
RC23954 (W0605-059) May 10, 2006
Computer Science

IBM Research Report

A Java Framework for Building and Integrating Runtime
Module Systems

Olivier Gruber
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Richard S. Hall
Laboratoire LSR

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Java Framework

for Building and Integrating

Runtime Module Systems

Olivier Gruber and Richard S. Hall
IBM Research ogruber@us.ibm.com

Laboratoire LSR richard.hall@imag.fr

28th of April, 2006

Abstract

We present the design of core mechanisms for building
interoperable module systems from reusable compo-
nents. Our approach promotes flexibility and mod-
ularity, separating the different fa-cets of a module
system: an interface to load classes or resources for
applications, a delegation model between modules,
and class reification. Our design can model and inte-
grate the module system of popular platforms such as
GBeans, NetBeans, or the OSGi Service Platform.

1 Introduction

In recent years, there has been growing interest in
runtime module systems within the Java community [6,
7]. Java has the class loader concept but it is a very
simplistic module system. Unfortunately, class load-
ers mix three facets: a way to load classes or resources
for applications, a delegation model between class
loaders, and the actual class reification (i.e., reifying
class-file bytes into class objects). To support other
runtime components and services, different Java com-
munities have proposed, above Java class loaders, dif-
ferent runtime module systems such as GBeans [3] or
OSGi technology [1].

There seems to be overall agreement that a run-
time module is a namespace for Java types and re-
sources. Furthermore, there is usually a delegation

model where modules may delegate to other mod-
ules for loading types or resources. However, there is
almost no agreement on the details of runtime mod-
ules, such as the granularity of delegation (e.g., Java
types, packages, or entire modules) or encapsulation
capabilities. We also find very different module pack-
aging, from simple to extended Java archive (JAR)
files as well as other formats such as JXE files for the
IBM J9 virtual machine [5].

This paper introduces our work on a comprehen-
sive Java framework for building and integrating run-
time module systems, which work continues previ-
ous work in this area [4]. It provides core reusable
and extensible mechanisms that enables the build-
ing of specific module semantics through plug-in poli-
cies. The benefits are that module systems could be
more easily built and understood. First, module sys-
tems are designed in terms of the same core concepts,
thereby promoting reuse. Second, common reusable
policies could be created so that specific module sys-
tems could be developed by simply reusing or cus-
tomizing existing policies. Third, our approach en-
ables interoperability between different module sys-
tems when installed within a single Java Runtime
Environment (JRE).

This framework is the result of having to deal
with diversity of module semantics through the re-
leases of Felix, the Apache incubator implementation
of the OSGi framework. We designed our mechanisms

1

to support implementations of the OSGi framework
through its Release 3 and 4 specifications. We re-
alized that in fact these mechanisms could be used
to implement a large number of existing module se-
mantics. We further realized that with minor modi-
fications to the current Felix design we could enable
interoperability between heterogeneous module sys-
tems.

This position paper is structured as follows. In
Section 2, we introduce the overall architecture of our
approach for runtime modules. In Section 3, we dis-
cuss our framework from the perspective of integrat-
ing different module systems in a single Java Run-
time Environment. In Section 4, we focus in contrast
on the building of a module system using reusable
mechanisms. We will also discuss concrete examples
of known module systems. In Section 5, we conclude.

2 Overall Architecture

Our focus is on the design of the low-level framework
for building and integrating various module systems,
as depicted in Figure 1. Different module systems—
such as the module layers of the NetBeans, GBeans,
or OSGi platforms—could be developed using our
core mechanisms, which would allow them to easily
integrate within a single Java Runtime Environment.

The module registry (IModuleRegistry) is at the
center of our approach. It is a shared registry, one
per Java Runtime Environment (JRE). The registry
tracks module systems, module instances, and mod-
ule definitions in that JRE.

Each installed module system (IModuleSystem)
registers itself with the module registry, using a unique
key identifying that module system. Each module
system provides a certain semantics for runtime mod-
ules. Runtime modules (IModule) are namespaces for
accessing classes and resources. Each module system
reifies module definitions into actual runtime mod-
ules. A module definition (IModuleDefinition) is an
abstract description of a version of a module, identi-
fied by a module name and version.

The registry provides a shared place for different
module systems to find module definitions they wish
to reify into runtime module. We do not impose any

Figure 1: Integrated Module Systems

restriction on this reification process. In most en-
vironments, a module definition will be instantiated
only once, bringing in memory only one version of
a module. Other environments will need to be able
to load different versions of certain modules. In rare
situations, one may want to instantiate one defini-
tion multiple times. Our framework allows it, but we
discourage it.

Although module instantiation is specific to each
module system, our framework provides core reusable
and extensible concepts for structuring the internals
of modules, as depicted in Figure 2. We do not im-
pose these internal concepts, any module system is
free to implement its runtime modules as it chooses.
However, our concepts are meant to ease the develop-
ment and understanding of module systems through
reuse of well-defined concepts. Furthermore, the adop-
tion of these concepts will allow finer-grain interop-
erability among module systems.

Any created module is tracked by the module reg-
istry, which supports the integration of module sys-
tems. First, the registry gives a place to find exist-
ing runtime modules, which promotes sharing these
modules, even among module systems. Second, the
registry is the guardian of the overall lifecycle of mod-
ules. A runtime module goes through two states: un-
resolved and resolved. A module is resolved when

2

it has all its dependencies satisfied. Dependencies
among modules are carried by wires (IWire) and ma-
terializes the delegation among modules.

This resolution process of runtime modules is two-
level recursive process. One level is local to each mod-
ule system and it involves a specific resolving algo-
rithm in an homogeneous world, among modules in-
stantiated by this module system. Each module sys-
tem will have its own approach for this first level. The
second level however is the coordination among mod-
ule systems and it is the responsibility of the module
registry.

3 Integrating Module Systems

This section focuses on the integration of module sys-
tems through our module registry. We discuss the
details of module definitions, modules and wires. We
also discuss the details of the module resolution pro-
cess. The central actor is the module registry, whose
details follow:

public interface IModuleRegistry {

boolean addModule(IModuleDefinition md,IModuleSystem ms);
boolean removeModule(IModuleDefinition md);
IModuleSystem getOwnerModuleSystem(IModuleDefinition md);

IModuleDefinition[] find(String name);
IModuleDefinition[] find(String name, String version);

IModule makeInstance(IModuleDefinition md,
boolean isResolving);

void destroyInstance(IModule module);

void resolve(IModule module) throws ResolveException;
boolean isResolving(IModule module);

IModule[] getInstances();
IModule[] getInstances(String name);
IModule[] getInstances(String name, Version version);
IModule getInstance(String instanceId);

IModuleSystem getModuleSystem(String key);
void addModuleSystem(String key, IModuleSystem framework);
void removeModuleSystem(String key);

}

The module registry is a mechanism for integra-
tion that we can characterize in different dimensions.
The first dimension is a registry of module systems,
where installed module systems are registered with a
unique key. It is important for the registry to track
installed module systems to coordinate them during

the resolution process for created runtime modules.
The second dimension is a registry of known mod-
ule definitions, registered by module systems. Notice
that when a module definition is added to the reg-
istry, it is associated with the module system register-
ing it, called its owner module system. For each mod-
ule definition, the registry will use its owner module
system as a factory to create runtime modules from
that module definition. The third dimension is the
coordinator of the overall resolution process across
module systems.

A module definition (IModuleDefinition describes
one version of a given module; it is identified by the
name and the version of that module.

public interface IModuleDefinition {
String getName();
Version getVersion();
Object[] getImports();
Object[] getExports();
Map getAttributes();
IModuleDefinition getSubmodule(String name);

}

The concept of a module definition is abstract and
minimal; it represents the lowest common denomina-
tor among the different views of what a module is
across different module systems. Fundamentally, it
describes a module version, with its name, its version
and both its imports and exports. The module meta-
data embodied in module definitions allows different
module systems to locate specific module definitions
they are looking for. This process is most often based
on the module name and version.

It may, however, also use the imports and exports.
This requires some understanding of these imports or
exports, which requires knowing something about the
kind of module definitions. This can be obtained from
the owner module system, itself obtained from IMod-
uleRegistry.getOwnerModuleSystem(). Knowing the
owner usually enables knowing the actual format of
imports and exports. It may also enable downcast-
ing IModuleDefinition into a more concrete interface
with more information.

For example, one may look for a particular export,
like a Java package, rather than a particular module.
One would therefore need to look at the exports of
all module definitions it can understand. Looking
at imports is also useful in certain cases as it might

3

help selecting among several acceptable module defi-
nitions. For instance, one would prefer a module def-
inition with resolvable imports over one that is not
resolvable (satisfied imports).

3.1 Modules and Wires

A module instance (IModule) is an actual runtime
concept, providing a namespace for classes and re-
sources. It replaces the traditional Java class loader
concept1 as a way for Java code to find classes or
access resources (see methods getClass and getRe-
source). The details of the runtime module are below:

public interface IModule {
String getInstanceId();
IModuleRegistry getInstanceRegistry();
IModuleDefinition getDefinition();
IContent getContent();
IWire[] getUsedBy();
IWire[] getUses();
IWire createWire(IModule importer);
IWire createWire(IModule importer, Object export);
void revokeWire(IWire wire);
boolean isResolved();
Class getClass(String name)

throws ClassNotFoundException;
URL getResource(String name)

throws ResourceNotFoundException;
}

A runtime module may load classes and resources
solely from a local content. The local content (see
below) is an abstraction over the physical content of
the module. It provides minimal read-only support
for listing and reading the contents of the module.
This provides access to the actual bytes that runtime
modules use to reification of classes as well as ac-
cessing resources. Furthermore, this is necessary for
certain module platforms that actually allow access
to a module’s content as byte-oriented entries.

public interface IContent {
void open();
void close();
boolean hasEntry(String name);
byte[] getEntry(String name);
InputStream

getEntryAsStream(String name)
throws IOException;

Enumeration
getEntryPaths(String path);

}

1This would typically suggest that a Class refers to its mod-
ule instance as opposed to its class loader.

We do promote however more complex modules
than modules providing only a local access to their
content. The rationale is to allow modules to depend
on other modules and therefore be able to delegate
class or resource loading to these modules they de-
pend on. Delegation is based on the concept of wires
(IWire) that provide access to classes and resources:

public interface IWire {
IModule getImporter();
IModule getExporter();
Object getExport();
Class getClass(String name)

throws ClassNotFoundException;
URL getResource(String name)

throws ResourceNotFoundException;
}

We support delegation through wires at different
granularities. At the very least, we promote module-
level delegation where modules can create wires for
exporting themselves. Such a wire is created through
the createWire method, passing only an importer mod-
ule. For finer-grain wires, one would use createWire
method, passing both an importer module and an ex-
port object. The result is a wire for that particular
finer-grain export.

Note that the wire is created by the exporting
module and used by the importing module, not the
other way around. The rationale is that an export has
its semantics defined by the exporting module, not
the importing module. In simple terms, the importer
needs what the exporter offers, the exporter decides
what that is.

Further note that finer-grain wires do require that
importers have some deeper understanding of the ex-
porting module, beyond the module name and ver-
sion. Indeed, an importer needs to be able to choose
the correct export object, even though exports are
untyped, see the method getExports on IModule.

For example, assume a module system wants to
integrate with an OSGi module system that provides
both module-level and package-level exports. Each
OSGi implementation would define its own actual for-
mat for its exports. One generic approach would be
to have exports as strings following the syntax of the
OSGi specification. Any module system understand-
ing that specified syntax could look at the exports
and decide which one is necessary to satisfy a given

4

import, asking it to create a wire to that particular
export.

This OSGi example also illustrate why the wires
are created by exporters and not importers. In OSGi,
an exported Java package may be associated with a
class-level filter, allowing it to control which classes
are exported and which are not. This filtering role
is achieved the wire. Note that this does not apply
solely for finer-grain exports, but could also be used
to control in a similar spirit what is exported at a
module level. Indeed, a module may want to filter
what packages or classes it exports as a whole.

3.2 Resolving Modules

The resolution of modules is the process of finding
matching exports for imports. This resolution pro-
cess is a shared responsibility between the module
registry and the installed module systems. For a
module to be resolved, it needs all its imports wired
to exports of resolved modules. This is therefore a re-
cursive process since module definitions, along with
their imports and exports, describe a directed graph
of dependencies, with potential cycles.

The resolve process starts with attempting to re-
solve one module, calling the resolve method on the
module registry for that given module instance. This
starts the resolve process as a two-phase protocol be-
tween the registry and installed module systems:

public interface IModuleSystem {
IModule

makeInstance(IModuleDefinition md);
boolean

prepareResolve(IModuleRegistry ir, IModule module);
boolean

completeResolve(IModuleRegistry ir, boolean result);
}

The first phase of the resolution process is called
the prepare phase. When the registry is asked to re-
solve a module, it forwards the request to the mod-
ule system that created that module through call-
ing IModuleSystem.prepareResolve(). Resolving that
module usually depends on other modules being re-
solved as well, because of imports.

The current module system needs to attempt to
match these imports to acceptable exports. A given

import may match many exports from different mod-
ules, potentially from different module systems. Each
module system will implement its own policy for match-
ing imports to available exports. This matching pro-
cess may yield several candidate exports per import;
one candidate must be selected. Such selected ex-
ports must have their module resolved so that a wire
can be created. If any such modules are not re-
solved, the process recurses through calling IMod-
uleRegistry.resolve().

Note that we do not impose any selection pol-
icy, each module system is entirely free to adopt its
own approach. It can use a constraint solver, often
called a resolver. It can also use some wiring logic
such as scripts. Scripts can be either man-made or
generated from some metadata or some analysis of
available imports and exports from known module
definitions. Usually, policies will favor selecting ex-
ports from already resolved modules. If no resolved
module is available, policies will often favor trying
to resolve existing modules rather than creating new
instances from module definitions. But again, those
are only best practices and module systems are free
to do as they see fit.

During this prepare phase of the resolution pro-
cess, we potentially face cycles among modules. Cy-
cles are detected through keeping track whether mod-
ule instances are resolving or not. Whenever the reg-
istry is asked to resolve a module instance, it sets its
state to resolving. The state can be queried through
IModuleRegistry.isResolving(IModule). To break cy-
cles, the registry optimistically answers that an mod-
ule instance is resolved if it is already resolving. At
some later point, the cycle unwinds and a real deci-
sion is made.

Once the recursive prepare phase ends, a global
decision is made for the second phase, called the com-
pletion phase. The completion phase is linear; the
registry sequentially invokes all module systems that
were involved in the prepare phase through IMod-
uleSystem.completeResolve(). This call carries the
global decision: complete or abort. The global de-
cision is an abort if any module needing to be re-
solved could not be resolved. The final decision is a
commit if all modules needing to be resolved could
be resolved. This means that all module instances

5

needing to resolve must be set to a state of resolved.
In other words, the entire resolution process is

atomic, it entirely fails or entirely succeeds. More-
over, it is isolated; the registry ensures that there is
only one such process happening at any given time.
When the process commits, this also means that wires
may have to be created for the newly resolved mod-
ule instances, materializing the delegation on selected
exports during the prepare phase. If wires were ea-
gerly created during that first phase, they need to be
dropped if the global decision is an abort.

4 Building Module Systems

After focusing on the integration of different module
systems, we will look at the internals of module sys-
tems. There seems to be overall agreement that a
runtime module is a namespace for Java types and
resources. Furthermore, there is usually a delega-
tion model where modules delegate to other modules
for loading types or resources. However, there is al-
most no agreement on the details of runtime modules,
such as the granularity of delegation (e.g., Java types,
packages, or entire modules) or encapsulation capa-
bilities. We also find very different module physical
packaging (such JAR files or others). In this section,
we present the concepts of our framework related to
building such diverse module systems. At the end, we
will briefly sketch examples of how to build existing
known module systems using these concepts.

4.1 Concepts

Our concepts separate the different facets of a module
system: actual class loading from a physical container
(IContentLoader), delegation model (ISearchPolicy),
and the interface for Java developers to load classes
and resources (IModule). The corresponding archi-
tecture is depicted in Figure 2.

The central concept is the module, the actual run-
time object from which Java code gains access to
classes and resources through IModule.getClass() and
IModule.getResource(). As previously introduced, a
module is an instance created from a module defini-
tion (IModuleDefinition), but we can see now that it

Figure 2: Integrated Module Systems

also owns a content.
Each module system manages contents in its own

way. This is one of the area of wide diversity among
approaches; almost no two module platforms man-
age module content the same way. Some download
JAR files from the network but keep them as JAR
files in the file system. Some download JAR files but
explode them into directory structures. Some JAR
files are complex, with embedded JAR files, introduc-
ing further layout challenges on the local file system.
Some platforms support or promote other more spe-
cific formats such the JXE files for the IBM J9 virtual
machine [5].

Beyond the storage layout of module content, the
management of content often has complex rules of
visibility or relevance. Some approaches are using
chained repositories with the Unix-classical separa-
tions among user contents, system-level contents, and
core contents (like the bootstrap module for the Java
Virtual Machine). Some other approaches further
promote the concept of different products installed,
potentially sharing some modules but also having pri-
vate ones. This usually happens through a complex
management of locations in the file system.

Facing this diversity, we did not want to impose
any given approach. However, we still needed the
concept of abstract content for a module. First, the

6

definition of the IContent interface allows each mod-
ule system to use whatever storage it wants as long
as it can be mapped to a set of path-based entries,
where entries can be access as byte arrays or input
streams. This covers a wide range of storage systems.
Second, the IContent interface provides an added in-
teroperability level among module systems. Indeed,
for some module systems, not all entries are accessi-
ble through the IModule interface if the module has
a concept of a classpath. In such cases, the IContent
interface provides full access.

Most importantly, the IContent interface abstracts
the details of the physical storage so that reusable
content loaders can be developed, the IContentLoader
concept details are the following:
public interface IContentLoader {

IContent getContent();
void setSearchPolicy(ISearchPolicy searchPolicy);
ISearchPolicy getSearchPolicy();
void setURLPolicy(IURLPolicy urlPolicy);
IURLPolicy getURLPolicy();
Class getClass(String name);
URL getResource(String name);

}

The content loader is the entity that knows how to
reify Java types and resources from the actual mod-
ule content (IContent). On current Java Virtual Ma-
chines (JVM), a content loader leverages a Java class
loader for this as class loaders are the only way to
reify classes in current JVMs. If a JVM would na-
tively support a module system, it would provide an
independent way to reify classes, passing the mod-
ule as a context. This would suggest the eventual
deprecation of the ClassLoader class as well as the
Class.getClassLoader() method, which would be re-
placed by a Class.getModule() method.

Even using an internal class loader, the content
loader has various policy and layout decisions to ad-
dress. For instance, class loaders are not able to load
classes from nested JARs. Each content loader may
therefore provide a different caching policy. For in-
stance, one content loader may be extracting the em-
bedded JARs into a local cache. Another one may be
extracting single classes at a time. Native libraries
may also require special treatment since most oper-
ating systems cannot load libraries from JAR files.

Some JVMs provide specific class loaders for spe-
cific content such as the JXE for the IBM J9 virtual

machine. The JXE format is the result of ahead-
of-time loading and compilation of class files into a
memory segment that can be mapped by the JVM
in one operation. In this case, one would have its
own content loader using internally this specific class
loader. This separation of concerns is powerful. It is
now easy for a module system to provide this capa-
bility on J9 virtual machines, it just needs a different
content loader, but the rest of the module system re-
mains unaffected.

Pushing further the separation of concerns, we
wanted to separate out delegation among modules.
The rationale is that delegation is one of the dimen-
sion where much diversity occurs among module sys-
tems. It is therefore interesting to have delegation
isolated into its own pluggeable object. Furthermore,
we hope reusable search policies moving toward fur-
ther integration of existing delegation models.

In our framework, the concept of a search policy
captures the functional role of delegation among mod-
ules along wires. We discussed earlier how wires ma-
terialize dependencies among resolved bundles. We
also discussed how wires provide a core building block
to delegation: access a class or a resource from an-
other module. The search policy (ISearchPolicy) cap-
tures how a module will actually decide which wires
to use when a specific class or resource is needed.

public interface ISearchPolicy {
IModule getModule();
Class findClass(String name)

throws ClassNotFoundException;
URL findResource(String name)

throws ResourceNotFoundException;
String findLibrary(String name);

}

We do not impose a dependency model or search
policy. For instance, we have implemented different
dependency models, such as OSGi R3 (package-level
dependencies) and R4 (more expressive dependencies
and module-level dependencies). It is also important
to point out that we do not fix any metadata format
used to express dependencies; module systems may
choose any format they feel suits their needs best.

To understand how the search policy works, we
need to look at the two paths leading to the loading of
a class in Java. One path is a direct call to the method
IModule.getClass(). This is typically the case when

7

some Java code wants to load directly a class. The
module directly forwards the request to the search
policy through ISearchPolicy.findClass(). The search
policy will determine where the class should come
from. If the class should come from another module,
the request is forwarded through a wire to that mod-
ule. It may be the case that the request may need
to be forwarded to different modules through differ-
ent wires. If the class should come from the local
content, the request is passed to the content loader
(IContentLoader.getClass()).

The other path is when the Java Virtual Ma-
chine needs a class. We are assuming standard Java
and the internal use of class loaders for implement-
ing content loaders. So each content loader has its
own class loader, recipients of the JVM upcalls for
needed classes (ClassLoader.loadClass()). For each
upcall, the content loader checks if it has already
loaded the requested class. If it has, it returns it;
if not, it delegates to the search policy of its module
through ISearchPolicy.findClass(). We are back to
the case discussed above.

Before we move onto looking at examples of how
to build some existing module systems with these
concepts, we need to discuss the URL policy (IURLPol-
icy), provided to a content loader and detailed below.

public interface IURLPolicy {
URL createURL(String path);

}

The issue comes down to the creation of the URL
objects for resources in a module content. Neither
the content nor the content loader have enough se-
mantics or knowledge for creating such URL objects.
Indeed, it is often the case that the syntax of these
URLs are specific to module systems, such as using
a specific protocol. Furthermore, they may include
module-level information such as the module name
or version.

The URL policy is usually implemented in the
module system and most often as part of the mod-
ule instance (IModule concrete implementation). The
content loader uses the URL policy to upcall with the
path of the resource in the local content. From that
path, the module instance may create a meaningful
URL.

4.2 Examples

This section discusses several different existing model
systems. Taken together, they cover a wide range
of approaches, which illustrates well the flexibility of
our approach as core mechanisms for building module
systems.

The GBeans platform is developed in Geronimo,
the open-source J2EE-certified Web Application Server
from Apache. It uses a module layer based on a tree of
modules, faithful to the traditional Java class loading
architecture. The deployment unit is a configuration,
which is described by an XML file, called a configura-
tion, containing a list of JAR files for the local class
path as well as a list of other child configurations.

To support GBeans, one has to first develop a
search policy, which is straightforward in this case
since the model is simply a tree of modules. A mod-
ule is therefore resolved if its parent module is re-
solved. Furthermore, the delegation model is also
simple since it is based on the traditional parent class
loader delegation. A second step is to write the man-
agement of module contents, that is, downloading
GBeans configurations. This can be the actual code
from GBeans since we do not impose a physical lay-
out in the file system. For the content loader, one
only needs to wrap the current GBeans class loading
scheme based on a URLClassLoader.

The new release of GBeans, called XBean [2], is
moving toward a Directed Acyclic Graph (DAG) for
its module layer, with module-level granularity. Not
much needs to be changed from the above in order to
accommodate a DAG. The resolver needs to resolve
a module only if required modules are resolved. Be-
cause dependencies are on modules, through explicit
names and versions, the resolver remains fairly sim-
ple. The search policy is also quite simple as it relies
on module-level wires.

For OSGi technology, a deployment unit is a bun-
dle, which is a JAR file with a manifest containing
module metadata. At runtime, a bundle is a module
following a fairly complex dependency model. The
OSGi R4 specification defines two levels of granu-
larity for dependencies: Java packages or bundles.
Furthermore, the resolution is fairly complex as de-
pendencies are flexible and powerful. Hence, one

8

major challenge is to develop the resolver for the
dependency model; the resolver is basically a back-
tracking constraint resolver. The Equinox project,
from Eclipse, has implemented one in the open source
world.

Regarding the bundle content, there is no ma-
jor difficulty, but different systems use different ap-
proaches. Traditionally, OSGi implementations keep
bundles as JAR files for class and resource loading,
but need to extract embedded JAR files and native
libraries. Some implementations also support explod-
ing bundle JAR files into the file system. All of these
approaches are easily supported through implementa-
tion-specific content loaders.

5 Conclusion

In this paper, we presented a framework for build-
ing and integrating diverse module systems. Our ap-
proach promotes the separation between mechanisms
and policies. It also promotes the ability to provide
custom implementations for these core mechanisms.
Two key aspects are that it separates the dependency
model from actual class loading as well as it separates
the reification process for classes from issues of mod-
ule content management. Overall, this approach pro-
vides unprecedented flexibility and reuse in building
module systems.

Our approach is the only proposal toward the in-
tegration of diverse module systems. Our approach
raises the consideration of the desired degree of in-
teroperability among module systems. At a mini-
mum, we promote module-level wiring but our con-
cepts support finer granularity interoperability, such
as package-level wiring. One key aspect is that we
recognized and provide support for a global resolution
process for module dependencies. While we enable
integration, we do not impose policies or semantics;
each individual module system resolves its modules
as it sees fit.

The proposed approach and corresponding inter-
faces are the results of several years of designing and
implementing module layers, with different depen-
dency models and different class loader delegation.
We believe that the proposed architecture and de-

sign is sound for core mechanisms that could be inte-
grated in the Java Runtime Environment for support-
ing modules, without imposing an actual model for
modules or their dependencies. Overtime, this would
suggest the eventual deprecation of the class loader
framework and the adoption of flexible and adaptive
mechanisms for building and integrating module sys-
tems.

References

[1] OSGi Alliance. Osgi service platform core speci-
fication release 4, 2005.

[2] Apache Community. Xbean, 2005.

[3] Apache Community. Geronimo beans wiki, 2006.

[4] Richard S. Hall. A policy-driven class loader
to support deployment in extensible frameworks.
In Proceedings of the 2nd International Working
Conference on Component Deployment, 2004.

[5] C. Laffra, S. Foley, , and J. McAffer. Packaging
eclipse rcp applications, 2004.

[6] Java Community Process. Jsr 277: Java module
system, 2005.

[7] Java Community Process. Jsr 291: Dynamic com-
ponent support for java se, 2006.

9

