
RC23950 (W0605-011) May 2, 2006
Computer Science

IBM Research Report

Experience with Collaborating Managers:  
Node Group Manager and Provisioning Manager

Ian Whalley, Asser Tantawi, Malgorzata Steinder, Mike Spreitzer, 
Giovanni Pacifici, Rajarshi Das, David M. Chess

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Experience with Collaborating Managers: Node Group Manager and
Provisioning Manager

Ian Whalley, Asser Tantawi, Malgorzata Steinder, Mike Spreitzer,
Giovanni Pacifici, Rajarshi Das, David M. Chess

IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

{inw,tantawi,steinder,mspreitz,giovanni,rajarshi,chess}@us.ibm.com

Abstract

This paper presents an autonomic system in which
two managers with different responsibilities collabo-
rate to achieve an overall objective within a cluster of
server computers. The first, a node group manager,
uses modeling and optimization algorithms to allocate
server processes and individual requests among a set of
server machines grouped into node groups, and also es-
timates its ability to fulfill its service-level objectives as
a function of the number of server machines available in
each node group. The second, a provisioning manager,
consumes these estimates from one or more node group
managers, and uses them to allocate machines to node
groups over a longer timescale. We describe the opera-
tion of both managers and the information that flows be-
tween them, and present the results of some experiments
demonstrating the effectiveness of our technique. Fur-
thermore, we relate our architecture to a general auto-
nomic computing architecture based on self-managing
resources and patterns of inter-resource collaboration,
and to emerging standards in the area of distributed
manageability. We also discuss some of the issues in-
volved in incorporating our implementation into exist-
ing products in the short term, and describe a number
of further directions for this research.

1. Introduction

The vision of autonomic computing [1] is of com-
puting systems that manage themselves to a far greater
extent than they do today. To achieve this vision, we
believe that interacting sets of individual computing el-
ements must work together to regulate and adapt their
own behavior in response to widely changing condi-
tions, with only high-level direction from humans.

In [2] we describe an architecture for autonomic
systems, in which self-managing resources (there called
“autonomic elements”) regulate their own behaviors ac-
cording to policies and interact via agreements and
relationships, in order to achieve overall system self-
management.

New architectures are seldom implemented in a
single step; we do not expect the world to simply toss
out existing systems and replace them with new self-
managing ones built according to this architecture. The
adoption of self-management techniques and architec-
ture will generally be a gradual process. As more au-
tonomic capabilities are incorporated into existing sys-
tem management technologies, opportunities will arise
to introduce the features of the architecture gradually
into the systems that include them.

In this paper we describe an IT management system
in which two management components, each with some
autonomic characteristics, collaborate to achieve a level
of overall system self-management within a data center.
This paper is an extended version of [3], updated to de-
scribe some more recent algorithms and results, and to
relate our work to emerging manageability standards.

The first manager in our system, a node group man-
ager implemented in a middleware application server,
uses modeling and optimization algorithms to allocate
server processes and individual requests among a set of
server machines (”nodes”) grouped into node groups. It
also estimates its ability to fulfill its service-level objec-
tives as a function of the number of nodes potentially
available to each node group. We describe the most im-
portant algorithms used in making these calculations,
and the information that the node group manager sur-
faces to the other components of the system.

All of the nodes in a given node group share a set of
properties, such as installed operating system, network
connectivity, support libraries, and so on. The node



group manager is responsible for directing and balanc-
ing the traffic within each node group, and for allocating
server processes to the nodes within the group, but it is
not able to carry out the provisioning actions necessary
to move nodes from one node group to another. Addi-
tionally, the node group manager has only a local view
of the set of node groups that it is responsible for; it
cannot make higher-level decisions about the allocation
of nodes between the demands of its own node groups
and those of other processes in the larger data center.

The second manager we describe, a provision-
ing manager, implements another layer of management
above the node group manager. It has the knowledge
necessary to move nodes from one node group to an-
other through potentially time-consuming provisioning
actions, and it can balance the competing demands of
multiple managers operating at the level of the node
group manager. (These may be instances of the node
group manager, or of other managers that can provide
the required performance estimates.) On the other hand,
the provisioning manager does not have the node group
manager’s real-time knowledge of the traffic within
each node group.

The two management layers are thus complemen-
tary; the two managers collaborate in that the estimates
produced by the node group manager allow the pro-
visioning manager to more effectively allocate the re-
sources that it provisions, and the actions of the pro-
visioning manager give the node group manager more
servers to work with (when it has sufficient need for
them).

In operation, the provisioning manager consumes
performance estimates from one or more node group
managers (and other managers operating at the same
level), and uses them to allocate nodes to node groups
over a longer timescale, using the knowledge mentioned
above. In the body of this paper, we briefly outline the
function of the provisioning manager, and describe the
semantics of the information that it exchanges with the
node group manager.

Finally, we analyze this system in terms of the auto-
nomic architecture described in [2], highlighting those
features that bear on architectural solutions to the chal-
lenges of self-management.

The remainder of the paper is organized as follows.
In Section 2 we describe the algorithms used by the
node group manager for flow control and process place-
ment, and for collaboration with the provisioning man-
ager; we cover these algorithms in some detail, to give
a concrete example of the calculations that occur within
autonomic management software, and how some of the
results of these are exposed to other parts of the system.
In Section 3 we outline the function of the provisioning

manager, and in Section 4 we describe the interactions
between the two.

In Section 5 we describe a simple scenario that ex-
ercises the autonomic functions of the components, and
present the results of experiments that demonstrate sys-
tem self-management capabilities in that scenario. In
Section 6 we relate the system as currently implemented
to the autonomic architecture and to emerging manage-
ability standards. In Section 7 we outline some direc-
tions for future work, and in Section 8 we conclude.

2. The application server

The node group manager used in this system is im-
plemented within a piece of application server middle-
ware (“ASM”): specifically, a version of IBM’s Web-
Sphere Extended Deployment product. This product
has a wide variety of features and functions; for the pur-
poses of this paper we consider only the subset of those
features described below.

In the ASM, the relationship between applications
and server machines (called nodes) where the applica-
tions can execute is expressed in terms of node groups.
A node group is a set of nodes that have capabilities
matching requirements of some application. Server ma-
chines within a node group may be heterogeneous, and
node groups may overlap. An application is mapped to
a single node group. For each application mapped to a
node group, a dynamic cluster (“DC”) is created, which
is a set of application-server instances that run on one
or more nodes within the node group. The ASM dy-
namically manages resources used by an application by
controlling the request flow into the system, by load bal-
ancing requests across dynamic-cluster members, and
by dynamically modifying the size and placement of
dynamic clusters.

Figure 1 illustrates the topology of the system de-
scribed here; the ASM is in the upper left. A user
request first arrives at one of M on-demand routers
(ODRs). Each ODR contains several logical gateways
(drawn as ovals in the figure), each of which is dedi-
cated to a particular dynamic cluster (see below) and
contains queues, a scheduler, and a load balancer. We
use the variable p to index into the set P of ODRs. The
ODR schedules and directs the request to a server pro-
cess on one of N server nodes, under the supervision of
multiple control loops. (For brevity, only a single node
group is illustrated.) Node’s server processes are drawn
as circles. In this paper, we use the variable n to index
into the set N of nodes in the system.

Incoming requests are categorized in the ODR, ac-
cording to administrator-specified criteria, into service
classes. We use the variable c to index into the set C of



ODR 1

Node 1

Node N

Placement Controller

Provisioning Manager

OAOA OA

B

C

D

Nodegroup Manager (ASM)

A

E

Figure 1. Overall system structure (described in detail in the text). Incoming requests (A) are
queued, and dispatched (B) to application servers by a flow controller and workload manager (not
shown). On a longer timescale, the placement controller determines (C) which application servers
should run in which nodes. In the longest timescale, the provisioning manager determines (D)
which nodes to assign to which node groups by consulting its objective analyzers, which receive
estimates (E) from the nodegroup manager (for simplicity only one node group is shown here).

service classes. For each service class, the administrator
specifies a service level objective by setting a threshold
and an importance value as described in Section 2.2.

At any given time, each node in the system is run-
ning the server processes corresponding to some subset
of the DCs; a node is said to be “in” all of the DCs
whose server processes are currently running on it. The
set of DCs that any particular node is in can change over
time, under the control of the placement algorithm de-
scribed in Section 2.1.

When a request arrives at an ODR, it is classified
and put into a queue specific to the request’s service
class and the DC that will serve it. Each ODR limits
the number of requests it has running in each DC at a
given time. When the appropriate DC is under the re-
quest limit and one or more requests are available in
the relevant queues, one of those queues is picked us-
ing a weighted round robin discipline, and a request is
dequeued from that queue. A server in the DC is cho-
sen by a load balancer that uses another weighted round
robin scheme, and the request is forwarded to the cho-
sen server. The server processes the request and returns
a reply to the ODR, which forwards the reply to the
original client.

The ASM includes three feedback control loops for

managing performance. The first such loop is the place-
ment control loop, which determines the DCs associ-
ated with each node (that is, which application server
processes run on each node). The second control loop,
the flow manager, manages the competition between
service classes and between DCs, taking the current
placement as a given. This controller computes the DC
concurrency limits and the round-robin weights used in
dequeuing. The flow manager also provides informa-
tion for use by other parts of the system. For example,
it produces demand signals sent to the placement con-
troller, as described below. The third controller, called
dWLM, adjusts the load balancing weights used in re-
quest routing (its function is not relevant to this paper,
and we will not mention it again).

The following subsections discuss the placement
control loop and the flow manager in more detail.

2.1. Placement

The placement controller periodically computes a
new desired instance placement, and then stops and
starts application server processes as necessary to put
the new desired instance placement into effect.

We use the term instance placement for a matrix



I of 0s and 1s, where Id,n is 1 if and only if node n is
currently in DC d (that is, it reflects whether or not a
server process for that DC is running on that node).

The choice of an instance placement matrix is de-
fined as a two-dimensional bin-packing problem. Our
approach to the problem is essentially that described in
[4]. Each node n is configured with a load-dependent
capacity (“speed”) Ωn and load-independent capacity
Γn. Each DC d is configured with a load-independent
demand γd , and assigned a load-dependent demand
(“speed request”) ωd by the flow manager (which pro-
vides new values each control cycle). An instance
placement matrix I solves the problem when there exists
a load placement matrix L, with cells containing non-
negative real numbers, where:

∀n : ∀d : (Rd,n = false) ⇒ Id,n = 0 (1)

∀n : ∀d : (Id,n = 0) ⇒ Ld,n = 0 (2)

∀n : Γn ≥ ∑
d

γdId,n (3)

∀n : Ωn ≥ ∑
d

Ld,n (4)

∀d : ωd = ∑
n

Ld,n (5)

In Eq. (1), R represents the allocation restriction
matrix defined by node to node group mapping. R d,n

is equal to true only if node n is a member of the node
group that dynamic cluster d is mapped to.

Before computing a new desired instance place-
ment, the controller first tests whether the current in-
stance placement solves the problem; if so, no change
is done. Otherwise, a new instance placement is com-
puted. That computation uses a heuristic that tries to
minimize the average case amount of change from the
current instance placement (because changes are rela-
tively expensive).

2.2. The flow manager

The algorithms used in the flow manager are based
on those described in [5]. The flow manager produces
control and inter-controller signals intended to maxi-
mize a system-wide objective function U . That objec-
tive function is determined from goals set by the admin-
istrator, as follows:

U = min
p∈P

min
d∈D

min
c∈C

Uc(P̄p,d,c) . (6)

Here P̄p,d,c is the expected performance result for the
flow identified by ODR p, DC d, and service class c.
Each service class c is defined to have a particular ob-
jective functionUc() of a particular kind of performance
result metric. Currently two kinds of performance result

metrics are supported: (1) average response time, and
(2) percentage of response times above a certain given
amount of time. For each service class c the adminis-
trator may specify an associated threshold value τc and
importance value zc, which parameterize the class’ ob-
jective function. We use class objective functions of the
following form:

Uc(p) =
(

τc − p
τc

)
·
{

1 if p ≤ τc
100−zc

99 if p ≥ τc
(7)

Thus, the class objective values are modified stretch fac-
tors, and the system-wide objective is to even out the
modified stretch factors.

The expected performance result for a flow is a
function of the resources allocated to that flow. That
function is based on a performance model, and the
model’s parameters are extracted on-line from observa-
tions of the system in operation.

The resources allocated to a flow are seats; that
is, the number of “slots” available for requests in the
various DCs, as constrained by each DC’s concurrency
limit.

For each flow p,d,c, the flow manager uses the per-
formance model to derive the number of seats needed to
meet the flow’s SLO; we write o∗

p,d,c for that number of
seats.

To compute the control signals at a given time, tak-
ing an instance placment I as a given, the flow manager
first makes a nominal allocation, to each server pro-
cess s and flow p,d(s),c that hits that server process, of
a non-negative integer number ŏ p,c,s of seats that flow
may occupy on that server process. The resource con-
straint is this:

∀n : ∑
s∈S(n)

∑
p,c

κp,d(s),c ŏp,c,s ≤ ρ̂ Ωn (8)

Here S(n) is the set of server processes running on node
n, and ρ̂ is a configured CPU utilization target. This
resource constraint says that each seat takes up a cer-
tain amount of the node’s computing power, and that
amount depends on the flow. The coefficients κ p,d,c

are computed by an auxiliary component known as the
Work Profiler. The nominal allocations are not enforced
directly; rather, through certain summations and other
processing, the actual control signals — the dequeuing
weights and DC concurrency limits — are derived from
the nominal allocations.

When computing the demand signals for place-
ment, the flow manager does a similar optimization —
but does not take the current instance placement as a
constraint. Let D(n) denote the set of all DCs that are
mapped to node groups that include node n, i.e., DCs



such that Rd,n = true. In this case, the controller allo-
cates a non-negative real number o p,d,c of seats subject
to the resource constraint:

∀n : ∑
d∈D(n)

∑
p,c

κp,d(s),c ŏp,c,s ≤ ρ̂ Ωn (9)

Note that in this case we are not limited to the DCs that
the node is currently in, but rather consider allocating
to all eligible DCs. Both optimizations are done every
control cycle. Let us add the subscript i to index over
control cycle iterations, starting with 1.

The flow manager calculates the demands signals
for the placement controller as follows. Using the
placement-unconstrained allocations, the flow manager
computes in each cycle, for each ODR p and DC d, a
speed request precursor

ω̌p,d,i = ∑
c

κp,d,c,i min(op,d,c,i, l̄p,d,c,i + ōp,d,c,i) (10)

where l̄p,d,c,i is the recent average queue length and
ōp,d,c,i is the recent average seat occupancy for flow
p,d,c at iteration i. Clipping by the sum of those two
avoids requesting speed that is unlikely to actually be
utilized.

Next, the speed request precursors are smoothed,
using a moving averaging technique with weights that
decrease with age, to produce values we write as ω̄p,d,i.
This process also produces standard deviation values,
which we write as νp,d,i. This smoothing compensates
for the noise in the system and the mismatch in con-
trol cycles (the placement controller runs on a different
— typically longer — control cycle than the flow man-
ager).

Finally, whenever the time comes to produce the
demand signal for DC d, the flow manager sums across
ODRs and adds in a multiple of the root-mean-square
variance:

ωd =

(
∑
p

ω̄p,d,i

)
+2
√

∑
p

ν2
p,d,i (11)

Including the variance makes some allowance for the
demand fluctuations expected before the next placement
controller run.

3. The provisioning manager

The provisioning manager (PM) used in the auto-
nomic system described here is IBM Tivoli Intelligent
Orchestrator (TIO) [6] [7]. This provisioning manager
has a large number of features, but this paper will focus
only on those relevant to the discussion at hand. The

PM dynamically reallocates server machines among a
set of application environments.

The key concepts used by the PM to model the
managed system are application environment, cluster,
and resource pool. An application environment is a
modeling construct used to assign SLA objectives to a
particular workload. It is composed of all resources,
i.e., server machines that are used to serve this work-
load. These resources are divided among clusters. To
avoid confusion with application-server clusters, we
will call them provisioning-manager clusters (PMC). A
PMC is a set of server machines that are identical with
respect to their power, OS, installed software stack, and
network connectivity. For multi-tiered application en-
vironments, PMCs usually serve different application
tiers. Neither PMCs nor application environments over-
lap, i.e., a server machine may not be a member of two
PMCs at a time and a PMC cannot belong to two appli-
cation environments at a time.

A PMC is associated with exactly one resource
pool, which is a homogeneous set of server machines.
Multiple PMCs may be associated with a single re-
source pool. The PM automatically moves servers from
a resource pool to an associated PMC by executing
a workflow, which appropriately configures the server
and installs needed software. Similarly, the PM auto-
matically removes a server from a PMC and moves it
back to a resource pool by running a different workflow,
which reverses the configuration and uninstalls the soft-
ware.

The decision whether or not to add or remove a
server machine is made by an optimizer, which allocates
server machines from a resource pool among the associ-
ated PMCs based on the SLA objectives defined for the
corresponding application environments and the current
performance of the corresponding workloads. The ob-
jective of the optimizer is to minimize the probability
that an SLA objective is violated for any managed ap-
plication environment. Hence, for any application envi-
ronment, the PM must be able to estimate the probabil-
ity that its SLA is violated for any given allocation of
resources.

Application environments managed by the PM may
greatly differ with respect to the type of workload, SLA
metrics used, and their internal resource management
logic. Therefore, it is impossible for the PM to ac-
curately model the performance of all these environ-
ments. Instead, the PM relies on application environ-
ments themselves to provide the probability of SLA vi-
olation.

In order to ensure the flexibility required to manage
a wide variey of subsystems, the PM provides an inter-
face by which evaluation logic designed explicitly for



a given application can be ‘plugged in‘. The decision
logic module is called an ‘Objective Analyzer’ (OA).
Such Objective Analyzers are also discussed in [8].

In general, each application environment (within
the provisioning manager) can have an Objective Ana-
lyzer associated with it. The Objective Analyzer encap-
sulates performance modelling, monitoring, and anal-
ysis needed to calulate the probability of violating the
SLA for a given allocation of server machines to a given
PMC within the application environment. The Objec-
tive Analyzer is invoked by the provisioning manager
on a cycle — the current version of the provisioning
manager runs on a 30 second decision cycle. When in-
voked, the Objective Analyzer constructs a ‘probability
of breach’ (PoB) curve for each PMC in the application
environemnt — a sample PoB curve is shown in Fig-
ure 2.

The PoB curve shows, for any possible number of
server machines n assigned to the PMC in question,
the probability P(n) of violating the SLA of the asso-
ciated application environment assuming that n server
machines are assigned to the PMC. In practice, the PoB
curve is implemented as an interface, and the provision-
ing manager calls back into that interface for various
values of n (that is to say, various numbers of server
machines) and is provided, in response, with the appro-
priate P(n).

The two horizontal lines shown on Figure 2 delin-
eate the probability of breach ‘target zone’ — in the cur-
rent version of the PM, p1 = 0.65, and p2 = 0.35. As
long as the probability of breach for a particular PMC
remains within the target zone, the provisioning man-
ager will not change the number of server machines
allocated to that PMC, unless another PMC is starved
of resources. If the probability of breach for a given
PMC is above the target zone the provisioning manager
is more likely to give that PMC additional nodes, and if
it is below the target zone it is a likely candidate to have
nodes taken from it.

4. Collaboration between ASM and PM

The collaboration between ASM controllers and
PM requires two problems to be solved: modeling ASM
concepts in the system model of PM, and integrating the
control logic of the two environments. These issues are
discussed in this section.

4.1. Mapping ASM concepts to the provision-
ing manager

One of the challenges in a multi-manager envi-
ronment is reconciling the potentially different ways

that the various managers look at the world. As dis-
cussed in Section 2, the ASM administrator creates
node groups and allocates the available server machines
among them. Application server processes are grouped
into dynamic clusters, whose distribution is bounded by
the node groups.

The most natural way of translating ASM concepts
to PM concepts is by mapping ASM node groups to PM
clusters (PMCs). With such a mapping, PMCs provide
a boundary for the deployment of application, which is
desirable from a user perspective. However, this map-
ping has quite obvious problems:

• Since node groups may overlap, to correctly repre-
sent this concept in the PM, PMCs would have to
overlap as well.

• Since node groups may contain server machines
that are heterogeneous with respect to their hard-
ware, network connectivity, and installed software,
PMCs would have to allow heterogeneous servers
to be included in them. In consequence, either
PMCs would have to be associated with multi-
ple homogeneous resource pools or resource pools
would have to be heterogeneous.

• The control logic of the PM would have to be
aware of the overlap among PMCs and of the prop-
erties of the individual servers. These properties
would have to be taken into account when esti-
mating the application performance as a result of
changing the PMC membership.

• The optimization logic of the PM would not only
have to consider the number of servers that should
be added or removed to or from a PMC, but also
their type. Similarly, the optimizer must recognize
the dependencies between PMCs, e.g., that the de-
cision to remove a server from a PMC is not in-
dependent of the decision to remove a server from
another PMC, when these PMCs overlap.

As a result, the natural node-group-to-PMCmapping is
not possible without significant modifications to the PM
model and control logic.

Another approach to concept mapping represents
the entire ASM system as a single PMC. In this solution,
a PMC has an internal structure that is not visible to
the PM, whose only goal is to add and remove server
machines to and from the ASM system. Any resource
management within PMC, e.g., moving server machines
between node groups, is done by the ASM system itself.
This approach has significant problems as well.

• Since the ASM may involve heterogeneous
servers, the PMC that represents it must allow het-
erogeneous servers to be included in it. Thus, we



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10

P
(n

)

Number n of server machines

Figure 2. A sample probability of breach curve, showing the target zone.

are faced with the same problem related to model-
ing and optimizing with respect to heterogeneous
resources as it was discussed in the previous ap-
proach.

• Moving servers across node group boundaries may
require reconfiguring server properties that are out-
side of the management skills of the ASM envi-
ronment. For example, it may be necessary to
change network connectivity configuration or in-
stall or uninstall software libraries. The ASM does
not have mechanisms to perform such tasks. We
would have to duplicate the functionality of PM
within the ASM, instead of integrating with it.

Considering these difficulties, we choose a third
approach in which multiple PMCs (in the provisioning
manager) map to a single node group (in the ASM). In
the event that an ASM node group is made up of het-
erogeneous servers, servers of different types are placed
in different PMCs. Also, if node groups overlap, then
PMCs are used to group servers with homogeneous
node group membership. This approach has the advan-
tage of allowing us to reuse the modeling constructs of
the PM and its functionality. One the other hand, in
widely heterogeneous systems, it may lead to a frag-
mentation of the system model as seen by the PM. Also,
due to the lack of a one-to-one mapping between the
ASM and PM concepts, the structure of the application

environment in the model of PM is obscure, which com-
plicates system configuration and management from a
PM perspective.

When configuring the provisioning manager to
work with the ASM in a given data center, the sys-
tem administrator must create PMCs corresponding to
the current configuration of the ASM. The provisioning
manager requires information to allow it to map its view
of the system onto the ASM’s view of that same system.
Specifically:

• For each PMC, the names of the node groups to
which it belongs.

• For each PMC, the name of the ASM instance that
controls the corresponding node group (this is re-
quired so that the provisioning manager communi-
cates with the correct ASM installation).

This information is provided to the provisioning
manager through ‘properties’ defined (by the system ad-
ministrator) on the PMC.

4.2. The Objective Analyzer

Recall from Section 3 that the provisioning man-
ager provides an interface by which a given application
environment can communicate its need for additional
resources, which is expressed in terms of the breach



probability function (PoB). The PoB curve shows, for
any possible number of server machines n assigned to
the PMC in question, the probability P(n) of violating
the SLA of the associated application environment as-
suming that n server machines are assigned to the PMC.

Whilst the PM comes preinstalled with several Ob-
jective Analyzers, none of them currently exploit the in-
formation available from the ASM. If the PM is to make
correct decisions when it comes to allocating and deal-
locating nodes to the ASM it is necessary for the PM to
have a specific understanding of the ASM environment.

Accordingly, an Objective Analyzer was designed
to take advantage of the ASM. This Objective Analyzer
communicates with the ASM to obtain information used
in its PoB calculation. Observe that there is a discrep-
ancy between the way ASM and the PM express the
level of “happiness” resulting from a particular resource
allocation. While the PM expresses it in terms of the
probability of SLA breach, the ASM uses an objective
function. Hence, the Objective Analyzer that allows the
ASM to be integrated with the PMC requires two ele-
ments: a function that maps server allocation into the
value of the objective function of the ASM, and a func-
tion that maps the objective function into a PoB.

4.3. Obtaining the utility curve

We have extended the flow controller in the ASM to
provide us with an estimated objective function for any
given allocation of servers to a particular PMC. To de-
fine this concept we extend the definition of the system-
wide objective function formulated in Eq. (6). Recall
that PMCs are homogeneous. Hence, in discussing the
allocation of server machines to PMC, we only need to
focus on the number of machines and we can ignore
their identity. Let us denote by PMC(k) a cluster of k
machines of the type used by PMC. Let us denote by
N (PMC(k)) the allocation of server machines to the
ASM obtained from the allocation currently in effect by
placing k server machines in PMC. If k is greater than
the number of servers currently in PMC, then the size
of PMC is increased. If k is smaller than the number of
servers currently in PMC, then the size of the PMC is
decreased. Otherwise, the configuration of the ASM is
unchanged.

We define the utility U of allocating n server ma-
chines to a PMC as follows.

U(n) = min
p∈P

min
d∈D

min
c∈C

Uc(P̄p,d,c(N (PMC(n)))) (12)

P̄p,d,c(N (PMC(n))) is the expected performance
result for the flow identified by ODR p, DC d, and
service class c, which is obtained as described in Sec-
tion 2.2 in the context of computing input for the

placement controller. While performing the calcula-
tion we take into account the hypothetical allocation
of resources expressed by N (PMC(n))) rather than the
current allocation. In particular, the set of constraints
in Eq. (10) covers all and only nodes in N (PMC(n)))
rather than nodes in the current configuration.

4.4. Mapping utility into probability of breach

The mapping of utility values for a set of possi-
ble server machine allocations to a corresponding set of
PoB values is achieved in two steps. The first step aims
to fit a negative exponential function through the set of
available utility values using standard regression tech-
niques. This step is necessary since the ASM may pro-
vide the estimated utility values for only a small subset
of all possible server machine allocations (for reasons
of computational costs). The second step maps the fit-
ted exponential function to a sigmoid PoB function for
all possible allocations. This section provides further
details of these two steps.

Currently, the ASM provides the set of utility val-
ues U(n) = {U(n−2),U(n−1),U(n),U(n+1),U(n+
2)} to the Objective Analyzer where n is the current al-
location of server machines. The functional form of the
class of utility functions is based on the objective func-
tion detailed in Eq. (7) which specifies that the utility
values are bounded from above by 1.0, and the util-
ity value is zero when the performance result metric
is equal to the associated threshold value. There is no
lower bound on the utility value. We fit the utility data
U(n) to a negative exponential function of the func-
tional form Û(x) = 1− ea−bx using standard weighted
linear least squares method, where x is the level of allo-
cation, and the weight associated with each data point is
determined by the relative difference in utility with its
adjacent points.

To convert the Û(x) function to the PoB curve, we
map x1, the root of the equation Û(x) = 0 to the up-
per threshold of the target zone for the PM where PoB
P(x1) = p1. At this level of allocation, the performance
result metric begins to fail in meeting the associated
threshold. On the other hand, positive utility values sig-
nify that the ASM is meetings its goals, and hence the
first integral value of x for which Û(x) > 0 is mapped
into the target zone. This is accomplished by assigning
x2, the mid-point of the first two integral values of x for
which Û(x) > 0, to the lower thresold of the target zone
for the PM where PoB P(x2) = p2.

Given these two points on the PoB curve (x1, p1)
and (x2, p2), where xi is the allocation level with PoB
P(xi) = pi, we fit a sigmoid function P(x) = 1/e−p+qx

to obtain the probability of breach for any level of allo-



cation x.
It is important to note two issues regarding the

mapping scheme detailed above. First, the mapping
from the utility values from the ASM to the probability
of breach value for the PM is necessary because the two
measures are incommensurate. If both ASM and the
PM used the same performance measure, the mapping
would be considerably simpler. Indeed, we have per-
formed preliminary studies where both ASM and PM
use similar probability of breach measure to commu-
nicate through the Objective Analyzer thereby making
the mapping process very straightforward.

On the other hand, it is likely that interacting au-
tonomic systems will often use incommensurate met-
rics to measure performance in which case some form
of mapping will be necessary for the entities to interact
harmoniously. While we have detailed one approach
above, we do note that machine learning approaches
could be gainfully employed in such mappings to make
the interactions between autonomic systems more cohe-
sive. For example, insted of fitting a new Û(x) to each
new set of data U(n), a learning system could include
historical utility data in providing consistent utility esti-
mates that is less susceptible to biases and random fluc-
tuations in U(n).

4.5. Damping in the Objective Analyzer

The Objective Analyzer must also take account of
the reality that, because ASM is a learning system that
must adapt to the addition and removal of server ma-
chines, the utility curves that the Objective Analyzer
receives from ASM will fluctuate. This fluctuation is
particularly significant in the immediate aftermath of an
allocation change — for example, in the case of the ad-
dition of a new node, ASM will require time to use the
new node and to adapt to its characteristics. In this time,
it is likely that the utilities will fluctuate sufficiently to
push the P(n) outside the target zone, and trigger an-
other allocation decision. Making an allocation change
in the period immediately following an earlier alloca-
tion change will only compound the fluctuations, and
increase the likelihood of yet a third allocation change,
and so on.

Consequently, the Objective Analyzer contains
damping code that will prevent allocation decisions for
a particular PMC from being made in the period im-
mediately following the number of server machines in
thatPMC changing. Fortunately, the provisioning man-
ager permits an Objective Analyzer to return a ‘default
P(n) surface’ — this is a surface for which, if n is the
currently allocated number of nodes, P(n) = 0.5; for
any n less than the current allocation, P(n) = 1.0; and,

for any n greater than the current allocation, P(n) = 0.0.
When the provisioning manager receives this ‘default
P(n) surface’ from an Objective Analyzer, it will not (in
the absence of resource contention) make any allocation
changes to the PMC in question. If there is resource
contention (that is to say, if other PMCs in the system
are starved of resources), then allocation changes may
still be made — it is not possible (nor should it be) for
an Objective Analyzer to expressly prevent the provi-
sioning manager from making allocation changes to its
PMC.

The time period for which this default P(n) surface
is provided by the Objective Analyzer to the provision-
ing manager can be overridden on a per-PMCbasis.

5. Experiments and results

In order to demonstrate the integration of the pro-
visioning manager and the ASM, experiments were per-
formed in which an installation of the provisioning
manager was configured to manage an ASM installa-
tion, and load was injected into the ASM installation.

5.1. Overall experimental setup

For reasons of clarity, both experiments described
herein are quite simple — more complicated experi-
ments are possible, but describing the interactions in
such systems would only be intrusive. Both experi-
ments used a single ASM installation with four server
machines. The server machines were homogenous —
they were IBM eServer xSeries 335 machines, each
containing a single Intel Xeon 3.2GHz processor (with
512KB of Level 2, and 2MB of Level 3, cache) config-
ured with hyperthreading enabled (so that each physical
processor presents as two virtual processors). Each ma-
chine had 3GB of RAM.

The goals used in the ASM configuration were the
same throughout — 400ms average response time for
all requests. The properties of the test application and
the server machines are such that a single server ma-
chine can serve between 25 and 30 clients and still meet
the 400ms average response time target. The demand,
measured in number of clients sending requests to the
ASM, is simulated using a single closed-loop load gen-
erator with an adjustable number of clients.

To make the operation of the experiments easier,
the PM was placed into ’semi-automatic’ mode. In this
mode, the PM does not act immediately on its decisions,
but instead asks, via its UI, for approval from an admin-
istrator. This introduces delays at some stages in the
process when the PM waits for the administrator to ac-
cept a recommendation, but also permits greater control



over the experiment.
In order to accelerate some aspects of the testing,

the damping period (see Section 4.5) was set to two
minutes for all Clusters.

5.2. Single Node Group

In the first experiment, the ASM system was con-
figured with a single Node Group, containing (initially)
two server machines. A single DC was created, backed
by this Node Group, and a single application (a simple
CPU consuming test application) was installed into that
DC.

Readers familiar with [3] will recognise that this
experiment uses the same configuration as the experi-
ment discussed in that paper1.

Figure 3 shows some characteristics of the test sys-
tem over time. The horizontal axis shows seconds
elapsed since the start of the test run. The graphs show
(from the bottom up):

• The client count, simulated by a single load driver,

• The response time, as perceived by the load driver
— response times are aggregated over 15 second
intervals — and the desired response time (the hor-
izontal dotted line),

• The value of U(n), where U(n) is the utility of
the current server machine allocation (see Sec-
tion 4.3); and

• The value of P(n), where P(n) is the Probability of
Breach for the Node Group with the current server
machine allocation (see Section 4.4). The horizon-
tal dotted lines on this topmost graph show the tar-
get zone, as in Figure 2.

At time 0, the load is a constant 45 clients. At
around 120s elapsed time, the client count is increased
to 50 clients — the response time curve immediately
trends slightly upwards, U(n) curve trends slightly
down, and P(n) curve trends slightly up. At around
400s elapsed time, the load is increased again to 55
clients — again, the response time curve goes up, U(n)
curve goes down, and P(n) goes up. However, the
two server machines can still handle the load, so U(n)
remains above 0 and P(n) remains below the upper
threshold of the target zone.

At around 750s elapsed time, the client count is in-
creased again to 60 clients. The response time curve

1However, readers are cautioned not to compare the response time
figures of the test application here and the test application in [3] —
we are here demonstrating the linkage between the ASM and the PM,
and have not attempted to optimize the ASM installation for speed.

rapidly rises over the 400ms response time target, push-
ing U(n) below 0 and P(n) above the upper threshold
of the target zone. At 790s elapsed time, the PM rec-
ommends the addition of a single server machine to the
Node Group, and at 895s elapsed time, that recommen-
dation is accepted. Between these two times, U(n) con-
tinues to trend downwards as the response time settles
towards its new, higher, level — and P(n) continues
upwards. At 895s elapsed time, the allocation begins,
and the allocation process continues until 1157s elapsed
time.

After 1157s elapsed time, the response time imme-
diately drops (back to less than the target of 400ms),
as the new server machine starts to serve requests. The
damping period discussed in Section 4.5 begins as soon
as the count of server machines changes — that is to
say, once the allocation has completed. Consequently,
whilst the allocation is in progress, and then during the
damping period, no values for U(n) or P(n) are gath-
ered 2. At the end of the damping period, data gathering
resumes, and U(n) (recall that n is now 3, reflecting the
new allocation) has returned to above 0. Similarly, P(n)
is now back within the target zone.

5.3. Two Node Groups

For the second experiment, the ASM system was
configured with two Node Groups. Each of these Node
Groups is identical to the single Node Group used in the
previous experiment, and are here referred to as A and
B. These Node Groups do not overlap (that is to say,
they do not share any server machines). Note that, in
this experiment, the PM has no server machines avail-
able in the resource pool for allocation to the ASM sys-
tem — in order to increase the allocation of one Node
Group, it will first be necessary to reduce the allocation
to the other Node Group.

Figure 4 is comparable to Figure 3 for the first ex-
periment — however, in this case, two P(n) and re-
sponse time curves are shown, one for Node Group A
and one for Node Group B.

In a similar manner to Figure 3, PA(n) increases
when the number of clients directing their workload at
A is raised (at around 245s elapsed time). PB(n) for B
is not affected by this change, as the workload to NG B
has not changed. However. as PA(n) has left the target
zone, the PM must consider reallocation options. As
there are no server machines in the resource pool, the
PM might at first appear to have no options — this is,

2Because, as discussed in Section 3, the PM runs on a 30 second
decision cycle, the next values for U(n) and P(n) are gathered on
the first decision cycle after the damping period ends — so, in these
experiments, the effective damping period could be as long as 150s.



 0

 0.2

 0.4

 0.6

 0.8

 1

             
 0

 0.2

 0.4

 0.6

 0.8

 1

P
(n

)

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1

             
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

U
(n

)

 0
 0.1
 0.2
 0.3
 0.4
 0.5

             
 0
 0.1
 0.2
 0.3
 0.4
 0.5

R
es

p.
 ti

m
e 

(s
)

 40

 50

 60

 70

 0  120  240  360  480  600  720  840  960  1080  1200  1320  1440
 40

 50

 60

 70

C
lie

nt
 c

ou
nt

Elapsed time (s)

Figure 3. Single Node Group experiment

however, not the case. As the workload the B is small,
not only is PB(2) inside the target zone, but PB(1) is also
(just) inside the zone. Also, PA(3) is inside the target
zone — that is to say, if the PM moves one of the server
machines from B to A, both A and B will be meeting
their goals.

In addition, the overall breach probability of the
system is decreased if this reallocation is performed,
since:

PA(3)+PB(1) < PA(2)+PB(2) (13)

Consequently, at 345s elapsed time, the PM rec-
ommends the removal of a server machine from B. This
recommendation is accepted at 350s elapsed time, and
the removal runs until 571s elapsed time. At 582s
elapsed time (the provisioning cycle after the removal
has finished), the PM recommends the addition of the
now-spare server machine to A — note that the damp-
ing period does not prevent this recommendation, as it
does not relate to the PMC for which a change was re-
cently made. That is to say, B is in the damping period,
but A is not, and so recommendations can be made for

A. This recommendation (to add a server machine to A)
is accepted at 587s elapsed time, and runs until 858s
elapsed time.

Two minutes after the remove operation completes,
the Objective Analyzer begins to compute PoBs for B
once again – these points can be seen starting at 702s
elapsed time. Similarly, two minutes after the add oper-
ation completes, the Objective Analyzer begins to com-
pute PoBs for A once again – these points can be seen
starting at 1005s elapsed time. Recall that when the
PoBs reappear on the graph, they are the PoB of the
current (that is to say, the new) allocations.

The end of the graph shows the system performing
within the goals — the PB(n) is (just) within the tar-
get zone, and PA(n) is well within it. And the response
times show that both applications are meeting their tar-
gets.

5.4. Single Node Group with varying load

This experiment used a configuration similar to the
simple single Node Group experiment discussed in Sec-



 0

 0.2

 0.4

 0.6

 0.8

 1

          
 0

 0.2

 0.4

 0.6

 0.8

 1

P
(n

) 
fo

r 
A

 0

 0.2

 0.4

 0.6

 0.8

 1

          
 0

 0.2

 0.4

 0.6

 0.8

 1
P

(n
) 

fo
r 

B

 0
 0.1
 0.2
 0.3
 0.4
 0.5

          
 0
 0.1
 0.2
 0.3
 0.4
 0.5

R
T

 o
f A

 (
s)

 0
 0.1
 0.2
 0.3
 0.4
 0.5

          
 0
 0.1
 0.2
 0.3
 0.4
 0.5

R
T

 o
f B

 (
s)

 40

 50

 60

 70

 0  120  240  360  480  600  720  840  960  1080
 40

 50

 60

 70

C
lie

nt
s 

of
 A

Elapsed time (s)

Figure 4. Two Node Group experiment

tion 5.2 — however, in this case the Node Group ini-
tially contained only one server machine. The other
three server machines were available in the PM’s re-
source pool for allocation when needed. For this ex-
periment, the PM was placed into ‘automatic’ mode,
wherein allocation decisions are acted on automatically
and immediately without intervention from a adminis-
trator.

In order to provide a varying load over time, we
configured the load generator to produce a realistic em-
ulation of stochastic bursty time-varying demand by
employing a time series model of Web traffic developed
by Squillante et al. [9]. The number of clients in the
closed-loop load generator is reset every minute accord-
ing to this model with hard lower and upper thresholds
of 15 and 100 clients respectively.

The system was left to run overnight, and the re-
sults collected.

Figure 5 shows the number of clients and the de-
sired server machine allocation over time. The ‘desired
server machine allocation’ reflects, for each provision-
ing cycle of the PM, how many server machines the PM
decides that the PMC needs. If this desired allocation
number is different from the current allocation number,
then a reallocation will be performed — but this real-
location takes several minutes (as was shown in earlier
experiments). The current server allocation precisely
matches the desired server allocation with a time lag
of approximately five minutes. The figure shows that,
in spite of this delay, the ASM-PM interaction is able
to successfully allocate server machines under widely
varying load conditions.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  3600  7200  10800  14400  18000  21600  25200  28800  32400  36000  39600
 0

 1

 2

 3

 4

 5

C
lie

nt
 c

ou
nt

D
es

ire
d 

se
rv

er
 c

ou
nt

 

Elapsed time (s)

Client count
Desired server count

Figure 5. Single Node Group with varying load: client count and desired server allocation over time

Figure 6 shows the overall allocation changes that
emerge from the ASM-PM interactions. Using aggre-
gate data, the figure plots the likelihood of the PM de-
termining that the desired server allocation is one, two,
three, or four for various instantaneous client counts.
The client counts are grouped into bins of size 10. As
expected, the probability of the PM wanting a larger
server machine allocation increases as the client count
increases.

This experiment demonstrates that the algorithms
presented earlier in this paper enable the system to man-
age resources according to performance goals both in
allocating transactions within the currently assigned set
of server machines, and in changing that assignment in
response to varying load.

6. Architectural analysis

In this section, we will analyze the system de-
scribed above in terms of the architecture for self-
managing systems presented in [2], and outline how
some emerging standards for distributed manageability

apply to this example of self-management. We begin
with an overview of the architecture and its essential
concepts.

6.1. Autonomic architecture

The basic component in the architecture is the
“self-managing resource”. A self-managing resource is
a component that is responsible for managing its own
behavior in accordance with policies, and for interact-
ing with other self-managing resources to provide or
consume IT services.

In this approach, every component of an autonomic
system is a self-managing resource. This includes ba-
sic computing resources such as databases, storage sys-
tems, or servers; higher-level components with some
management authority, such as workload managers or
provisioners; and resources that assist others in per-
forming their functions, such as sentinels, brokers, or
service registries.

All self-managing resources have certain character-
istics.



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

D
es

ire
d 

se
rv

er
 a

llo
ca

tio
n 

ra
tio

Binned client count

Desired allocation == 1
Desired allocation == 2
Desired allocation == 3
Desired allocation == 4

Figure 6. Single Node Group with varying load: relationship of client count to desired server alloca-
tions

• First, self-managing resources are in fact self-
managing; that is, each one is responsible for
configuring itself internally, for coping with in-
ternal failures, for optimizing its own behavior,
and for protecting itself from external attack. A
self-managing resource handles problems locally
whenever possible, including problems caused by
the failure of other entities upon which it depends.

• Second, self-managing resources are capable of
forming and abiding by agreements with other
self-managing resources. Agreements are the
means by which multiple self-managing resources
are composed into larger autonomic systems. In
order to allow the formation of agreements, each
self-managing resource must describe itself accu-
rately, and in such a way that the description is
accessible to and understandable by other self-
managing resources. And each self-managing re-
source must be capable of negotiating (if only triv-
ially) to establish agreements.

• Third, self-managing resources manage their own
behavior and interactions so as to meet their obli-
gations, by appropriately adjusting their own in-
ternal parameters and by drawing upon the other
resources in the system. There are two types of
obligations to which a self-managing resource may
be subject: agreements, and policies. A self-

managing resource must not accept any service re-
quest which would violate its policies or agree-
ments, and it must not accept any proposed agree-
ment or policy that would cause a violation of its
existing agreements or policies. It must have suf-
ficient analytic capabilities to support these func-
tions.

As used in the architecture, policies are descrip-
tions of constraints and requirements upon the behav-
ior of one or more self-managing resources, or more
generally (as described in [10]) any description of the
value of one or more possible states of the system. Poli-
cies can range from very simple declarative rules about
the low-level behavior of the system to high-level busi-
ness objectives [11], and utility functions [12]. To allow
policies to be communicated between self-managing re-
sources, they must be represented in a standard external
form.

A significant design pattern enabled by the auto-
nomic architecture is goal-driven self-assembly (de-
scribed in detail in [13] and [14]). This pattern ex-
ploits the ability of self-managing resources to describe
themselves, locate each other, and form agreements. In
the pattern, self-managing resources determine at run-
time what services they will need to obtain in order to
carry out the policies that apply to them, and dynami-
cally locate other resources capable of supplying those
services, by consulting a service registry in which all



available self-managing resources announce themselves
and their capabilities. (This service registry is similar in
concept to those used in multi-agent systems [15] and
dynamic e-business systems [16].)

6.2. Analysis of the current system

Since the concrete system described in this paper is
built on existing systems management software and the
autonomic architecture that we outline is relatively new,
the system is not completely conformant to the archi-
tecture. But since the system has significant autonomic
features, and has the advantage of actually existing, we
can use it to illuminate what a full implementation of
the architecture might look like, and what practical re-
quirements will apply to it.

The first task in analyzing the current system
against the autonomic architecture is to decide where
to draw the lines — how to divide the system into inter-
acting self-managing resources.

At least two possibilities present themselves here:
we could draw the line between the objective analyzer
and the ASM, or between the objective analyzer and the
provisioner. In the former case the key data items com-
municated between the managers are the expected utili-
ties associated with possible resource allocations, as de-
scribed in Sections 2 and 3. In the latter case, it is the
Probability of Breach surface.

Determining how to divide an existing (or pro-
posed) system into self-managing resources is similar
in many ways to determining how to divide a program
into modules, or more generally how to create an infor-
mation model for any real or IT system. To some extent,
all of these processes are matters of art as much as they
are matters of science. But there are general principles
that apply; the division should maximize the reusability
of the components (self-managing resources, program
modules, object classes) that result, and the cleanliness
of the interfaces between them.

In the case of the system we described in [3], it was
most natural to draw the line between the the objective
analyzer and the ASM. We considered the ASM, includ-
ing the controllers and the objective analyzer described
above, to be one self-managing resource, and the provi-
sioning manager to be another. This was preferable to
the alternative because the information passed between
the ASM and the objective analyzer in that system was
relatively specific to the ASM and not as generally use-
ful as the probability of breach data.

In the current system, however, both probability of
breach data and utility estimates are conceivably use-
ful to other components; it is easy to imagine the ASM
usefully providing either one to other self-managing re-

sources, such as other provisioning managers, problem
determination systems, monitoring consoles, and so on.
Our current belief is that utility estimates are somewhat
more general than probability of breach curves, but fur-
ther experience is required to validate this. We will ex-
plore both the possibility of the ASM reasoning directly
in terms of probability of breach, and of the PM reason-
ing in terms of probability.

Similar principles apply when we consider a related
question: whether the ASM itself should be divided into
multiple self-managing resources. Since the flow man-
ager and the placement controller are relatively disjoint,
and the signals that pass between them well-defined,
it would be possible to separate them into separate re-
sources that would then be rejoined through agreements
and published interfaces. At present, however, it does
not appear that the resulting interfaces would be partic-
ularly reusable; if nothing but the placement controller
would ever want to collaborate with the flow manager,
and vice-versa, they are best kept within a single re-
source.

On the other hand, if the server machines them-
selves were self-managing resources with well-defined
service interfaces, some advantages would accrue. Cur-
rently the methods by which the ASM and the PM com-
municate with and cause actions on the server machines
are somewhat ad hoc (shell scripts run via ssh, for in-
stance). We are now constructing a prototype system
in which server machines are explicitly represented as
self-managing resources, with which the management
resources interact in well-defined ways.

In the current system, the relationship between the
ASM and the provisioning manager is conceptually
simple: the former provides the latter with estimates
of how it would behave at various levels of resource,
and the latter supplies resources to the former in a way
that increases the overall performance of the system.
Making this relationship explicit, by representing it as
an agreement expressed and documented in a standard
agreement language, would allow other components of
the system, such as visualization tools and problem-
determination services, to access and reason about the
relationship. It would also allow both of the managers
to explicitly represent, in a common format, the set of
servers that they are collaboratively managing; in the
current system this set is maintained separately in each
manager, which involves some duplication of effort and
information.

Having the two managers explicitly construct their
relationship via agreement formation would also reduce
the amount of manual configuration required, since the
managers could exchange the necessary information in
a principled way as part of the initial negotiation.



Similarly, we can regard the service class defini-
tions and threshold and importance values that serve as
the inputs to the application server’s objective-function
calculation as policies, or service-level agreements, that
partially constrain the behavior of the ASM. By set-
ting these values, the administrator controls the goals to
which the autonomic system will manage itself. These
values are currently entered into the system through
the administrative user interface. Exposing these val-
ues explicitly, in a standard policy or SLA language,
would add to the system’s flexibility, and allow it to ac-
quire these policies from other policy-deployment sys-
tems that are currently being designed, and enable those
policies to be computed automatically from higher-level
business goals and thence deployed into the system.

6.3. Standards for manageability

Given any pair, or any small set, of software com-
ponents, it would be possible to design ad hoc mech-
anisms, languages, and protocols to acheive the inter-
componment aims of the architecture presented above.
Once the hard work of modelling server machine be-
havior, forecasting demand, and computing utility esti-
mates and probability of breach surfaces has been done,
the task of communicating the results from one given
component to another is comparatively trivial.

In the larger world, though, this kind of pairwise
and setwise design does not scale well; designing and
writing new code for each new pair of components that
need to interact would be prohibitively inefficient. Stan-
dards are therefore needed for communicating the com-
mon kinds of information, and carrying out the common
kinds of interactions, that this architecture and other re-
lated architectures require. This task is no longer trivial;
the development of effective standards requires solving
significant technical, as well as organizational and po-
litical, problems.

We will not attempt in this paper to show in de-
tail how the system we describe here could make use of
the emerging standards for distributed system manage-
ability, but having described the system and its interac-
tions, it seems worthwhile to mention the most relevant
standards, and suggest how they apply to the problems
encountered in creating a scalable architecture for such
system.

The manageability standards that we describe here
are built around the Web Services architecture described
in [17]. The Web Services architecture provides a gen-
eral means for software entities to interact in a dis-
tributed environment; it includes a general scheme (the
Web Services Description, expressed in the Web Ser-
vices Description Language WSDL) for entities to de-

scribe the services that they provide in terms of their
names and the names and types of their parameters.

The Web Services architecture provides the basic
interoperability standard. Further work is building on
this base to provide standard ways to represent and de-
scribe stateful resources, their capabilities, and their re-
lationships, in ways that meet many of the requirements
of the autonomic computing architecture.

The Web Services Resource Framework [18] pro-
vides a set of standards for modeling stateful resources
using web services, including standard ways of repre-
senting and accessing the properties and lifetimes of re-
sources and groups of resources, and of subscribing to
and receiving topic-based notifications about resource-
related events.

Higher-level standards build in turn upon this re-
source framework. The Management Using Web Ser-
vices (MUWS) specifications [19] [20] apply specif-
ically to manageability and management, specifying
how resources expose their identities, manageability
characteristics and capabilities, management-relevant
metrics, operational state, and relationships to other en-
tities in the system. The WS-Agreement specification
[21] specifies languages and protocols that enable one
component to announce that it is willing to consider en-
tering into various sorts of relationships, and another
component to propose actually doing so.

While many of these specifications and standards
are still in active development, together they offer a
promising suite of common methods for satisfying the
requirements of the autonomic architecture.

In terms of the system described in this paper and
the analysis presented in the previous section, these
standards would allow us to model the provisioning
manager and the node group manager as web services,
to take advantage of off-the-shelf development and run-
time libraries for creating web services. Building on the
Web Services Resource Framework, the MUWS spec-
ification shows us how the node group manager could
expose in a standard way the fact that it is capable of
producing probability of breach data, and the Web Ser-
vices Description Language shows us how to describe
the names and parameters of the calls that the provi-
sioning manager can make to request and obtain that
data. The MUWS and WS-Agreement specifications
offer standard ways of representing the relationships be-
tween the components in a way that other parts of the
system can understand, and also allow each component
to advertise the kinds of relationships into which it can
enter.

All of these specifications working together take us
some of the way toward realizing the architectural goals
described above in systems like the one this paper de-



scribes, in a way that avoids the scaling problems of
pairwise solutions.

They do not take us all the way; not only are the
specifications not yet complete, but there are still sig-
nificant open problems in resource modeling and spe-
cific semantics. The MUWS standard for manageabil-
ity characteristics tells us how the node group manager
can announce its capabilities, but it does not specify a
particular capability name corresponding to the produc-
tion of probability of breach data or utility estimates.
Much more work remains to be done in bringing these
emerging standards to bear on practical problems; we
urge other researchers to take these standards seriously,
and validate them against the problems that they face.

7. Future Work

As well as increasing the transparency and interop-
erability of the system using the emerging manageabil-
ity standards discussed in the previous section, we plan
to study a number of other extensions and refinements
of the present system.

Our experiments so far have concentrated on ob-
jective functions based on average response time, as de-
scribed in section 2 above. It would be interesting to
explore the dynamics of the system under the other type
of objective function supported by the ASM: percent of
response times above a given threshold. While we be-
lieve that the utility calculations and basic interaction
patterns will continue to apply, experimental confirma-
tion is highly desirable.

As mentioned in section 4 above, the computation
of and use of utilities in the system would be simpli-
fied if the ASM and the PM used the same, or more
simply commensurable, performance measures. We are
working on more general measures of performance and
utility that could be used to satisfy the computational re-
quirements of both components. We are also investigat-
ing machine-learning approaches to increase the quality
of the mapping with experience when measures remain
incommensurable.

Another interesting extension to the system would
involve using the ASM and the PM to manage the
on-demand routers (ODRs) as well as the application
servers. Like application servers, ODRs can be started
and stopped on the available server computers; unlike
application servers, there is no explicit performance
goal associated with the ODRs. It would be relatively
straightforward to create an Objective Analyzer that
would perform appropriate utility calculations and al-
low the PM to add and remove ODRs in respones to
load and performance, although determining the proper
effective performance goal for the “cluster” of ODRs

will require invention.
In the longer term, it will be necessary to derive

the performance goals for individual applications from
business goals expressed in higher level terms. Per-
forming this type of derivation is one of the major chal-
lenges in the creation of self-managing systems.

8. Conclusions

We have described an autonomic computing sys-
tem in which two managers collaborate to optimize the
behavior of the infrastructure against human-specified
goals. The managers themselves have autonomic fea-
tures, and the information that they exchange allows
them to perform optimizations that neither would be ca-
pable of alone. We have described how the application
server routes and classifies requests and estimates the
impact of having more, or fewer, server nodes available
for servicing those requests. We have also described
how the application server’s impact estimates are used
by the provisioning manager to do higher-level orches-
tration within the data center, and we presented the re-
sults of experiments validating the approach.

As autonomic systems management technologies
such as these become more sophisticated and more
widespread, there will be an increasingly urgent need
for a unifying architecture and common standards that
allow them to interoperate, both to avoid conflicts and
to enable synergies. We have analyzed the current sys-
tem in terms of one proposed architecture for auto-
nomic systems, based on the concept of self-managing
resources, and a set of emerging Web Services manage-
ability standards, and we have outlined some areas for
future research work.

9. Acknowledgements

We would like to thank U. Gopalakrishnan for pro-
viding us with the necessary modifications to the load
generator to produce time-varying demand as detailed
in Section 5.4.

References

[1] J. O. Kephart and D. M. Chess, “The vision of auto-
nomic computing,” Computer, vol. 36, no. 1, pp. 41–52,
2003.

[2] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and
J. O. Kephart, “An architectural approach to autonomic
computing,” in First International Conference on Auto-
nomic Computing, 2004.

[3] D. M. Chess, G. Pacifici, M. Spreitzer, M. Steinder,
A. Tantawi, and I. Whalley, “Experience with collabo-



rating managers: Node group manager and provisioning
manager,” in Second International Conference on Auto-
nomic Computing, 2005.

[4] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi,
“Dynamic application placement under service and
memory constraints,” in 4th International Workshop on
Efficient and Experimental Algorithms, Santorini Island,
Greece, May 2005.

[5] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer,
A. Tantawi, and A. Youssef, “Performance management
for cluster based web services,” in 8th IFIP/IEEE In-
ternational Symposium on Integrated Network Manage-
ment (IM 2003), 2003.

[6] IBM Corp., “IBM Tivoli Intelligent Orchestrator
— Product overview,” http://www.ibm.com/software/
tivoli/products/intell-orch/.

[7] E. Manoel, S. C. Brumfield, K. Converse, M. DuMont,
L. Hand, G. Lilly, M. Moeller, A. Nemati, and A. Waisa-
nen, “Provisioning On Demand: Introducing IBM Tivoli
Intelligent Orchestrator,” Dec. 2003.

[8] F. J. De Gilio, “Orchestriating grid workloads —
neither feast nor famine,” http://www-128.ibm.com/
developerworks/grid/library/gr-feast/, 2004.

[9] M. S. Squillante, D. D. Yao, and L. Zhang, “Internet
traffic: Periodicity, tail behavior and performance impli-
cations,” in System Performance Evaluation: Method-
ologies and Applications, 1999.

[10] J. O. Kephart and W. E. Walsh, “An artificial intelligence
perspective on autonomic computing policies,” in IEEE
5th International Workshop on Policies for Distributed
Systems and Networks, 2004.

[11] S. Aiber, D. Gilat, A. Landau, N. Razinkov, A. Sela, and
S. Wasserkrug, “Autonomic self-optimization according
to business objectives,” in First International Confer-
ence on Autonomic Computing, 2004.

[12] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das,
“Utility functions in autonomic computing,” in First In-
ternational Conference on Autonomic Computing, 2004.

[13] D. Chess, A. Segal, I. Whalley, and S. White, “Unity:
Experiences with a prototype autonomic computing sys-
tem,” in First International Conference on Autonomic
Computing, 2004.

[14] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal,
I. Whalley, J. O. Kephart, and S. R. White, “A multi-
agent systems approach to autonomic computing.” in
AAMAS, 2004, pp. 464–471.

[15] K. Sycara, “Multi-agent infrastructure, agent discovery,
middle agents for web services and interoperation,” in
Mutli-agents systems and applications, J. G. Carbonell
and J. Siekmann, Eds. Springer-Verlag New York, Inc.,
2001.

[16] “Introduction to UDDI: Important features and func-
tional concepts,” http://uddi.org/pubs/uddi-tech-wp.pdf,
2004.

[17] W3C Web Services Architecture Working Group, “Web
services architecture,” http://www.w3.org/TR/ws-arch/,
2004.

[18] Globus Alliance, “The WS-Resource Framework,” http:

//www.globus.org/wsrf/, 2004.
[19] “Web Services Distributed Management: Man-

agement Using Web Services (MUWS 1.0) Part
1,” http://docs.oasis-open.org/wsdm/2004/12/
wsdm-muws-part1-1.0.pdf, 2004.

[20] “Web Services Distributed Management: Man-
agement Using Web Services (MUWS 1.0) Part
2,” http://docs.oasis-open.org/wsdm/2004/12/
wsdm-muws-part2-1.0.pdf, 2004.

[21] “Web Services Agreement Specification,” https:
//forge.gridforum.org/projects/graap-wg/document/
WS-AgreementSpecification, 2005.


