bugs and
finding hidden flaws in the e-business domain [2][3].

The basic idea of model checking is to search the
state space of industrial application to witness its all
violations of specific logical constraints defined by
users. Therefore to make model checking more
applicable to realistic large-scale models like e-business
processes, its performance enhancement is a critical
research direction. In this paper, we address this issue
by introducing the idea of guided search of business
bug patterns into model checking e-business processes.
Though the idea of guided search itself is not new, the
creativity and contribution of this work is concluded as:
1) A set of Business Bug Patterns are extracted from
existing knowledge of workflow patterns as anti-
patterns for e-business process enactment to detect its
undesired behaviors and falsify its correctness.;
2) The semantics of these business bug patterns are
formally captured with the IEEE standard of Property
Specification Language (PSL) [4];

3) Consequently, corresponding guided search method
is developed to enable a more efficient and less costly
probing of business violations. The effectiveness of the
method is proved by three different industrial business
cases. Results show that our guided search gains radical
performance enhancement in detecting business bugs
especially for complex e-business applications.

2. Related Work

The basic idea of guided search in model checking is
to constrain the traversal of system state space to the
most “interesting” states so that system property can be
proved more efficiently. In [5], 4 general heuristics are
tested to speed up the probing of system bugs. [6] takes
a next step by applying the empirical Bayes method to
guide state space searching for explicit model checking.
On the other hand, [7] and [8] focus on guided
symbolic invariant checking and guided model
checking of CTL respectively. Under-approximations
and over-approximations of system models are obtained
by “hints”, the restriction on system behaviors, during
the fix point iteration procedure. However, the No Free
Lunch Theorem (NFLT) for optimization [9] has already
taught us that “one cannot a priori expect an approach
to yield good performance unless it explicitly specific
system structures and knowledge”. Hence, the
difference between our work and the above ones is that
we start from exploiting existing domain knowledge, i.e.
the workflow pattern, for process-centric e-business
applications. A set of anti-patterns called business bug
patterns are identified and corresponding guided search
algorithms are designed. Our guided search for model
checking e-business process is implemented in the
business process verification toolkit of OPAL [10], and
its efficiency is tested in industrial cases with different
sizes in hunting their potential pitfalls.

The organization of the paper is as follows. Section
3 investigates our identified Business Bug Patterns. In
section 4, the guided verification of e-business process
is implemented and tested in three different business
cases. The verification results are also discussed.
Conclusion of the paper can be found in section 5.

3. E-business Process and Its Bug Patterns
3.1. Preliminaries

In the process community, a similar approach as
design patterns for object-oriented system development
is taken to identify and codify the most useful and
commonly occurred (control flow) relations in e-
business processes. These relations are well categorized
in the well known workflow patterns [11]. In this paper,

the major concern of possible violations in e-business
process is also focused on the control flow relations, i.e.
the different ways that activities in an E-business
process can be assembled to fulfill the application.

NotStarted Start InExecution

Cancel

Exit

Figure 1. State transition for an activity

As extracted from [11] and [12] for capturing the
semantics of workflow patterns, figure 1 illustrates the
set of state transition relations for each activity in an e-
business process. An activity is in its Start state if it is
ready to be executed. The execution of an activity can
be finished normally or possibly Canceled by some
cancellation events. Either way, the activity will
eventually remain being Exited until it is restarted again.
Activities interact with each other with control
structures like sequence, fork, join, decision, merge, etc.
Each of these structures decides exactly how the change
of state for one activity affects the state change of
others. As a result, the enactment of an e-business
process can be considered as all possible combinations
of state transitions of its activities according to figure 1
(technical details of generating the state space of an e-
business process can be found in our separate work [13]).
Here it is reasonably assumed that each activity (and its
instance) in a process can be uniquely identified by its
own ID (denoted as uppercase letters: A, B, …).

While workflow pattern concludes the most common
behaviors in a business process, its anti-pattern of
Business Bug Pattern identifies the common behavioral
violations in e-business processes. This is important
since for complex e-business process, it is in practice
more useful to probe its bugs (hence the name Business
Bug Pattern) than prove its correctness [5]. It must be
emphasized that business bug pattern is NOT used to
model e-business processes and is independent of
existing process modeling techniques. Rather, it
specifies possible behavioral violations for defined e-
business process models in order to reason about their
reliabilities. In the rest of this section, the business bug
patterns will be proposed according to the categories of
workflow patterns. To have an intuitive and precise
understanding of these bug patterns, their semantics are
formally captured with the IEEE standard of PSL [4].

3.2. Basic Control Bug Pattern
3.2.1. Sequential Bug

A simple sequential relation indicates that the

execution of an activity B is always guarded by another
activity A. To falsify this relation, it is focused on
finding out (1) both A and B starts their execution
simultaneously, or (2) B is never executed after A is
exited. These two aspects are defined with two atomic
bugs SimultaneousStart(A, B) and NoResponse(A, B)
respectively, with their semantics captured in PSL [4] as:

SimultaneousStart(A, B)={[*];!A.Exit & B.Start}
/*After some steps of execution, a state is reached in

the process where B is started while the execution of A
is not exited yet.
NoResponse(A, B)= {[*];A.InExecution; A.Exit}

|->{B.InExecution[=0]}
/*If A is finished in the process, no B will be

executed afterwards
Therefore, a SequentialBug holds when either

SimultaneousStart or NoResponse is satisfied (as
indicated with “∨”). Note that SequentialBug does not
necessarily check whether A is possibly executed after
B (because this is acceptable, e.g. B cycles back to A
with the Arbitrary Cycle workflow pattern).

3.2.2. ParallelSplit Bug

The ParallelSplit pattern branches the execution of a

process from an activity (A) to Multiple parallel paths
(B, C). It is interesting to notice that the union of two
SequentialBugs is sufficient to reverse the parallel split
pattern, because in ParallelSplit two parallel activities
do not necessarily imply that they are simultaneously
executed. Hence the ParallelSplitBug pattern only
specifies that A, B and A, C are both in sequential
relation (i.e. B, C respond to the exit of A and will only
be started after A exits), it does not constraint the
execution order between B and C. This is the difference
between this bug and InterleavedParallelRoutingBug as
will be introduced in 3.6.2, which forbids the
simultaneous execution of B and C.

3.2.3. Synchronization Bug

Contrary to ParallelSplit, Synchronization pattern

converge All parallel paths (B, C) on a single activity (A)
and continues the process. It orders that not only the
execution of B and C be already exited when A starts
(no SimultaneousStart), but also when B, C both exit
their execution, A will be eventually started. Therefore
a new atomic bug MultipleNoResponse is introduced to
help capture the latter situation.
MultipleNoResponse({B, C, …, Z}, A)=

{[*];B.InExecution|C.InExecution|…|Z.InExecution;
B.Exit &C.Exit &…& Z.Exit} |->{A.InExecution[=0]}
/* If B, C,…, Z are all exited in the process, no A

will be eventually started afterwards
As a result, the SynchronizationBug is the union of

MultipleNoResponse and SimultaneousStart. Note that
it does not check whether B and C can both be exited
eventually in the process (because this is an acceptable
case, e.g. when either of the activity is forced to be
canceled by the Cancellation pattern in 3.7).

3.2.4. ExclusiveChoice Bug

SynchronizationBug({B, C}, A) =
MultipleNoResponse({B, C}, A) ∨
SimultaneousStart(B, A)∨SimultaneousStart (C, A)

ParallelSplitBug(A, {B, C})=
SequentialBug(A, B) ∨ SequentialBug(A, C)

SequentialBug(A, B) =
SimultaneousStart(A, B)∨NoResponse(A, B)

The ExclusiveChoice pattern branches the execution

of a process from an activity (A) to One of several
alternative paths (B, C). An ExclusiveChoiceBug
contrarily indicates the situation in which either (1)
both B and C starts after A exits (OverExecute); or (2)
neither B nor C starts after A exits (NoResponses); or (3)
either A, B or A, C executes simultaneously. Therefore,
the ExclusiveChoiceBug is constructed by the union of
the above three aspects. Here “∧” indicates that both
NoResponse(A, B) and NoResponse(A, C) need be
satisfied to identify an ExclusiveChoiceBug. The
semantics of the new atomic bug of OverExecute is:
OverExecute(A,{B,C})={[*];A.InExecution; A.Exit}

|-> {{[*];B.InExecution } & {[*]; C.InExecution }}
/*If A is finished in the process, both B and C will be

eventually executed afterwards

3.2.5. SimpleMerge Bug

The SimpleMerge pattern converges parallel paths (B,

C) on a single activity (A) and continues the execution
of the process. It is enough to falsify this pattern if one
can find an execution path in the process on which (1)
there is a state where A is in execution and neither B nor
C exits; or (2) both B and C are exited; or (3) B, A and
C, A both satisfy the NoResponse bug (because of the
exclusive relation between the alternative paths). While
the specification of the third situation is obvious, the
first two are specified with the atomic bug of
PrematureStart and InclusiveExit respectively.
PrematureStart ({B, C, …, Z}, A)= {[*]; A.Start &

(!B. Exit & !C. Exit & …& !Z. Exit)}
/*When A is started in the process, none of its

precedent activities B, C … and Z exit
InclusiveExit (B, C, …, Z)=

{[*];B.Exit & C.Exit … & Z.Exit }
/* B, C and Z can all be exited in the process on a

same state

3.3. Advanced Branching & Synchronization
Bug Pattern
3.3.1. MultiChoice Bug

Different from ExclusiveChoice, MultipleChoice

pattern allows the choice of one or more branches (m-
out-of-n for any m<=n) to execute based on the
satisfaction of run-time conditions that are associated
with each branch. Consequently, it is necessary to

anticipate all possible scenarios for the different choice
of branches in order to verify an e-business process
against this behavior in all circumstances. Following
this idea, the only indispensable scenario to falsify the
multiple choice behavior is that none of the branch is
ever chosen in the process model after the exit of the
execution A (∧Act∈{B,…,Z}NoResponse(A, Act)), or there
exists an activity in the branch that simultaneously
starts with A (∨ Act∈{B,…,Z} SimultaneousStart (A, Act)) .

3.3.2. SynchronizingMerge Bug

SynchronizationMerge joins branches that are

spawned by a MultipleChoice Pattern. Similarly, it is
also necessary to anticipate all possible scenarios for
the successful execution of activities in different
branches in order to find a SynchronizingMergeBug.
Therefore, the only indispensable scenario in a
SynchronizingMergeBug is that A already starts when
none of the activities in branches is exited
(PrematureStart({B,C,D,……, Z}, A)).

Note that in SynchronizingMergeBug it is not
required that A must respond to the exit of any
Act∈{B,…,Z} due to two reasons: (1) it is not possible
to foresee which activity will definitely guard the start
of A; (2) it is not possible to foresee which activity in
the branches will definitely be exited eventually.

3.3.3. MultiMerge Bug

Similar to SynchronizingMerge, MultipleMerge

pattern is also used to merge one or more enabled
branches. However, while SynchronizingMerge waits
for all enabled incoming branches to complete before
continuing, in MultipleMerge each enabled incoming
branch can independently trigger the start of the
remaining e-business process. Therefore, the reverse of
the above semantics is that there exists an Act∈{B,…,Z}
such that Act and A follow the SequentialBug (either
they start simultaneously or A does not respond to the
finish of any Act). The result of the MultiMergeBug is
the union of the SequentialBug for all Act∈{B,…,Z} in
the branches and A.

3.3.4. ComplexJoin Bug

The ComplexJoin, a.k.a the M-out-of-N Join (or its

special case, the Discriminator pattern), lets through
exactly the first m parallel branches at the convergence
of n different branches. Any additional branch is
blocked. The violation of ComplexJoin can be asserted

ComplexJoinBug({B,C,……,Z}, A, m, n)=
∨ Acti∈{B,…,Z}PrematureStart({Act1,…,Actn-m+1}, A) ∨

∨ Acti∈{B,…,Z}InclusiveExit(Act1,…,Actn+1) ∨

∧ Acti∈{B,…,Z}MultipleNoResponse({Act1,…,Actn}, A)

MultiMergeBug({B,C,……,Z}, A)=
SequentialBug(B, A)∨ ……∨SequentialBug(Z, A)

SynchronizingMergeBug({B,C,……,Z}, A)=
PrematureStart({B,C,……,Z}, A)

MultiChoiceBug(A, {B,…,Z})=
∧Act∈{B,…,Z} NoResponse(A, Act) ∨

∨ Act∈{B,…,Z} SimultaneousStart (A, Act)

SimpleMergeBug({B, C}, A)=
PrematureStart({B, C}, A)∨InclusiveExit(B, C) ∨
(NoResponse(B, A) ∧ NoResponse(C, A))

ExclusiveChoiceBug(A, {B, C}) =
OverExecute (A, {B, C}) ∨
(NoResponse(A, B) ∧ NoResponse(A, C)) ∨
SimultaneousStart(A, B)∨SimultaneousStart (A, C)

under any of the following 3 situations: (1) A is started
before enough (m) activities in the preceding branches
are exited (∨Acti∈{B,…,Z} PrematureStart({Act1,…,Actn-

m+1}, A)); (2) More than m activities in different
branches are exited (∨ Acti∈{B,…,Z} InclusiveExit
(Act1,…,Actn+1)); (3) A does not respond to the m exited
branches. The corresponding ComplexJoinBug is thus
the union of the above three aspects.

3.4. Structural Bug Pattern
3.4.1. ArbitraryCycle Bug

The ArbitraryCycle just loops back (from B) to an

activity (A), or continues the execution (from B) to
another activity (C). It is simple to falsify it by asserting
either (1) if B exits, neither C nor A actually starts; or
(2) possible SequentialBug is satisfied between A, B or
B, C. Note that here a SimultaneousStart(B, C) is used
instead of SequentialBug(B, C) because the semantics
of NoResponse(B, C) is already explicitly specified in
ArbitraryCycleBug.

3.4.2. Implicit Termination Bug

Implicit Termination is the only pattern from which

no corresponding bug patterns are found. This is
because the intention of Implicit Termination is to help
reduce the redundancy of the termination in a process
by relaxing the restriction for a single global exit point.
It essentially does not add expressiveness or impose any
constraint on the behavior of an e-business process.

3.5. Multiple Instance Bug Pattern
3.5.1. WithoutSynchronization Bug

The WithoutSynchronization allows performing

multiple instances of an activity (B) after A with no
overall synchronization of all the instances. As
suggested in [11][12], it can be implemented as a
parallel split in a loop. Denote the loop condition as b,
WithoutSynchronization not only orders the sequential
execution of A and B, but also iterates multiple
executions of B when b is satisfied. Therefore, the
SequentialBug is directly used to reverse the former
semantics and a new atomic bug of RedundantInstance
is introduced to falsify the latter.
RedundantInstance(b, A, B)= {[*];A.Exit & !b}

|->{[*];B.Exit;B.Start}
/*When A is finished and b no longer holds, B still

keeps to be re-executed

3.5.2. WithDesignTimeKnowledge Bug

The WithDesignTimeKnowledge performs a constant

number (n) of instances of an activity (Bi) after A and
synchronizes all these instances before the remaining e-
business process (C) continues. This pattern can be
simply realized by a ParallelSplit and Synchronization
[12], with all activities between the two patterns to be the
same. Therefore, a WithDesignTimeKnowledgeBug is
thus defined by the union of the corresponding
ParallelSplitBug and SynchronizationBug. Note that
here the semantics of ParallelSplitBug(A, {B1, B2, …,
Bn}) and SynchronizationBug({B1, B2, …, Bn}, C) are
directly extended from 3.2.2 and 3.2.3 respectively:
ParallelSplitBug(A, {B1, B2, …, Bn})=

∨ Act∈{B1, B2, …, Bn} SequentialBug(A, Act)
SynchronizationBug({B1, B2, …, Bn}, C) =

NoResponse({B1, B2, …, Bn}, C) ∨
∨ Act∈{B1, B2, …, Bn} SimultaneousExecution (Act, C)

3.5.3. WithRunTimeKnowledge Bug

The WithRunTimeKnowledge specifies a similar

behavior with 3.5.2, except that the actual number of
activity instances is known at runtime. Therefore, the
difference between WithRunTimeKnowledgeBug and
WithDesignTimeKnowledgeBug is that the
MultiChoiceBug and SynchronizingMergeBug are used
to replace the ParallelSplitBug and SynchronizationBug
respectively. The purpose of the replacement is to
consider the case for any possible number of activity
instances while it is still unknown due to the runtime
dependent nature of this pattern. Note that a maximum
allowed instance number (n) is needed here for
WithRunTimeKnowledgeBug in order to avoid the state
space of the e-business process to be infinite.

3.5.4. WithoutRunTimeKnowledge Bug

The WithoutRunTimeKnowledge further generalizes

3.5.3 by leaving the required number of activity
instances undetermined as late as possible until some
evaluation point during the actual processing of the
activity. As suggested in [12], its implementation is
similar to 3.5.3 expect that the governing loop is not a
for loop implying the required number of instances but
a while loop with the evaluation of condition b for the
iteration of activity instances. As a result, the definition
of WithoutRunTimeKnowledgeBug not only checks the
existence of WithRunTimeKnowledgeBug, but
additionally falsifies whether B can be re-instantiated

WithoutRunTimeKnowledgeBug(A, B, b, n, C)=
WithRunTimeKnowledgeBug(A, B, n, C) ∨
RedundantInstance(b, A, B)

WithRunTimeKnowledgeBug(A, B, n, C)=
MultiChoiceBug(A, {B1, B2, …, Bn}) ∨
SynchronizingMergeBug({B1, B2, …, Bn}, A)

WithDesignTimeKnowledgeBug(A, B, n, C)=
ParallelSplitBug(A, {B1, B2, …, Bn})
∨ SynchronizationBug({B1, B2, …, Bn}, C)

WithoutSynchronizationBug (b, A, B)=
RedundantInstance(b, A, B) ∨
SequentialBug(A, B) b is a Boolean condition

No Related Bug Patterns Found.

ArbitraryCycleBug(A, B, C)=
SequentialBug(A, B) ∨ (NoResponse(B, A) ∧
NoResponse(B, C))∨SimultaneousStart(B, C)

after the evaluation of b is failed by the
RedundantInstance bug defined in 3.5.1.

3.6. State-Based Bug Pattern
3.6.1. DeferredChoice Bug

A DeferredChoice is much like an ExclusiveChoice

except that the branch to be taken to execute is not
chosen immediately but is instead deferred until an
event (b, c for activity B, C respectively) occurs. To
implement a DeferredChoiceBug, revisions should be
made based on the ExclusiveChoiceBug. A new
NoResponseOnEvent bug is introduced instead of the
simple NoResponse bug to fulfill the semantics of
waiting external events in DeferredChoiceBug:
NoResponseOnEvent(A, b, B)=

{[*];A.InExecution; A.Exit}|->
{B.InExecution[=0]} & {[*]; b}

/*After A is (possibly) finished in the process, event
b occurs but no B is ever in execution

3.6.2. InterleavedParallelRouting Bug

The intention of an InterleavedParallelRouting is to

perform several activities (B, C) in arbitrary sequential
orders after A. The natural implementation of the
InterleavedParallelRoutingBug is shown above. Two
SequentialBugs are used to make sure whether B or C
will be eventually executed after A exits and whether
they are simultaneously started with A. Meanwhile,
SimultaneousStart is also used to identify whether the
execution of B and C is against the interleaving mode.

3.6.3. Milestone Bug

The Milestone pattern describes the scenario that an

activity (A) can be executed after an enabling event (en)
occurs and before the occurrence of a disabling event
(dis). The definition of MilestoneBug is straightforward,
with PrematureStart falsifying “enabling” semantics
and RedundantInstance falsifying the “disabling”
semantics. Note here PrematureStart(en, A) is defined
as: PrematureStart(en, A)= {[*]; A.Start &(!en)}.

3.7. Cancellation Bug Pattern
3.7.1. CancelActivity Bug

In CancelActivity, an activity (A) is cancelled on a
specific cancellation trigger (cancel). Since no previous
bug patterns can be used directly to falsify this behavior,
a CancelActivityBug is independently introduced below:
CancelActivityBug(cancel, A)= {[*];cancel&

(A.InExecution| A.Start)}|->{A.Cancel[=0]}
The above definition asserts that when A is started or

in its execution and the cancellation trigger (cancel)
arrives, A is never cancelled afterwards.

3.7.2. CancelCase Bug

CancelCase specifies the behavior of stopping the

execution of the entire process on a specific
cancellation trigger. Therefore a CancelCaseBug holds
if any of the activity in the process satisfies the
CancelActivityBug. It means when a cancellation trigger
is arrived, there exists an activity within the range of
Process which is started or in execution but will not be
canceled afterwards. Note that the behavior of the
activities after cancellation (when and how they will be
reinitiated) is left unspecified in CancelCaseBug.

4. Guided Search of Business Bug Patterns
4.1. Guided Search of Interesting States

The previously concluded business bug pattern
enjoys two characteristics: (1) all of them are evaluated
on a single execution path in the e-business process
model (no universal qualifier is needed); (2) the
specifications of these bug patterns involves only the
evaluation on paths where time advances monotonically.
Besides, the business bug patterns provide us the
conditions for target states which can be used to assert
the discovery of the corresponding business bug in e-
business processes (e.g. !A.Exit & B.Start in
SimultaneousStart). We call these states the
Commitment States. Based on these features, it is
enlightened to develop a guided search mechanism to
enhance the efficiency of model checking e-business
process models for common behavioral violations.

The idea of guided search is to always find and
follow “interesting states” during the traversal of model
state space to quickly detect the existence of a business
bug in e-business processes. Given a commitment state
CS, an interesting state in a state set SS is defined as
the state that can transit to CS within the least steps.
More specifically, denote:
M(m): the complete state space (universe) of an e-
business process m, with its initial state on which all of
the activities are NotStarted;
S(m)={s(act1),s(act2),…}: A state in M(m) which is
encoded as the states of all activities in m, where acti∈
m & s(acti)∈{acti.NotStart, acti.Start, acti.InExecution,
acti.Cancel, acti.Exit};

Thus the distance between two states on a same
activity D(s(act)1, s(act)2) is defined as the least number
of transitions in figure 1 that s(act)1 can get to s(act)2.

CancelCaseBug(cancel, Process)=
∨Act∈Process CancelActivityBug (cancel, Act)

 cancel is a Boolean condition

CancelActivityBug(cancel, A)
cancel is a Boolean condition

MilestoneBug (en, dis, A)= PrematureStart(en, A)
∨ RedundantInstance(dis, A, A)

en, dis are Boolean conditions

InterleavedParallelRoutingBug (A, {B, C})=
SimultaneousStart(B, C)∨SimultaneousStart(C, B)
∨SequentialBug(A, B) ∨ SequentialBug(A, C)

DeferredChoiceBug(A, {b, B, c, C})=
OverExecute(A, {B, C}) ∨
(NoResponseOnEvent(A, b, B)
∧ NoResponseOnEvent(A, c, C)) ∨

SimultaneousStart(A, B)∨SimultaneousStart(A, C)
 b, c are Boolean conditions

E.g. D(act.Start, act.Exit)=2 (in the case when a simple
Boolean value is considered (e.g. en, dis), the result is
either 0 or 1). Therefore, the distance between two
states in process m is defined as the average of D:
D_S(S(m)1, S(m)2)=∑i D(s(act)1i, s(act)2i) / | S(m)|

The interesting states for a given commitment state
CS in state set SS are thus:
S(m)_CS={S(m)|S(m)∈SS, ∀S’(m)∈SS, there holds:

D_S(S(m), CS)< D_S(S’(m), CS)}
The definition implies that interesting states to a

commitment state CS always hold the shortest distance
to CS. Naturally, the interesting level of states for CS in
state set SS can also be defined. Define the interesting
level of S(m)_CS1= S(m)_CS is 1 (write as
Lv(S(m)_CS1)=1), then S(m)_CSn is the level n
interesting states in SS iff S(m)_CSn is the level 1
interesting states in {SS- S(m)_CS1-…- S(m)_CSn-1}.

Practically, multiple commitment states are often
considered when evaluating business bug patterns. E.g.,
for SimultaneousStart bug (3.2.1), there can be multiple
states satisfying !A.Exit & B.Start. Arriving each state
may witness its occurrence. For OverExecute in 3.2.4,
on the other hand, commitment states for B.InExecution
and C.InExecution should both be reached to witness its
satisfaction. Therefore, it is further defined:
S(m)_CS’= min{S(m)_CS1, S(m)_CS2}, where CS’
implies either CS1 or CS2; and
S(m)_CS’= max{S(m)_CS1, S(m)_CS2}, where CS’
implies both CS1 and CS2.

With the above definitions, a guided model checking
algorithm for e-business processes is implemented by
further improving the breadth-first symbolic model
checking in [1]. Two major revisions are made in the
newly implemented algorithm of GuidedBugHunting
(GBH) and GuidedBugHuntingBackTrace (GBH-BT),
as illustrated in figure 2: (1) A forward iteration of
process traversal is implemented instead; (2) Additional
distance information is used to define interesting states
to guide the search of the process. (Pre)Image(P) is
used to indicate the functions for computing formulas
of (pre)images (i.e. predecessors / successors of a state).

The essence of GBH and GBH-BT is
CompInteresting(fP, CSs, Lv), which computes the
formula representation for interesting states in the
image of current states (fP) from target commitment
states CSs under interesting level Lv. Consequently the
algorithms always stick to the interesting states first,
and thus reduce the size of states evaluated in each step
of state traversal and the time for bug hunting. The
difference between GBH and GBH-BT is that GBH
always (and only) considers the interesting states during
verification. Therefore, it does not traverse the
complete state space of an e-business process and
probes its violations on its under-approximation. GBH-
BT, on the other hand, traces back to uninteresting
states and uses them as the initial points for re-
evaluating process models when bugs are not found on
interesting states. Note both two algorithms are self-
adaptive, in that when no interesting states are found
(fP=Guided), it will restrict the evaluation condition by

either reduce the interesting level or renew the
commitment states by computing their preimages.

The computation complexity of CompInteresting is
O(m*n), where m is the size of the current traversing
states (fP) and n is the size of the considered
commitment states. While the size of n remains small
for each iteration of the e-business process, m is also a
small number due to two reasons: (1) microscopically m
is restricted by traversing only the interesting states; (2)
macroscopically, different from hardware or software
designs, the state space for E-business processes is
often large in its depth and small in its breadth.

4.2. Application of Guided Bug Searching
As shown in figure 3 and 4, three business scenarios of
different complexities, an abstract open account e-
business process for banking system (SimpleBancking),
its detailed implementation (ComplexBanking) and an
e-business process for sofa-manufacturing (SofaManuf),

Init: the formula representation for initial set of states;
CSs: the formula representation for commitment states;
Gate: the maximum number for computing preimages;
MLv: the maximum interesting level;
Procedure GuidedBugHunting (GBH)
1: Define P=Init=Reached, pre=1, Lv=MLv
2: Define fP=Image(P)
3: Define fI=CompInteresting(fP, CSs, Lv)
4: Define Guided= fP∧fI
5: If Witness(Guided)
6: Report CS found, return Guided
7: If fP= Guided
8: If Lv>1 Lv--, goto 3;
9: If pre<Gate
10: pre++; CSs=PreImage(CSs), goto 3
11: Define Union=Guided∨Reached
12: If Union=Reached

Report Bug not found, return false
13: P= Guided∧¬Reached
14: Reached=Union, goto 2
Procedure GuidedBugHuntingBackTrace (GBH-BT)
1: Define P=Init=Reached, pre=1, Lv=MLv
2: clean stack to make it empty
3: Define fP=Image(P)
4: Define fI=ComInteresting(fP, CSs, Lv)
5: Define Guided= fP∧fI
6: If Witness(Guided)
7: Report CS found, return Guided
8: If fP= Guided
9: If Lv>1 Lv--, goto 3
10: If pre<Gate
11: pre++; CSs=PreImage(CSs), goto 4
12: Define UnInterested= fP∧¬fI
13: If UnInterested!=false
14: Insert UnInterested into stack
15: Define Union=Guided∨Reached
16: If Union=Reached
17: If stack is not empty
18: P= remove Head of stack
19: Union=Reached=P∨Reached; goto 3
20: Else Report Bug not found, return false
21: P= Guided∧¬Reached
22: Reached=Union, goto 3

Figure 2. Algorithms for Guided Search

are used as test cases. The models are built with IBM’s
Websphere Business Integrator (WBI). Detailed
introduction of the above process can also be referred in
[10]. Our OPAL[10] (Open Process AnaLyzer) toolkit is
the implementation environment for showing the
efficiency of our approach. OPAL is a model checking
based verifier tuned for business processes. It accepts
WBI process models as input and automatically records
and manages the state of the process by monitoring the
transition of corresponding activities. Details of the
formalization and verification methodology of OPAL
can be found in [10]. To prove the effectiveness of our
proposed approach, both the original Breadth-First
Symbolic Model Checking (BF-SMC) of CTL[1] and our
GuidedBugHunting (GBH and GBH-BT) are
implemented in OPAL. Tables 1-3 illustrate the results
(Gate=1, MLv=2) for different business bug patterns,
which are run on the PC of 1.73GHz and 2.5G RAM.

4.3. Result Discussion
The above choice of business scenarios and business
bug patterns shows the diversity in their complexity
(reachable states varies from 10^3 to 10^6). For
SimpleBancking, GBH does not show much advantage
over BF-SMC, the performance of GBH-BT is even
worse than BF-SMC. This is because the scale of this e-
business process is so small that makes the additional
computation of interesting states comparatively costly.
However, the small application is surely not our focus.
The advantage of our approaches becomes more
obvious for latter two complex applications. For models
where bugs do exist (Result=false), GBH-BT can
always detect these bugs faster than BF-SMC since it
always focuses on the most promising paths on which
bugs can be found. However, when specific bugs do not
exist in the model (e.g. B3 and B9 in table 1-3), GBH-
BT terminates slower than BF-SMC since GBH-BT not
only traverses the whole model state space, but also
does additional computation for interesting states and
stack operations. On the other hand, GBH out-performs
BF-SMC in both cases in the application. This is
because GBH follows only the interesting paths that
may lead to a bug and wastes no time on the un-
interesting ones. However, the drawback of GBH is that
it only evaluates a bug on an under-approximation of
the target application. Consequently, GBH can be used
to falsify an e-business process with specific bugs, but
it cannot fully prove the correctness of the process even
if the approach returns the result of true.

As a matter of fact, GBH can be regarded as a special
case for GBH-BT with the stack size set to be 0 (line 14
in GBH-BT). Therefore, three conclusions can be
drawn based on the above results: (1)Both GBH and
GBH-BT can be used to effectively detect behavioral
violations in complex e-business processes by guiding
the search to interesting states first; (2)GBH is most
efficient for complex e-business process where the
application is too large for model checking to run to
completion; (3) The verification performance and
completeness of state space traversal can be balanced

by setting the allowed stack size in GBH-BT (line 14)
according to the complexity of target e-business process.

5. Conclusion

In accordance to existing workflow patterns, a set of

Reachable States 958 (2^9.904)
Total States 8.941*10^11 (2^39.702)
BF-SMC GBH GBH-BT
Result Time Result Time Result Time
B1: SequentialBug(IdentifyCustomer, OpenAccount)
false 0.140 false 0.156 false 0.189
B2:ParallelSplitBug(RetainCustomerInfo, {SelectService,
PrepareOpening })
false 0.116 false 0.078 false 0.136
B3: SynchronizingMergeBug({RetrieveCustomerDetail,
SelectService, PrepareOpen}, OpenAccount)
true 0.265 true 0.141 true 0.357
B4: WithDesignTimeKnowledgeBug
(RetrieveCustomerInfo, Review, IdentifyCustomer, 2)
false 0.359 false 0.384 false 0.429
B5: MilestoneBug(OpenAccount.Finish,
 ActivateAccount.PreStart, ValidateAccount)
false 0.209 false 0.186 false 0.215

Table 1. Results for SimpleBancking (in seconds)
Reachable States 82612 (2^16.334)
Total States 4.213*10^13 (2^45.260)
BF-SMC GBH GBH-BT
Result Time Result Time Result Time
B1: SequentialBug(IdentifyCustomer, OpenAccount)
false 82.678 false 26.624 false 36.233
B2:ParallelSplitBug(RetainCustomerInfo,
{SelectService, PrepareOpening })
false 72.656 false 28.187 false 38.078
B3: SynchronizingMergeBug({RetrieveCustomerDetail,
SelectService, PrepareOpen}, OpenAccount)
true 59.016 true 10.152 true 72.598
B4: WithDesignTimeKnowledgeBug(
RetrieveCustomerInfo, Review, IdentifyCustomer, 2)
false 164.92 false 27.422 false 40.506
B5: MilestoneBug(OpenAccount.Finish,
 ActivateAccount.PreStart, ValidateAccount)
false 90.360 false 22.671 false 29.219

Table 2. Results for ComplexBanking (in seconds)
Reachable States 193524 (2^17.5622)
Total States 1.133*10^14 (2^46.69)
BF-SMC GBH GBH-BT
Result Time Result Time Result Time
B6: SequentialBug(setslipover, fixchairshape)
false 143.08 false 16.422 false 23.578
B7: ExclusiveChoiceBug(SendProductionOrder,
 {GetSewingMaterial, GetSamplingMaterial}) &
(SequentialBug(GetSamplingMaterial, Sampling) |
InterleavedParallelRoutingBug(GetSewingMaterial,
CutSponge, SewLeather))
false 401.38 false 63.488 false 268.99
B8: WithoutSynchronizationBug(BindSponge,
FinishNailing.NotStarted, setslipover)
true 465.35 true 27.891 true 303.92
B9: CancelActivityBug(ReportOOS.PreStart, Sampling) |
CancelActivityBug(ReportOOS. PreStart, CutSponge)
true 294.50 true 42.281 true 332.30

Table 3. Results for SofaManuf (in seconds)

business bug patterns are identified in this paper to
capture the common behavioral violations in complex
e-business processes. The precise semantics of the bug
patterns are formally captured with IEEE standard of
PSL. Guided searching for these bug patterns is also
proposed to enhance the efficiency of reasoning e-
business applications to ensure their trustworthiness.
The approach is implemented in our business process
verification toolkit of OPAL and testified on three
different business scenarios in both banking and sofa-
manufacturing domain. Results show that our approach
is especially useful for large e-business applications
compared to traditional model checking approach.

As previously concluded, our future work involves
the careful study of the relation between stack size in
GBH-BT and verification performance to make it a
more systematic approach.

6. References
[1] E. Clarke, A. Biere. “Bounded Model Checking Using
Satisfiability Solving”. Formal Methods in System Design, 19,
2001, pp. 7–34.
[2] W. L. Wang, Z. Hidvegi. ”E-process design and assurance
using model checking”, Computer, 33, 10, pp. 48-53.
[3] B. Anderson, J. Hansen, et al. ”Model checking for design
and assurance of e-Business processes”, Decision Support
Systems, 39, 3, pp. 333-344.

[4] D. Geist. “The PSL/Sugar specification language a
language for all seasons”. Lecture Notes in Computer Science,
2800, 2003, pp. 3-3.
[5] C. H. Yang, L. D. David, “Validation with guided search
of the state space”. Proc. Annual ACM IEEE Design
Automation Conference, 1998, pp. 599-604.
[6] K. Seppi, M. Jones, et al, “Guided model checking with a
bayesian meta-heuristic”. Proc. 4th Int. Conf. on Application
of Concurrency to System Design, 2004, pp. 217-226.
[7] K. Ravi1, F. Somenzi, “Hints to accelerate symbolic
traversal”, Lecture Notes in Computer Science, 1703, 1999,
pp. 250-266
[8] R. Bloem, K. Ravi, et al. ”Symbolic Guided Search for
CTL model checking”. Proc. Annual ACM IEEE Design
Automation Conference, 2000, pp. 29-34.
[9] Y. C. Ho, D. L. Pepyne, “Simple explanation of the No
Free Lunch Theorem of Optimization”. Proc. IEEE Conf. on
Decision and Control, v5, 2001, pp. 4409-4414.
[10] K. Xu, Y. Liu, C. Wu. “BPSL modeler - visual notation
language for intuitive business property reasoning” Electronic
Notes in Theoretical Computer Science, 2006, pp. 205-215.
[11] van der Aalst W.M.P, ter Hofstede, A.H.M. et al, “Work-
flow patterns”. Distributed and Parallel Databases, 14, 2003,
pp. 5–51.
[12] Michael H. Essential Business Process Modeling,
O’Reilly Press, 2005.
[13] K Xu, Y. X. Wang., C Wu. “Ensuring secure and robust
grid applications – From a formal method point of view”,
Lecture Notes in Computer Science, 3947, 2006, pp. 537-546

AcceptCustomerReq
PrepareAccountOpenning

ActivateAccount

CloseAccount

Review

Figure 3. Sample Banking E-business Application (detailed behaviors in dotted rectangles can be abstracted)

Figure 4. Sample Manufacturing E-business Application

