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Abstract

The local cortical circuit (LCC) is a fundamental unit of mam-
malian neural processing found in neocortical areas subserving diverse
sensory, motor, and other functions. A central challenge for neu-
roscience is to understand what core processing functions the LCC
performs. Prediction, the estimation or inference of missing or noisy
sensory data, and the goal-driven generation of control signals are
important functions of biological brains. Kalman’s classical solutions
of the optimal estimation and control problems in simple linear sys-
tems, and their extensions, have been widely used in engineering for
45 years. It has been speculated that neural circuitry implementing
solutions related to Kalman’s might be important for enabling sensory
processing and motor control, but no neural circuit and algorithm for
the general Kalman solution has previously been described. Here we
show how optimal Kalman estimation and control are learned and
executed by a neural network having simple computational elements.
The circuit architecture implied by this algorithm is similar in several
ways to recurrent neural circuits in brain, and to LCC architecture in
particular. These results suggest that the core functions of the LCC
may include those of estimation (including prediction) and control,
including more sophisticated nonlinear and context-dependent meth-
ods beyond Kalman’s solutions, and that LCC studies may be guided
by these connections between biological and engineering design. Con-
versely, further analysis of LCC circuitry and function may lead to
advances in nonlinear estimation and control for engineering applica-
tions.
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Mammalian neocortex exhibits significant uniformity at the 50- to 100-micron
scale of the local cortical circuit (LCC, minicolumn, canonical microcircuit)[1,
2, 3, 4]. This uniformity motivates a search for a set of core LCC processing
functions that may be common to sensory, motor, and other cortical areas,
and that may enable the diverse functions of those areas[5, 6]. Inference,
prediction, and estimation, and the goal-driven generation of control signals,
are important functions of biological brains. The blending of ‘bottom-up’
sensory input and ‘top-down’ model-driven expectations has been discussed
in the context of Bayesian inference and generative models, and various neu-
ral network (NN) algorithms are motivated by, approximate, or perform a
portion of, the Bayesian inference process[7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
A general resemblance has been noted between (a) the feedforward and feed-
back connections within the LCC and between cortical areas, and (b) the
use of bottom-up and top-down signals in the algorithms. Bayes-optimal
behavior has been found in human psychophysics experiments[17].

Kalman filtering (KF)[18] is a classically important and exactly solv-
able special case of Bayesian inference. KF performs optimal prediction and
estimation when the external system’s dynamics and the measurement pro-
cess are both described by linear equations. Kalman control (KC)[18] is
closely related; it generates optimal control outputs to achieve goals (e.g.,
target acquisition) having a certain mathematical form. However, although
KF and KC have been proposed to play important roles in biological neu-
ral processing[9, 19], and KF has been used with artificial NNs (e.g., to
speed learning)[20], no NN algorithm that fully performs KF or KC (i.e.,
without making substantial simplifications or being limited to special sub-
cases [21, 22]) has to my knowledge previously been described (see Discus-
sion).

In this paper I derive a NN algorithm that performs both KF and KC,
without such simplifications or limitations. In the limit of a large number
of features (e.g., elements of a visual scene) being tracked, the algorithm ex-
actly reproduces Kalman’s solutions, including the exponentially rapid con-
vergence of the learned KF and KC matrices. Furthermore, unlike Kalman’s
methods, in which the external system and measurement process parameters
are assumed known in advance, the NN algorithm also learns the required
parameters using only a stream of noisy measurement data.

Strikingly, the derivation implies significant constraints on the signal flow,
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multilayer architecture, and circuitry of a NN that can perform KF and KC.
Many features of the resulting NN are found to resemble those of the LCC.
These resemblances lend support to the conjecture that the LCC performs
prediction and control (P&C) functions that are related to, although more
powerful (e.g., in their handling of nonlinearities and context-dependence)
than, Kalman’s solutions.

The approach taken here is thus to (a) pose a well-defined computational
task – Kalman P&C – that is a prototype of the more general P&C processes
likely to be important in cortex; (b) select a simple typical set of allowed NN
operations, rather than invoking more complex NN dynamics tailored to the
task; (c) see whether a NN algorithm can be devised that does not compro-
mise, change, or limit the computational task; (d) see what constraints that
task imposes on the NN’s circuitry and signal flows; and (e) compare the
resulting NN circuitry with that of the biological system of interest.

Organization of the paper. The classical linear P&C problems and
Kalman’s solutions are summarized. A set of elementary NN operations is
defined; the NN algorithms to be derived are required to use only these oper-
ations. We then transform Kalman’s solutions into a set of matrix equations
that eliminate all references to external system and measurement parameters
that cannot be separately known by the NN. We derive NN algorithms that
perform KF and KC without any approximations other than those resulting
from statistical fluctuations that arise because the set of input features being
tracked is finite. We then discuss the specific signal flows, layered organi-
zation of the computations, and circuit architecture that are implied by the
algorithms and the allowed set of NN operations, and discuss these results
in the context of the LCC’s known structure and possible core functions.

Classical Kalman linear estimation and control

In classical linear estimation and control[18], an external system (the ‘plant’)
is described by a state vector xt (e.g., a point’s trajectory) at each discrete
time t, and the dynamical rule xt+1 = Fxt + But + mt, where mt is plant
noise (e.g., random buffeting of an object) having mean zero and covariance
Q. Each measurement vector yt = Hxt + nt, where nt is measurement noise
having mean zero and covariance R. Matrices F , B, H, Q, and R, and the
optional vector ut (an external driving term and/or a generated control term)
are assumed known.
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Classical Kalman estimation (filtering and prediction). Given
measurements through time t, the goal of optimal filtering (or, respectively,
one-step-ahead prediction) is to compute a posterior state estimate x̂t (resp.,
a prior state estimate x̂−t+1) that minimizes the generalized mean-square
estimation error∗ E[(ξt)

′Cξt] (resp., E[(ξ−t+1)′Cξ−t+1]) where ξt ≡ xt − x̂t,
ξ−t+1 ≡ xt+1 − x̂−t+1, and C is a symmetric positive-definite matrix.

Kalman[18] showed that, under a variety of conditions, the optimal es-
timation solution for both filtering and prediction is given by the execution
equations

x̂t = x̂−t +Kt(yt −Hx̂−t ) ; x̂−t+1 = Fx̂t +But ; (1)

and the learning equations

Kt = P−t H
′(HP−t H

′ +R)−1 ; P−t+1 = F (I −KtH)P−t F
′ +Q . (2)

Equations 2 are initialized by assuming some distribution of values for ξ−0 and
setting P−0 ≡ E[ξ−0 (ξ−0 )′]. It then follows[18] that, for all t, P−t = E[ξ−t (ξ−t )′].
Thus the KF matrix is learned iteratively, starting with an arbitrary matrix
and converging exponentially rapidly to its final value as each new measure-
ment is obtained. The classical KF learning algorithm involves multiplica-
tions of one matrix by another, and matrix inversion.

The model prediction x̂−t and the current measurement yt are optimally
blended using the KF. As expected intuitively, when the plant noise is much
greater than the measurement noise, this blending gives greater weight to
the current measurement; when the measurement noise is much greater, the
model prediction receives greater weight.

Classical Kalman control. In the classical problem of optimal linear
quadratic regulation, a controller is to generate a set of signals {ut} that
minimizes the expected total cost J of approaching a desired target state
(taken here to be x = 0 for simplicity) at time N . Here J reflects the cost
of producing each control output (e.g., the energetic cost of moving a limb
or firing a rocket thruster) plus a penalty that is a function of the difference
between the actual state at each time step and the target state. Specifically,
J = E[ΣN

t=t0
(u′tgut + x′trxt)], where g and r are specified symmetric positive-

definite matrices.
The classical Kalman control (KC) algorithm[18], starting at a current

time t0, computes during the learning step a set of KC matrices {LN , LN−1, . . . , Lt0},
∗Notation: E(. . .) denotes expectation value, prime denotes transpose, and I is the

identity matrix.
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using an auxiliary symmetric positive-definite matrix Sτ where SN = r and

Lτ = (B′SτB + g)−1B′SτF ; Sτ−1 = (F ′ − L′τB′)SτF + r ; (3)

for τ = N,N − 1, . . . , t0. Then, as time t advances from t0 to N − 1, the
execution step ut = −Ltx̂t generates the optimal control signal ut.

Thus the Kalman controller generates an optimal sequence of control
outputs that cause the plant to approach a desired target state at a specified
future time N . The KC matrices are learned iteratively, ‘backward in time,’
then executed forward in time.

NN operations

A linear NN[23, 24] comprises nodes (simplified ‘neurons’) i each having an
activity vi, and connections i → j each having a weight Mji; v and M are
real-valued. The output activity of node j is zj = ΣiMjivi. We consider
layered NNs. A set of source nodes in one layer, a set of target nodes in
another, and the set of source-to-target connections, represent input vector
v, output vector z, and (feedforward or feedback) weight matrix M , and
satisfy z = Mv. For a set of nodes in a single layer, connected to itself via
lateral connections, z = Mv replaces v as the new activity vector after one
pass through M . The activities of two sets of nodes may also be algebraically
combined: vout = v(1)± v(2). We consider a simple bilinear Hebbian learning
rule in which each weight is modified by an amount that depends only on its
current value and the activities at either end of that connection at a given
time; e.g.,

M ← (1− sγ)M + sγzv′ (4)

where γ > 0 is the learning rate, and s = 1 for Hebbian, or -1 for anti-
Hebbian, learning. Additional constant terms and terms proportional to z
or v may also be included. For lateral connections the zv′ factor is replaced
by vv′ or zz′. (For other types of NNs, see Discussion.)

Note that a connection matrix can be multiplied by an activity vector, but
not by another matrix. That is, given two sets of connections of weights M (1)

and M (2), one cannot directly create a third set having the matrix-product
weights M = M (2)M (1), even though any given vector v may be successively
multiplied by M (1), then by M (2). Similarly, a matrix M cannot be inverted
to compute M−1, although we can use M to compute M−1v for a given v
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(see below). Thus Eqs. 2 cannot be implemented, as they stand, using the
allowed NN operations.

We also consider an optional ‘ganging’ operation, in which there are Ngang

sets of nodes, each set processing a different input vector (e.g., a feature in
a visual scene) at the same time step, and a connection matrix M common
to all sets. M may be learned using either (a) M ← (1 − sNgangγ)M +
sNgangγ〈z(p)v′(p)〉, where p denotes the pth set of nodes and 〈. . .〉 is an
average over p, or (b) Eq. 4, using for the last term sγz(p)v′(p) for each p in
turn. An artificial NN can either (a) gang together the corresponding weights
Mji(p) that process each feature p, so that all such weights are updated
together[25], or (b) transport each feature’s activity vectors in turn to a
common connection matrix M for activity computation and M update.

We will need to compute an estimate of E(zv′) over statistical distribu-
tions of v and z. Repeated application of Eq. 4 computes a recency-weighted
running average of the product zv′ over the past O(1/γ) activity pairs (v, z).
If these are enough pairs to yield representative statistics, and if the v and
z distributions have not changed significantly during the time O(1/Ngangγ)
required to generate the pairs, then M learns an estimate of E(zv′). When
E(v) = 0, E(vv′) equals the covariance matrix Cov(v).

We will also need to compute M−1v, where M is an estimate of E(vv′).
This can be done in at least two ways.

Method 1[26]: Each activity vector v is presented in turn as input to a
set of nodes that have lateral connections with weight matrix D, which is
updated using D ← (1− γ)D− γ(cvv′− I), yielding D = I − cM . To obtain
M−1v, each of these activity vectors v is held at the input to the set of nodes
(i.e., the input is not reset to zero), while the network iteratively processes
the resulting activity through the set of lateral connections. The activity
vector will then be, as the iterations proceed: v, v + Dv, v + D(v + Dv) =
(I +D+D2)v, etc. For c > 0 chosen[26] such that all eigenvalues of D have
magnitude < 1, this activity converges to (I+D+D2 + . . .)v = (I−D)−1v =
(1/c)M−1v, which is (apart from the constant factor 1/c) the desired result.
Thus the incremental updating of D and the computation of M−1v are jointly
performed.

Method 2[27]: Each activity vector v is presented in turn to a set of nodes
having lateral connections A. After one pass through the lateral connections,
the activity vector is z = Av. A is updated using A← (1 + γ)A− γzz′. Pro-
vided that asymmetric terms in A (arising from initial asymmetries and/or
buildup of numerical errors) can be kept small, e.g., by damping the asym-
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metric terms, A will learn M−1.

NN algorithms

Kalman estimation and system identification. For our neural algo-
rithm (in contrast to Kalman’s solution above), we assume that the NN is
given only the stream of noisy measurements {yt}; no plant, measurement,
or noise covariance parameters are assumed known. To eliminate x in fa-
vor of y variables, we define Yt = Hxt, the ideal noiseless measurement
of xt. The goal of optimal filtering (respectively, prediction) stated earlier
is then, given {y0, . . . , yt}, to compute a posterior (resp., prior) measure-
ment estimate ŷt (resp., ŷ−t+1) that minimizes E[(Yt − ŷt)′C̃(Yt − ŷt)] (resp.,
E[(Yt+1 − ŷ−t+1)′C̃(Yt+1 − ŷ−t+1)]), where C̃ ≡ H ′CH.

We do not need to learn H or F , but only the combination† F̃ ≡ HFH+.
Prior to KF learning, F̃ is learned by using the raw measurement stream to
minimize the mean-square prediction error E(ε′tεt) with respect to F̃ , where
εt = −yt + F̃ yt−1 + ũt−1 and ũt ≡ HBut. Stochastic gradient descent yields
the update rule: F̃ ← F̃ − γF εty′t−1, where γF is a learning rate. For this
to be a local learning rule, εt and yt−1 must be available at the two ends
of the F̃ connection matrix at the same time (see Derivation of layered NN
architecture).

R = E(nn′) is learned from ‘measurements’ taken in offline mode (i.e.,
in the absence of external input, so that yt = nt) by Hebbian covariance
learning, R← (1− γR)R + γRyy

′.
To transform the classical KF equations into a form suitable for a neural

algorithm, we define Zt ≡ HP−t H ′ + R. Then I − HKt = RZ−1
t . The

transformed matrix equation that corresponds exactly to Eqs. 2 is:

Zt+1 = F̃ (I −RZ−1
t )RF̃ ′ +HQH ′ +R (5)

(see Supporting text).
The execution equations are (cf. Eqs. 1)

ŷt = yt −RZ−1
t (yt − ŷ−t ) ; ŷ−t+1 = F̃ ŷt + ũt . (6)

Therefore ηt ≡ ŷ−t − yt evolves as

ηt+1 = −yt+1 + F̃ (yt +RZ−1
t ηt) + ũt , (7)

†M+ denotes the Moore-Penrose pseudoinverse of M . When M is a square matrix of
full rank, M+ ≡M−1.
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and is initialized by assuming some distribution of values for η0.
The relationship between ηt and Zt is crucial for deriving the neural al-

gorithm. If Zt = E(ηtη
′
t) (initialized by setting Z0 = E(η0η

′
0)), then Eqs. 5

and 7 yield Zt+1 = E(ηt+1η
′
t+1) (see Supporting text). Thus, in the ideal-

ized large-Ngang limit for which 〈ηt+1η
′
t+1〉 → E(ηt+1η

′
t+1), the learning rule

Zt+1 = 〈ηt+1η
′
t+1〉 and Eq. 7 exactly implements Eq. 5, and thereby yields a

KF identical to the classical KF at each t. In practice, for finite Ngang, we
use Method 1 or 2 to update Z or Z−1, with optional ganging (see NN oper-
ations). If Ngang is finite but large enough so that we can choose Ngangγ ≈ 1,
then the KF learned at each time step approximates that obtained using
Kalman’s algorithm at the same time step. However, if Ngangγ � 1 (as, e.g.,
when Ngang = 1), it requires many time steps of the neural algorithm to learn
the change in the KF matrices that occurs in one time step using the classical
algorithm.

Once ŷ is approximately equal to y (i.e., once Z has evolved sufficiently
from its arbitrary initial value), F̃ learning may optionally continue using
ŷt−1 and ηt in place of yt−1 and εt respectively; i.e., F̃ ← F̃ − γFηtŷ′t−1.

Fig. 1 (solid path) shows the signal flow that integrates the above learning
algorithms for Z (or Z−1), F̃ , and R, and the execution Eqs. 6 and 7. Assume
for now that line Cu1 and/or Cu2 is cut; i.e., no control signals are computed.
For the execution process, starting with the link (near upper left) labeled ηt,
the computation sequence is: ηt → Z−1ηt → RZ−1ηt → ŷt = yt +RZ−1ηt →
F̃ ŷt → ŷ−t+1 = ũt(ext) + F̃ ŷt → ηt+1 = −yt+1 + ŷt+1 (external driving term
ũt(ext) is optional). Using Method 1, Z learning occurs at link LZ1; or, using
Method 2, Z−1 learning occurs at link LZ2. F̃ learning uses ŷt−1 at link LF1
(held from the previous time step) and ηt at link LF2. For initial learning of
F̃ (before Z is used), the circuit is cut at link CF, so that LF1 carries activity
yt−1 and LF2 carries εt. In the offline mode for learning R, the circuit is cut
at link CR, so that the following link LR carries activity yt = nt.

See Supporting text and Fig. 3 for simulations illustrating NN learning of
F̃ and the KF.

Kalman control. We define: g̃ ≡ H ′+B′+gB+H+; r̃ ≡ H ′+rH+; L̃τ ≡
−HBLτH+; and Tτ ≡ H ′+SτH+ + g̃.

The transformed matrix equation that corresponds exactly to Eqs. 3 is

Tτ−1 = F̃ ′g̃(I − T−1
τ g̃)F̃ + r̃ + g̃ . (8)

Similarly to the case of NN estimation, we will represent T as the covariance
of the distribution of an activity vector w, so that the learning rule for T may
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be recast as an evolution equation for w. However, whereas the physically
meaningful quantity η was the vector whose covariance equaled Z in the case
of estimation, we now have to construct w from terms that are based on the
goal of the control problem, i.e., the cost function to be minimized.

We introduce an activity vector wτ , and construct a rule for computing
wτ−1 in terms of wτ , such that E(ww′) satisfies the same evolution equation
as T (Eq. 8):

wτ−1 = −νgτ−1 + νrτ + F̃ ′(νgτ + g̃T−1
τ wτ ) . (9)

(See Supporting text for proof.) Here νgτ and νrτ are random vectors, or in-
ternally generated ‘noise,’ drawn from distributions having mean zero and
covariances g̃ and r̃. These noise generators are the means by which the
neural system represents the cost matrices g̃ and r̃.

Learning: At the current time t0, a set of KC matrices Tτ to be used
at future times is learned by iteratively computing Eq. 9 for τ = N,N −
1, . . . , t0 + 1, starting with wN = νrN+1 − νgN (corresponding to SN = r).
Neural control learning, using Tτ−1 = 〈wτ−1w

′
τ−1〉, exactly yields Kalman

control in the idealized limit, 〈wτ−1w
′
τ−1〉 → E(wτ−1w

′
τ−1), of a large number

of instances of wτ (at each τ). In practice, T → (1 − γT )T + γTww
′ (or

Method 2 for learning T−1) approximates classical KC learning.
Execution: The computed Tt is used to compute the desired control signal

ũt = L̃tŷt = (−I + T−1
t g̃)F̃ ŷt . (10)

Depending upon the choice of implementation, one may either (a) store
the sequence of matrices during learning and retrieve them in reverse order
during execution (possibly using different parts of a larger NN for each ma-
trix, not discussed here), or (b) retain only the last-computed matrix Tt0 ,
use it for execution at the current time t0, then relearn the T matrices at the
next time step t0 + 1. Alternatively, one may approximate ideal KC by using
the same computed matrix for several time steps.

Execution of control is shown in Fig. 1 (solid path) starting at link Cu1.
The computation sequence is: F̃ ŷt → g̃F̃ ŷt → T−1g̃F̃ ŷt → ũt = −F̃ ŷt +
T−1g̃F̃ ŷt = (−I +T−1g̃)F̃ ŷ at link Cu2. Output ũt is the control signal, and
is also provided as efferent-copy feedback to compute ŷ−t+1.

Fig. 1 (dashed path) shows the signal flows that implement learning of
control; i.e., Eq. 9 and learning of T (or T−1) and g̃. For w evolution,
the computation sequence is (starting near lower right, at the link labeled
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wτ ): wτ → T−1wτ → g̃T−1wτ → νgτ + g̃T−1wτ → F̃ ′(νgτ + g̃T−1wτ ) →
νrτ + F̃ ′(νgτ + g̃T−1wτ )→ wτ−1 = −νgτ−1 + νrτ + F̃ ′(νgτ + g̃T−1wτ ).

Either T learning occurs at link LT1, or T−1 learning occurs at link LT2.
The F̃ ′ connections will join the same nodes as F̃ , but in the reverse direction
(discussed below); thus they are learned along with F̃ (prior to being used
for control) using the same Hebb rule. g̃ is learned (analogously to R above)
in a mode of circuit operation in which the dashed link Cg is cut, so that
the next link Lg carries activity νgτ , which is used for Hebbian learning of
g̃ = E[νg(νg)′].

For a summary of the operation of the composite KF and KC algorithm,
see Supporting text.

Derivation of layered NN architecture (Fig. 2). The assignment of
activity vectors to distinct NN layers, and details of the signal flow among
layers, are strongly constrained by several requirements:

1. Each of the four matrices R, g̃, Z (or Z−1), and T (or T−1), is learned
using a Hebb rule (Eq. 4 with z ≡ v, or Method 1 or 2) containing
the factor vv′ or zz′; i.e., the connection matrix joins an activity vector
to itself. Thus each matrix describes a set of lateral connections, and
is assigned to its own layer, denoted by R, g, Z, T in Fig. 2a, and
shown separately for the solid (KC execution and KF) and dashed (KC
learning) signal paths.

2. For Hebb learning, activity ηt must be present at the input to the Z
(or Z−1) connections; wτ at the input to T (or T−1); yt ≡ nt at the
input to R during R learning mode; and νgτ at the input to g̃ during g̃
learning mode.

3. For Hebb learning of F̃ , activities ŷt−1 and ηt must be present simul-
taneously at the two ends of the F̃ matrix. Thus ŷt−1 must be held as
the activity of one set of nodes (see Fig. 2a solid-path layer R) until
ηt has been computed at layer Z. F̃ is updated at the time indicated
by links LF1 and LF2, but is used later in the signal flow, at the link
labeled F̃ .

4. The transpose matrix F̃ ′ is required for KC learning (Fig. 2a, dashed
path). F̃ ′ is learned by the same algorithm, and at the same time, as
F̃ ; thus it is assigned to connect the same two layers as F̃ , but in the
reverse direction. Fig. 2a assigns F̃ to run from layer R to g (solid

11



path), and F̃ ′ from g to R (dashed path); this requires η to be copied
from layer Z to g as shown (just before LF2). [As a slight variant, F̃
could run instead from R to Z; then ηt would not need to be copied
from Z to g, but the solid path would require a Z→ g link just following
the F̃ link from R to Z (Fig. 2a, solid path) for KC execution, and the
dashed path would require a g → Z link following link Lg, to connect
to F̃ ′.]

5. The measurement vector yt is required twice as input: to layer Z, where
it contributes to ηt, and to layer R, where it combines with RZ−1ηt to
yield ŷt.

Thus Fig. 2a is not an arbitrary way of laying out the NN algorithms
we have derived; rather, its four-layer organization and its signal flows are
substantially determined (apart from small variations) by the algorithms and
the requirements of a NN implementation.

The composite multilayer circuit. The static neural circuit for the
integration of Kalman estimation and control – showing all connections, but
omitting the explicit time flows – is shown in Fig. 2b. The signal flows of
Figs. 1 and 2a can readily be traced through this circuit (see Supporting text).
The circuit operation comprises several modes (requiring appropriate func-
tional switching) including: (a) learning of the F̃ and F̃ ′ connection weight
matrices (system identification); (b) normal ‘online’ KF and execution of KC;
(c) iterative learning of the KC matrices T ; and (d) initial or intermittent
‘offline’ learning of matrices R (for KF) and g̃ (for KC). Optional outputs ŷ,
F̃ ŷ, ŷ−, and/or η can be provided (not shown) from layers R, g (or Z), Z,
and Z (or g) respectively.

Discussion

We have shown how to perform the learning and execution of Kalman estima-
tion and control, as well as system identification, using a neural network. The
method is asymptotically exact in the limit that a large number of features
are being tracked. The matrices Z and T that are iteratively computed to
learn and execute KF or KC are each equal to the covariance of a distribution
of computed activity vectors. These vectors evolve over time via a sequence
of transformations (performed by the NN), and are used, via Hebbian learn-
ing, to update a matrix of connection weights that represents either the KF
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or KC matrix (or their inverses). The logical path of the derivation pro-
ceeds from the classical Kalman solutions, to a transformed set of equations
that involves only quantities measured by the NN, to a set of signal flows and
computations, to a layered NN architecture and circuitry that supports those
computations. Both the signal flows and the NN architecture appear to be
determined (apart from small variations); they do not appear to represent
merely one among a large number of disparate possible architectures.

This work has implications for both engineering and neuroscience.
As a mathematical and engineering method, these NN algorithms may

prove useful for implementing estimation, control, and system identification
in special-purpose hardware comprising simple computational elements, espe-
cially with a large number of sets of such elements operating in parallel. Even
when the plant or measurement parameters change with time, the present NN
algorithms learn the new dynamics automatically and converge to the new
optimal solution after a transient period of adjustment. The well-known ex-
tended Kalman filter (EKF)[20] and its variants yield approximate solutions
for nonlinear plant and measurement processes, by repeatedly linearizing the
dynamics about an operating point. Our NN algorithms likewise yield ap-
proximate solutions in these cases, since the learned plant and measurement
parameters are automatically updated in response to the changing stream of
noisy measurements.

A prior NN algorithm for KC[22], using temporal-difference learning, per-
forms KC in the special case of stationary control, in which there is no
specified time-to-target N , but not in the general KC case treated here. A
KF-inspired NN algorithm[21] substantially alters Kalman’s formulation; the
resulting NN does not in general implement KF. Although the initial predic-
tion error, starting with an arbitrary prediction, is shown to decrease rapidly
with time[21], this provides no evidence that the KF has been even approx-
imately learned; indeed, a similar reduction in error is found even when an
arbitrary, non-optimal, and unchanging filter, differing greatly from the true
KF, is used. See Supporting text.

Comparison of NN Kalman circuit with the LCC. This section is
speculative, and several caveats apply when comparing our circuit with the
LCC.

(1) We have solved the well-defined problem of learning and executing
general Kalman estimation and control using a NN capable of certain ele-
mentary computations. If the LCC performs P&C, it surely performs a more
powerful version of P&C – including the learning of higher-level features,
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and other nonlinear and context-dependent analyses – although the LCC’s
algorithm may subsume KF and KC as simple special cases.

(2) Neuronal dynamics are much more complex than the NN operations
allowed here. Despite this, it is commonly (and often fruitfully) assumed
that reduced or simplified NN models can capture relevant dynamical fea-
tures of biological neuronal networks. As an example, the node activity in
a nonlinear (sigmoidal) version of the NN used here is often identified with
an average neuronal firing rate; and connection weights, with synaptic effi-
cacies.‡ However, other types of NNs represent and process information in a
variety of ways[23, 24], using, e.g., (a) place coding, in which the location of
an active set of nodes (rather than the activity values themselves) encodes
a vector; (b) coding via precise spike timing[28]; and (c) the related use of
synchronous or phase-locked firing or oscillations for conveying information
and/or for more efficient learning. Detailed neuronal dynamics also affect the
relative timing of excitatory and inhibitory effects, the occurrence of bursting
vs. tonic firing modes, etc., all of which are absent from our simple NN.

When a type of NN supports the basic operations used here – matrix-
times-vector multiplication, addition of vectors, and bilinear Hebbian learn-
ing – then the derivation of the algorithm and architecture can proceed as
described, unchanged at the level of abstraction of Figs. 1 and 2 (although
the particular way in which a vector is multiplied by a matrix will depend
on the NN type). When the NN supports a quite different set of operations,
however, it is an open question whether and how neural KF and KC may be
implemented, and what the resulting architecture will be.

(3) For our allowed set of NN operations, our exploration of the design
constraints for performing general KF and KC suggests that the resulting
signal flow and circuit are substantially determined (apart from small vari-
ations), but the non-existence of a significantly different design cannot be
assured.

(4) Experimental knowledge of the detailed LCC connectivity is substan-
tial, but not complete; e.g., an inhibitory cell may provide output to many
layers, and the extent and importance of some of these connections are not
clear.

‡Average firing rates must be nonnegative and synaptic efficacies cannot change sign.
To modify our linear NN to satisfy these constraints, one could replace (a) each node by a
rectifier plus two nodes having activities (v, 0) if v > 0 and (0,−v) if v < 0, and (b) each
connection by a direct path plus a path having an inhibitory internode. These changes
would not affect our results.
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Bearing in mind these caveats, we first compare gross features of the NN
and LCC, then proceed to more detailed comparisons.

First, both circuits are recurrent neural networks: there is an overall cycle
of feedforward and feedback processing, which in the NN occurs once for each
time step of the KF algorithm. This was to be expected, given the iterative
nature of the classical Kalman algorithms.

Second, measurement input y is required at two NN layers. Its input
to layer R can be considered the primary term, and its input to layer Z a
secondary term, in the sense that the latter corrects the raw measurement
by RZ−1(ŷ−t − yt) to yield the optimal estimate. LCC input (from a ‘lower’
cortical area or thalamus) is likewise twofold, to layers 4 (dominant) and
6 (modulatory); in LCC, unlike the linear NN, these inputs can interact
nonlinearly.

Third, the interlaminar signal flow for KF (learning and execution) and
KC (execution only) (Fig. 2a and b, solid path) may be schematized, consid-
ering layers g and T as a unit, as Dgm. D1 (below, left):

{ R } → (g,T) → Z → R 4 → 2/3 → 5 → 6 → 4
↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑
y ŷ ũ y [D1] in outS outM in [D2]

(KC learning adds a g → R path.) By comparison, Gilbert’s proposal[2] for
the principal LCC signal flow among the layers 6, 5, 4, and 2/3 (a composite
of layers 2 and 3) is Dgm. D2 (above, right). More recent work is consistent
with, and expands upon, this basic flow[3, 4, 29]. Layer 4 is elaborated in
visual cortex and is much less prominent in motor than in sensory cortex,
while layer 5 is more prominent in motor cortex[1] and provides motor control
output (e.g., from V1 to superior colliculus) denoted here by outM . Layer
2/3 integrates contextual inputs from outside the classical receptive field,
and provides output, denoted by outS, to other cortical areas that process
‘higher-level’ perceptual features.

The resemblances between the NN and LCC signal flows, and their respec-
tive inputs, suggest at least a rough and tentative correspondence between
(a) NN layer R, and LCC layers 4 and 2/3; (b) NN layer Z, and LCC layer
6; (c) NN layers g and T, and LCC layer 5; (d) NN inputs y to layers R and
Z, and LCC sensory inputs to layers 4 and 6, respectively; (e) motor outputs
ũ and outM , with an efferent copy to NN layer Z for prediction of the future
plant state; (f) the optimal estimate ŷ and outS; and (g) the g → R path of
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KC learning (Fig. 2b), and observed LCC connections from layer 5 → 2/3
(not shown in D1 and D2).

We treat the g and T layers together since their role is limited to control,
and since LCC layer 5 appears to be most prominent in motor control areas
of cortex. We suggest that the Kalman NN uses one layer (R) in place of
two (LCC layers 4 and 2/3) because Kalman estimation does not involve the
learning of higher-level features (e.g., orientation selectivity in V1), and we
expect that more sophisticated (e.g., more strongly nonlinear and context-
sensitive) NN prediction methods may require an additional layer as in the
LCC.

F̃ (used for prediction) and F̃ ′ (used for learning of control) join the same
pair of NN layers in opposite directions, and are learned together during
system identification. This suggests that a biological network performing
Kalman-like P&C may use a corresponding pair of functional mappings that
are (approximately) the transpose of one another.

For an alternative mapping, we modify Dgm. D1 to obtain D3:

R → g → T → Z → R
↑ ↓ ↓ ↑
y (F̃ ŷ) ũ y [D3]

Additional direct g → Z and Z → g paths (Fig. 2b, solid) are omitted from
D3 for notational simplicity. KC learning adds paths T → g → R (Fig. 2b,
dashed).

On this view, one can posit a one-to-one correspondence between NN
layers {R, g, T, Z} and LCC layers {4, 2/3, 5, 6}. Then an exact match
would imply the existence of LCC paths 4 → 2/3 → 5 → 6 → 4, 5 → 2/3
(used for KC learning in the NN), and 2/3 → 6, and with lower-area input
to 4 and 6, output from 5 to a lower area, and output from 2/3 to the same
or a higher area. All of these paths fit within current understanding of LCC
connectivity[2, 3, 4, 29]. An exact match would, however, also imply LCC
paths 6 → 2/3 → 4. The 6 → 2/3 path has been described[30], but in
the context of V1 complex-cell interconnections. Also, NN layer g is used
only for KC (and as a layer through which F̃ ŷ passes (Fig. 2)), arguing
against identifying g with 2/3, which is important in sensory processing. I
thus expect the less-detailed resemblance between Dgms. D1 and D2 to be
more robust than that between D3 and D2, as more complex P&C tasks and
different sets of allowed NN operations are studied in future work.
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Conclusion

We have shown how optimal Kalman estimation and control are learned and
executed by a neural network having simple computational elements. The
circuit architecture required by this algorithm is found to be similar in signif-
icant ways to recurrent neural circuits in brain, and to LCC architecture in
particular. These results suggest that the LCC may perform the core func-
tions of estimation (including prediction) and control, with greater power
than KF and KC (to discover higher-level perceptual features and to solve
more complex control problems), but perhaps subsuming Kalman’s solutions
as simple linear cases. The NN-LCC similarities may help to guide LCC stud-
ies and, conversely, further analysis of LCC circuitry and function may lead
to advances in nonlinear estimation and control for engineering applications.
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Supporting Text

Derivation of the neural Kalman estimation algorithm

This section deals with three closely related points:

1. The meaning of a time-dependent expectation value in the Kalman
solutions, and the ways in which we use a NN to approximate it;

2. Proof that Eq. 5 and Eqs. 2 are equivalent; and

3. Proof that Zt = E(ηtη
′
t) and the η evolution Eq. 7 imply Zt+1 =

E(ηt+1η
′
t+1) in the large Ngang limit.

(1) Kalman filter and control theory makes extensive use of expectation
values of the form E(ztv

′
t), where zt and vt are column vectors describing

plant, measurement, or computed variables at time t, and z and v may
denote the same or different vectors. An expectation value is, by defini-
tion, a property of the distributions from which zt and vt are drawn. The
distributions are in general time-varying. Thus, at any specified time t,
E(ztv

′
t) equals the limit, as Nens →∞, of the ensemble average 〈zt(p)v′t(p)〉 ≡

(1/Nens)Σ
Nens
p=1 zt(p)v

′
t(p), where each zt(p) and vt(p) is independently drawn

from its respective distribution. Ideally, one may think of each pair as being
obtained from measurements on each of a sufficiently large number of differ-
ent external systems at the same time, where the process parameters (F , H,
noise covariances) are the same for each of the systems.

In practice, (a) one may be dealing with a single system in which some
number Ngang ≥ 1 of features are being tracked; (b) the features may not
all be independent of each other (e.g., if they are part of the same rigidly
moving object); and (c) if Ngang is small, one may need to sample over a
set of recent times (t −∆t, . . . , t) in order to compute an approximation of
E(ztv

′
t), which will only be valid provided the distributions change slowly

over time ∆t. The present work does assume that features can be treated
as independent of one another, each feature obeying the plant dynamics;
otherwise, coupled features can be combined into a single feature vector, or
else nonlinear interactions or constraints beyond the scope of this paper may
need to be considered.

The NN algorithms that we derive can be used in different ways, as de-
scribed in the main text and illustrated below (see Numerical Example and
Fig. 3). If the ‘ganging’ option (see NN operations) is available, and Ngang
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is sufficiently large, then the average over features p at time t can be used:
E(ztv

′
t) ≈ 〈zt(p)v′t(p)〉. If Ngang is small (or if ganging is not available, in

which case Ngang = 1), then a recency-weighted running average, using Ngang

events at each of a set of past times, is used (green curve of Fig. 3). If the
distributions have changed slowly over the time interval of the averaging,
then the ensemble average (over all p and recent t) will approximate E(ztv

′
t).

If the distributions are changing too rapidly, then the ensemble average will
eventually converge to the optimal KF, but at a slower rate than the classical
KF solution (blue curve of Fig. 3).

(2) Eq. 2 for Kt, and the definition Zt ≡ HP−t H ′ + R, yield I −HKt =
I −HP−t H ′Z−1

t = I − (Zt −R)Z−1
t = RZ−1

t . Thus Eq. 2 yields

Zt+1 = HF (I −KtH)P−t F
′H ′ +HQH ′ +R

= F̃ (I −HKt)HP
−
t H

′F̃ ′H ′ +HQH ′ +R

= F̃RZ−1
t (Zt −R)F̃ ′H ′ +HQH ′ +R

= F̃ (I −RZ−1
t )RF̃ ′H ′ +HQH ′ +R , (11)

which is Eq. 5.
(3) The plant and measurement equations for xt+1 and yt yield

yt+1 = F̃Hxt + ũt +Hmt + nt+1 ; (12)

thus

ηt+1 = −yt+1 + F̃ yt + F̃RZ−1
t ηt + ũt

= −Hmt − nt+1 + F̃nt + F̃RZ−1
t ηt . (13)

Since (a) the noise terms mt, nt, and nt+1 are mutually independent and have
zero mean; (b) ηt depends on nt (through yt) but not on mt or nt+1; (c) R and
Z are symmetric matrices; and (d) E(mtm

′
t) = Q, E(ntn

′
t) = E(nt+1n

′
t+1) =

R, E(ηtn
′
t) = −E(ntn

′
t) = −R, and E(ηtη

′
t) = Zt; we obtain

E(ηt+1η
′
t+1) = HE(mtm

′
t)H

′ + E(nt+1n
′
t+1) + F̃E(ntn

′
t)F̃ + F̃RZ−1

t E(ηtn
′
t)F̃

′

+F̃E(ntη
′
t)Z

−1
t RF̃ ′ + F̃RZ−1

t E(ηtη
′
t)Z

−1
t RF̃ ′

= HQH ′ +R + F̃RF̃ ′ − F̃RZ−1
t RF̃ ′

= F̃ (I −RZ−1
t )RF̃ ′ +HQH ′ +R , (14)

which equals Zt+1 by Eq. 5.
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Numerical example

Numerical simulations illustrate that the results of the NN estimation (KF)
algorithm agree with the classical KF matrix solution, apart from random
fluctuations that arise because the NN estimates the covariance of η− using
a finite ensemble, whereas the classical algorithm is given the exact plant
state covariance Q and uses matrix operations (not available to the NN) to
compute the covariance of the estimation error. These fluctuations vanish in
the limit of large ensemble size, which can be realized either by ganging the
simultaneous learning of sufficiently many input features, and/or by using
sufficiently many NN time steps to correspond to a single classical time step.

In Figure 3a, one of the components of the 2×2 matrix (I−HKt) ≡ RZ−1
t

is plotted vs. time step t, for four cases. All curves start with the same
arbitrary (I −HK).

1. Black curve: The classical Kalman Eqs. 2 are run for 7 time steps.
Note that results are identical when the transformed matrix Eq. 5 is
used in place of Eqs. 2.

2. Blue curve: The neural-network KF algorithm, which is given by Eqs. 6
and 7, shown in block diagram form in Fig. 1, and as a signal flow
diagram in a layered neural network in Fig. 2a. In this case one feature
(a measurement vector y) is tracked for 700 time steps; i.e., Ngang = 1.
The time scale is compressed 100-fold.

3. Green curve: The same neural algorithm, but tracking 100 simultane-
ously tracked features for 7 time steps (i.e., Ngang = 100). The black,
blue, and green curves all use the correct fixed value of F̃ .

4. Red curve: Same as for green curve, but here F̃ is initially arbitrary and
is learned from the measurement stream. Time values are left-shifted
by one unit to allow startup time for learning F̃ .

The external system (plant) and measurement processes are defined by
the following parameters for this example. (See Classical Kalman linear
estimation and control for definitions): F and H are 2-d rotations by 15o and
50o respectively, and the plant and noise covariance matrices are Q = 10−5I
and R = 10−4I respectively, where I is the 2× 2 identity matrix.

The learning rates are preferably time-varying for more efficient learning.
Here, the learning rates used for Z and (for the last curve above) F̃ are
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adaptively adjusted using the method of Murata et al. [Murata, N., Müller,
K.-R., Ziehe, A., & Amari, S.-i. Adv. Neural Info. Proc. Systems 9, 599-605
(1997)]. In their notation, the values of the rate control parameters, which
we have made no attempt to optimize, are {α, β, γ, δ} = {0.5, 30, 0.05, 0.1}
for Z, and {0.1, 3, 0.05, 0.04} for F̃ .

Numerical agreement between our NN KC algorithm and classical Kalman
control (again, apart from random fluctuations) is also obtained in simula-
tions (not shown).

Fig. 3b illustrates that the NN algorithm learns F̃ from noisy measure-
ments alone. The learned F̃ was computed as part of the simulation that
generated the last (red) curve in Fig. 3a. By way of contrast, classical KF
assumes that F and H are given, or are learned separately using a system
identification method.

Derivation of the neural Kalman control algorithm

The proof is similar to that for the neural KF algorithm. We show first (1)
that Eq. 8 and Eqs. 3 are equivalent; then (2) that Tt = E(wtw

′
t) and the w

evolution Eq. 9 imply Tτ−1 = E(wτ−1w
′
τ−1) in the large-ensemble limit.

(1) Since Tτ ≡ H ′+SτH+ + g̃, Sτ = H ′(Tτ − g̃)H. Using Eqs. 3 and the
definitions of g̃ and r̃,

F ′ − L′τB′ = F ′ − F ′H ′(Tτ − g̃)HB[B′H ′(Tτ − g̃)HB + g]−1B′

= F ′ − F ′H ′(Tτ − g̃)T−1
τ H ′+

= F ′ − F ′H ′(I − g̃T−1
τ )H ′+

= H ′F̃ ′g̃T−1
τ H ′+ . (15)

Thus

Sτ−1 = (F ′ − L′τB′)SτF + r

= H ′F̃ ′g̃T−1
τ H ′+SτH+HF + r

= H ′F̃ ′g̃(I − T−1
τ g̃)F̃H + r ; (16)

so

Tτ−1 = H ′+Sτ−1H
+ + g̃

= F̃ ′g̃(I − T−1
τ g̃)F̃ + r̃ + g̃ , (17)
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which is Eq. 8.
(2) The internally generated noise terms νgτ−1, νgτ , and νrτ are mutually

independent and have zero mean. The vector wτ depends on νgτ (by Eq. 9) but
not on νgτ−1 or νrτ , which are both generated only after wτ has been computed,
since the iterative calculation of w proceeds in order of decreasing τ . Since
g̃, r̃, and Tτ are symmetric matrices, and E[νgτ (νgτ )′] = E[νgτ−1(νgτ−1)′] = g̃,
E[νrτ (ν

r
τ )
′] = r̃, E(νgτw

′
τ ) = −g̃, and E(wτw

′
τ ) = Tτ , we obtain

E(wτ−1w
′
τ−1) = E[νgτ−1(νgτ−1)′] + E[νrτ (ν

r
τ )
′] + F̃ ′E[νgτ (νgτ )′]F̃

+F̃ ′g̃T−1
τ E(wτw

′
τ )T

−1
τ g̃F̃

+F̃ ′E(νgτw
′
τ )T

−1
τ g̃F̃ + F̃ ′g̃T−1

τ E[wτ (ν
g
τ )′]F̃

= g̃ + r̃ + F̃ ′g̃F̃ − F̃ ′g̃T−1
τ g̃F̃ , (18)

which equals Tτ−1 by Eq. 8.

Summary of operation of composite algorithm for KF
and KC

The circuit of Fig. 1 operates switchably in several distinct modes, each
using a portion of the circuit with cuts (breaks in signal flow) as described.
At start-up: Learn F̃ and F̃ ′; this circuit mode has a cut at CF, with signal
flow along solid path. Learn R using offline sensor operation (no external
input); this mode uses solid path with cut at CR. Then, for each (increasing)
t:

1. Perform KF learning & execution (solid path). If not also performing
KC, the KF mode has a cut at Cu1 or Cu2. If performing KC:

(a) If KC matrix for this t has been stored, retrieve it. Otherwise:
learn g̃ (mode: dashed path, cut at Cg) if not already done; iterate
τ from goal-completion time N backward to t (mode: dashed
path, t held constant while τ is decremented); and optionally store
intermediate KC matrices.

(b) KC execution: Use KC matrix to calculate ũ (mode: solid path),
and provide efferent copy to KF.

2. Optionally update F̃ and F̃ ′ during KF operation (mode: solid path,
no cut at CF).

3. Optionally update R (offline mode: CR cut, solid path).
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Signal flows in the NN circuit of Fig. 2b

The following notes are intended to aid in the tracing of the signal flows (of
Fig. 2a) through the NN circuit wiring diagram of Fig. 2b.

KF flow (without KC execution) starts with y input to the left circle of
layer Z (denoted Z-left); result η is multiplied by Z−1 by passage through
the Z or Z−1 connections (see text, Methods 1 and 2) to Z-right; result
is conveyed to R-right, then is multiplied by R by passing through the R
connections to R-left, where y is added; result ŷ is multiplied by the F̃
connections from R-left to g-left; result F̃ ŷ is conveyed to Z-left, where the
cycle repeats for the incremented value of t. [An external control term ũ(ext)
if present, is added at Z-left (not shown).]

KC execution adds the computation: F̃ ŷ at g-left is multiplied by g̃,
passing to g-right; result is sent to T-right and multiplied by T−1, passing to
T-left; here F̃ ŷ is subtracted, via the direct link from g-left to T-left, yielding
ũ, which is sent as output and also (as an efferent copy) to Z-left, where it
is added to the F̃ ŷ computed during KF flow.

Finally, KC learning (using dashed lines and the lateral connection ma-
trices) proceeds from T-left (with subtractive input νg yielding activity w),
to T-right (being multiplied by T−1), thence to g-right; to g-left with multi-
plication by g; result receives additive input νg, is multiplied by F̃ ′ enroute
to R-left; and passes to T-left, repeating the cycle for the decremented value
of τ .

Comments on a recent KF-inspired NN algorithm

In a recent paper, Szirtes et al.[21] (hereafter referred to as ‘SPL’) observe:
‘Connectionist representation of [Kalman filter-like] mechanisms with Heb-
bian learning rules has not yet been derived.’ They state: ‘The first problem
of the classical [Kalman] solution is that covariance matrices of [the plant
and measurement] noises are generally assumed to be known. The second
problem is that . . . the algorithm requires the calculation of a matrix inver-
sion, which is hard to interpret in neurobiological terms. [Here] we derive an
approximation of the Kalman gain, which eliminates these problems.’

In this section I show that the sequence of alterations made by SPL to
the KF equations is not justified, and that the SPL simulations, which show
a reduction of prediction error with time, do not provide evidence that their
algorithm is in fact computing an approximation of the optimal Kalman gain.
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SPL denotes the ‘Kalman gain’ matrix by Kt, which corresponds to our
FKt (cf. our Eq. 1 and their Eq. 3). At the outset, their stated goal is actually
not to compute the Kalman-optimal Kt. Instead, they consider only a family
of matrices, which I will denote K̃(θ), parametrized by a vector θ, for which
the elements of K̃(θ) are K̃ij(θ) ≡ Kijθi for each column i, where K is a
given and fixed arbitrary matrix. SPL’s goal is to adaptively learn θ over
time, using a NN algorithm, so that its final learned value θ∗ has the property
that K̃(θ∗) minimizes the prediction error over the family of all possible K̃(θ).
Since K is arbitrary, the parametrized family of matrices may not include
(or even contain a matrix that approximates) the actual optimal KF. (Note
that if Kt is an N ×N matrix, the set of all possible Kt is being replaced by
a family parametrized by θ, which has only N , not N2, components.)

Given this goal, the first step in the SPL derivation is to minimize the
prediction error by performing stochastic gradient descent. This yields a pair
of equations for θt+1

k and an auxiliary matrix W t+1
ik , in terms of values at time

t:
θt+1
k = θtk + αΣljKklHljWjkε

t
k ; (19)

W t+1
ik = ΣjFijW

t
jk − θtiΣljKilHljW

t
jk + δikε

t
k . (20)

To obtain their model ’O1’ (SPL Eqs. 5-6), SPL introduces a random vector
ξ, which ‘can be regarded as sparse, internally generated noise,’ in order ‘to
provide a conventional neuronal equation.’ In SPL Eq. 6, the first two right-
hand terms are accordingly equal to ξk times the corresponding terms of the
above Eq. 20. This multiplication by ξk is, however, not justified. If, for
example, ξ has zero mean (actually the ξ distribution is nowhere specified),
each of those two (now incorrect) terms will average to zero, and will thus
make no contribution, on average, to W t+1

ik . Therefore model ‘O1’ is not a
valid approximation.

Several additional alterations are then made to generate a succession of
SPL models called ‘O2’ through ‘O5.’

To obtain model ‘O2’ (SPL Eqs. 7-8), SPL writes ‘to simplify the com-
plexity of the iteration, we may suppose that the system is near optimal:
K ≈ H−1.’ Since the K referred to here is the arbitrary and fixed K that
enters the above definition of K̃(θ), one is free to choose K ≈ H−1, or even
K = H−1, irrespective of whether ‘the system is near optimal.’ However,
doing so in no way ensures that the learned θ will yield a K̃ that is ap-
proximately Kalman-optimal. Certainly the optimal KF is not in general
approximately equal to H−1; it may be quite far from this value, depend-
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ing upon F and the relationship between the plant and measurement noise
covariances. This (as well as some of the following points) is most easily
confirmed by considering the simple 1-d case, in which all matrices are scalar
quantities.

To obtain model ‘O3’ (SPL Eqs. 9-10), SPL states that because only di-
agonal elements Wkk enter SPL Eq. 8 for the evolution of θ, therefore ‘we
may neglect the off-diagonal elements of matrix W in Eq. 7’ (the evolution
equation for W ). This conclusion is not warranted, since such neglect will
introduce errors into the diagonal elements of W , and thereby into the evo-
lution of θ.

To obtain model ‘O4’ (SPL Eqs. 11-12), SPL writes that a ‘further sim-
plification neglects the self-excitatory contribution, FiiW

t
iiξi.’ However, this

term is not in general small compared with the remaining terms, so such
neglect is unjustified as an approximation.

Finally, to obtain model ‘O5’ (SPL Eqs. 13-14), SPL introduces the ‘sta-
bilized form’ of model ‘O4.’ This means that instead of setting W t+1 equal
to a specified function f(W t), as in model ‘O4,’ SPL re-defines W t+1 as
W t+1 = W t + γf(W t), where γ is a (presumably small) learning rate. At
this step, it would have been more appropriate to define instead W t+1 =
(1− γ)W t + γf(W t), so that if W t+1 = W t in model ‘O4,’ it would do so in
model ‘O5’ as well.

Thus each of models ‘O1’ through ‘O5’ is obtained by making an alter-
ation or simplification that is not a justified approximation to the previous
model, nor to the original stochastic gradient form given by our Eqs. 19 and
20 above.

SPL then presents simulations (SPL Fig. 1) that show a rapid decrease in
prediction error ‖ x−x̂ ‖ (their x̂ is our x̂−), and in the related ‘reconstruction
error’, ‖ y − Hx̂ ‖, with time. This is stated to be a ‘comparison of direct
[i.e., classical solution] and approximated Kalman filters.’ However, it can
easily be seen that even if one uses an arbitrary and fixed blending matrix
(Kt in SPL’s Eq. 3) to combine the prediction from the previous time step
with the current measurement, the prediction error starting with an initial
arbitrary guess – prior to making any measurements on the system – will
at first rapidly (exponentially) decrease as more measurements are made,
provided only that Kt is such that the posterior estimate of xt tends to
move toward, rather than away from, H−1yt (i.e., provided that Kt actually
blends the new measurement with the prior prediction, rather than repelling
the predicted Hx̂ away from the new measurement).
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SPL does not display the K̃(θ) that is learned using their algorithm, so
one cannot tell whether or how that matrix converges to an approximation
of the optimal Kalman filter. The asymptotic prediction errors obtained
using (a) the optimal KF, (b) an arbitrary fixed KF, and (c) a KF that
varies according to an arbitrary algorithm, will, subject to the proviso above,
typically differ by a modest factor as long as the plant and measurement
SNRs differ by only 8 dB as in SPL’s simulation. Thus the differences in
asymptotic error are not visible on the scale of SPL’s Fig. 1, in which initial
errors are huge (simply because the initial prediction is a guess made in the
absence of prior measurements) compared with the asymptotic errors using
any of these blending matrices.

It is also worth noting that the learning rate α = 0.01 is held constant
in SPL’s simulation (according to the SPL Fig. 1 caption). However, a rate
factor that is appropriate initially, when prediction errors are huge, must be
increased substantially as prediction errors decrease, in order to ensure that
learning continues. This raises the possibility that SPL learning may have
stalled early in the simulation, although one cannot tell without seeing the
evolution of θ or K̃(θ) with time. Even if α had been adaptively altered to
avoid such stalling, however, the above discussion shows that the claim of
approximately optimal KF learning using SPL’s ‘O1’ through ‘O5’ algorithms
is not warranted, and that the comparison of predicted errors vs. time in
SPL’s Fig. 1 does not indicate that KF-like learning has occurred.
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Figure captions

Figure 1. Block diagram of NN algorithm. Each © block combines inputs;
arrowhead inputs are added, filled-circle inputs are subtracted. Each ⊗ block
multiplies its input by the matrix indicated alongside the block. Arrows
through blocks denote a matrix to be learned. The solid path implements
KF learning and execution, and KC execution; the dashed path, KC learning.
Link symbols starting with C and L denote where signal flow is cut, and where
signals are used for matrix learning, during specific modes of operation (see
text).

Figure 2. Layered organization of signal flow and circuitry required by
NN algorithm.

(a) Signal flow shown in four layers. Upper set (solid links) shows KF
learning and execution, and KC execution, at time t; lower set (dashed links)
shows KC learning at time index τ . All open circles within a single layer
denote the same set of nodes in that layer, at each of many computing steps.
Computation proceeds from left to right along the links (t and τ values are
unchanged). At extreme right, t is incremented and τ decremented, and
signal flow resumes at extreme left. Links labeled by a matrix denote that
the activity vector at that link is multiplied by that matrix. Other link labels
and arrow symbols are as in Fig. 1.

(b) NN circuitry required to enable this signal flow. Within each layer,
the pair of open circles denotes the set of nodes, and the labeled line joining
them denotes the weight matrix (or its inverse) of its lateral connections.
Arrows and symbols as in (a).

Figure 3. (a) Example of classical and neural Kalman filter learning.
The (2,2) component of the 2× 2 matrix (I −HKt) is plotted vs. time step
t. See Supporting text for details.

(b) Learning of (2,2) component of F̃ vs. t, starting with arbitrary matrix.
Horizontal line denotes correct value.
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