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Abstract— Temporal event correlation is essential to managing
quality of service in distributed systems, especially correlating
events from multiple components to detect problems with avail-
ability, performance, and denial of service attacks. Two challenges
in temporal event correlation are: (1) handling lost events and (2)
dealing with inaccurate clocks. We show that both challenges are
related to event propagation delays that result from contention
for network and server resources. We develop an approach
to adjusting the timer values of event correlation rules based
on propagation delays in order to reduce missed alarms and
false alarms. Our approach has three parts: an infrastructure
for real-time measurement of propagation delay, a statistical
approach to estimating propagation delays, and a controller that
uses estimates of propagation delays to update timer values in
temporal rules. Our approach eliminates the need for manual
adjustments of timer values. Further, studies of a prototype
implementation suggest that our approach produces results that
are at least as good as an optimal fixed adjustment in timer
values.

I. INTRODUCTION

Maintaining quality of service (QoS) in complex Informa-
tion Technology (IT) environments requires a capability for
correlation of temporal events. For example, a denial of service
attack may be detected by correlating failed logins on multiple
machines in a short period of time, and problems with multi-
server applications can be detected by the transition times
between processing stages that occur on different severs. This
paper addresses how to determine timer values for temporal
patterns so as to address issues with lost events and inaccurate
clocks. A central concern is addressing propagation delays,
specifically the variability in event propagation delays due to
contention for network and server resources and other factors.

Traditionally, event correlation is done using if-then rules
(also called event-condition-action). The if-part of these rules
consists of an event pattern and the then-part specifies an
action to be taken (although other approaches can be employed
as well as in [1]). Herein, our focus is on the if-part and
so we assume that the then-part is an alarm (which is the
most common case in practice) such as sending an email,
paging an administrator, or creating a trouble ticket. Managing
distributed systems often requires correlation rules that relate
events from multiple systems. For temporal rules, the if-part
of the rule contains both a pattern that is to be matched
by multiple events and a timer value that constrains the

maximum elapsed time between receiving the first and last
events in the pattern (although in general more complex
temporal patterns may be used [2]). To illustrate, consider a
temporal correlation rule that identifies network problems in
an application cluster using rules in which ?x denotes variable
”x”: If there is no Heartbeat event from system ?S1 at
location ?L1 within 1 minute of another Heartbeat event
from system ?S2 6= ?S1 at location ?L1 and there is a
Heartbeat event from system S3 at location ?L2 6= ?L1,
then alert the Network Manager for location ?L1.

Central to temporal event correlation is the concept of
partial correlation instances, which the refers to the context
associated with a partial pattern match. If a partial correlation
instance remains uncompleted for a sufficiently long time
(specified by the temporal constraints), the partial correlation
instance is discarded. There are two challenges in managing
the lifecycle of partial correlation instances. The first is dealing
with lost events. This requires a good choice for the time-
out value. A too small time-out value results in undetected
alarms since partial correlation instances will be discarded
before all the matching events arrive. On the other hand, if
the time-out value is too large, there may be considerable
memory and processing overheads due to long-lived partial
correlation instances. The second challenge is compensating
for inaccurate time stamps due to unsynchronized and/or
inaccurate clocks in various nodes. One common practice
of dealing with inaccurate time stamps is to use the arrival
time of the event at the management station. However, these
arrival times are affected by the delay to propagate the event
from its source (including any software overheads in the node
from which the event originated). Therefore, there may be
substantial propagation skew, a term we use to refer to
the variation in propagation delays within an event pattern.
Experiments we conducted reveal propagation skews that are
within 50% of the pattern elapsed time, a fact that can greatly
increase the rate of missed alarms and false alarms. Among the
reasons for propagation skews are transients in resource usage
and contention with administrative tasks (e.g., Java garbage
collection).

Event correlation has been widely used to monitor and
analyze networks, systems, and applications for the last twenty
years (e.g., [3]). Commonly addressed issues include correla-



tion speed and accuracy [4], [1], [5] and the expressiveness
of correlation patterns. For the latter, there has been partic-
ular interest in non-rule based approaches [1], probabilistic
correlation [6], and temporal patterns [7], [8], [2]. Others
have recognized the importance of temporal relationships in
detecting security problems [9], but have not addressed the
specifics of propagation skew. Our work relates to temporal
patterns in distributed systems. In particular, none of the
systems in [7], [8], [2] mention propagation skew. Hence,
none of these systems provide the architectural or algorithmic
support needed to compensate for propagation skew.

There are three parts to our approach to compensating for
propagation skew: measurement, estimation, and correction.
Our approach to measurement is to incorporate into the
management infrastructure a capability to generate calibration
events that are representative of general events . Estimation
is accomplished by developing a statistical technique that is
applied to the time stamps of calibration events. Correction is
achieved by including in the Management Station mechanisms
whereby timer values specified in rules are updated based on
estimated propagation skew. This paper makes the following
contributions: 1) description of the problem of propagation
skew for temporal event correlation in distributed systems,
including measurements of propagation skew for a testbed
system; 2) an architecture that includes Calibration Event
Generators, Calibration Event Monitors, and a Controller that
collaborate to adjust timer values in order to compensate
for propagation skew; and 3) an adaptive control algorithm
for dynamically adjusting timer values to compensate for
propagation skew and an assessment of the algorithm in terms
of the probability of a correct result.

The remainder of the paper is organized as follows. Sec-
tion II describes the architecture we propose. Section III
details our adaptive control algorithm that compensates for
propagation skews. Section IV assesses our approach using
data from a testbed system. Our conclusions are presented in
Section V.

II. ARCHITECTURE

This section describes the architecture of a system that com-
pensates for propagation delays in temporal event correlation
for distributed systems. We start by formalizing key concepts
used in this paper.

• The Management Station is responsible for event cor-
relation such as by using if-then rules and temporal
constraints.

• Events are messages generated in response to important
state changes (e.g., large resource utilizations).

• Calibration Events are events generated by special ele-
ments called Calibration Event Generators. Sequences of
calibration events are used to estimate propagation skew.

• A Calibration frame contains two (Calibration Events)
events, E1 and E2, separated by a known generation time
e.g. E2 is generated 2000 msecs after E1. The difference
between the generation time and the difference in arrival
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times of E1 and E2 at the Management Station is the
estimate of propagation skew.

Figure 1 shows our system architecture. Event sources
generate events (the solid circles) that traverse one or more
networks. There are two types of event sources. The first are
events generated by elements such as end-user desktops for
which we have no assurance that clocks are synchronized
and so time stamps may be inaccurate. The second source
of events are management elements that are assured to have
synchronized clocks and hence accurate time stamps. We
simplify matters by assuming that time stamps from man-
agement elements are applied at the Management Station,
although clearly this can be done elsewhere as well. The
Management Station queues a copy of the event for each
partially instantiated pattern for which there is a match with the
incoming event (indicated by dotted circles). When a pattern is
first instantiated for a rule, a timeout is specified with duration
equal to the timer value for the rule. If the timeout occurs
before matching the last event in the pattern, an alarm is
generated.

Figure 2 illustrates the dynamics of correlating a temporal
pattern consisting of the two events, E1 and E2. E1 is gener-
ated by Event Source 1 at time tfirst, and E2 is generated by
Event Source 2 at time tlast. Thus, the pattern generation time
is Tgen = tlast−tfirst. Administrators write rules for temporal
correlation based on pattern generation time. Consider a timer
value Ttmr that is chosen so that an alarm is be generated
if Tgen > Ttmr. Since the Management Station does not
know Tgen, it uses Telp instead. From Figure 2, Telp =



t∗last − t∗first = Tgen + τ , where τ is the propagation skew.
Propagation skew is computed as follows. The propagation
delay of the first and last events are Tprp,first = t∗first−tfirst

and Tprp,last = t∗last − tlast. So, τ = Tprp,last − Tprp,first.
The elapsed time of a pattern Telp as seen at the Management
Station differs from the pattern generation time by τ , the
propagation skew. If Tprp,last = Tprp,first then τ = 0 and
so Telp = Tgen, which is the ideal case. However, in our
experiments, τ varies considerably. Figure 1 depicts the way
we compensate for propagation skew. This compensation is
achieved by regulating slack time, the time added to timer
values to compensate for propagation skew.

III. CONTROL ALGORITHM

This section develops the adaptive control algorithm that
updates slack times to compensate for propagation skew. The
algorithm is based on a simple technique from statistical
hypothesis testing that uses non-parametric statistics, a class
of approaches that do not assume a particular probability
distribution.

We want the control algorithm to choose slack times that
maximize the probability of getting a correct result. There are
two cases. In the first, pattern generation time Tgen,i(k) for the
k-th pattern of the i-th rule is larger than the timer value Ttmr,i

of i-th rule. Under these circumstances, the correct result is
that an alarm is generated. In the second case, Tgen,i(k) is less
than Ttmr,i. Here, no alarm should be generated. In statistical
hypothesis testing, these cases are expressed using negative
logic. That is, an incorrect result in the first case is a undetected
alarm, and an incorrect result in the second case is a false
alarm. We focus on the probability of a correct result (i.e.,
there is neither an undetected alarm or a false alarm).

We now show how the probability of a correct result relates
to slack time. To simplify matters, we consider a single
Calibration Pattern with generation time Tgen. We study the
probability of a correct result for the i-th correlation rule
whose if-part is satisfied by the Calibration Pattern. This rule
has timer value Ttmr,i. We define the timer offset for this rule
to be δi = Ttmr,i − Tgen. Note that Rule i produces a correct
result if it generates an alarm when δi < 0, and it does not
generate an alarm when δi > 0.

The concept of the timer offset turns out to be central to
the theory that underlies the selection of slack times. For the
case in which an alarm should be generated, we have

P (Correct|Alarm should be generated)
= P (Correct|δi < 0)

= P (Telp,i(k) > Ttmr,i + ∆i(k)|δi < 0)
= P (Tgen,i + τi(k) > Ttmr,i + ∆i(k)|δi < 0)

= P (τi(k) > ∆i(k) + δi|δi < 0)

Observe that we increase the probability of a correct result
if either the slack time is close to zero or the timer offset is
more negative. The latter case means that we are more likely
to raise an alarm if the pattern generation time is much smaller

than the timer value. The case of when an alarm should not
be generated is addressed in analogous manner.

P (Correct|Alarm should not be generated)
= P (Correct|δi > 0)

= P (Telp,i(k) < Ttmr,i + ∆i(k)|δi > 0)
= P (Tgen,i + τi(k) < Ttmr,i + ∆i(k)|δi > 0)

= P (τi(k) < ∆i(k) + δi|δi > 0)

Here, we increase the probability of a correct result if either
slack times or the timer offset are large. The latter case means
that the pattern generation time is much larger than the timer
value. Observe that in both cases, when skew is close to zero,
then the magnitude of slack time need not be large to get a
correct result.

There is a fundamental trade-off between false alarms and
undetected alarms. We are assured of a correct result in the
case where δi < 0 by using a very large ∆i(k). However,
doing so results in poor performance when δi > 0. The reverse
applies as well.

We now introduce our metric for quantifying the perfor-
mance of an approach to computing slack times. A way
to take into account the trade-off just mentioned is to
consider the minimum probability of a correct result for
the two cases. That is, min{P (Correct| Alarm should be
generated), P (Correct|Alarm should not be generated)} =
min{P (Correct| δi < 0), P (Correct|δi > 0)}.

In our studies, we approximate the minimum probability
of a correct result by averaging across multiple values of
δi (both negative and positive) for known pattern generation
times. We refer to this as the minimum average probability
of a correct result (MAPC). MAPC is based on a set of
timer values Ttmr,i ∈ S< such that Ttmr,i < Tgen (in which
case an alarm should be generated), and a set of timer values
Ttmr,j ∈ S> for which Ttmr,j > Tgen (and hence no alarm
should be generated). We use AvgCorrectgen to denote the
average probability of a correct result in the first case, and
AvgCorrectnogen to denote this metric in the second case.

MAPC = min[AvgCorrectgen, AvgCorrectnogen] (1)

Here, AvgCorrectgen = Averagei,k{τi(k + 1) > ∆i(k)},
AvgCorrectnogen = Averagej,k{τj(k + 1) < ∆j(k)}, and
{x < y} ∈ {0, 1} depending on whether the inequality is false
or true. Note that since MAPC is an average of probabilities,
0 ≤ MAPC ≤ 1, with MAPC = 1 being a perfect control
algorithm.

We compute slack time by using a non-parametric procedure
for estimating the median of the distribution of propagation
skews [10]. By non-parametric, we mean that the procedure
makes no assumption about the distribution of the propagation
skews (which is clearly an advantage for an environment
that experiences considerable change). However, the proce-
dure does assume that propagation skews are independent
and identically distributed. Our algorithm retains the last N
propagation skews in a buffer. The median is the middle value
of the sorted list.



The only parameter of the adaptive control algorithm is
the buffer size N . For stationary skew distributions, a larger
N reduces the variance of the estimate of the median and
hence results in a higher probability of a correct result.
However, non-stationarities arise if a file transfer is started
that increases network delays or administrative tasks begin
execution on the management station. In these cases a larger
N is a disadvantage in that it takes longer for the buffer to be
populated entirely by observations from the new distribution.

IV. EXPERIMENTAL RESULTS

Our testbed follows the architecture depicted in Figure 1.
The Management Station employs Columbia University’s pre-
viously developed temporal event correlation engine, called the
Event Distiller [2]. The event transport is University of Col-
orado’s Siena publish/subscribe bus [11]. Three components
are deployed in our test-bed: A Calibration Event Generator
produces pairs of calibration events E1 and E2, separated
by a known pattern-generation time e.g. the E2 is generated
2000 msecs after E1. These pairs of events are also known as
calibration frames. Events E1 and E2 contain four important
fields: FPResolution – the time (in msecs) that should elapse
between the generation of E1 and E2. FPSeqNum – a sequence
number for a calibration frame. Both E1 and E2 in a calibration
frame will share the same sequence number. FPStartSeq – a
flag, set to one in E1 indicating the beginning of a calibration
frame. In E2 it is set to zero. FPGenGap – only applicable
for the end event, E2, of a calibration frame, it records the
actual time (in msecs) elapsed since the generation of the
start event, E1. It is expected that this value would be close
to the FPResolution time depending on the current load of the
machine where the Calibration Event Generator runs. Figure 3
shows a pair of calibration events, E1 and E2, each calibration
event is represented as a Siena Notification [11] of size ∼80
bytes.

E1={FPGenGap = ”0”FPResolution = ”2000”FPSeqNum =

”1”FPStartSeq = ”1”FPTest = ”FPTest”}
E2={FPGenGap = ”2041”FPResolution = ”2000”FPSeqNum =

”1”FPStartSeq = ”0”FPTest = ”FPTest”}
Fig. 3. Calibration Frame

The Event Distiller (Management Station) receives cali-
bration frames and records an arrival time stamp on each
event comprising the calibration frame. The difference in the
arrival times of E2 and E1 is compared to the FPResolution,
adjusted based on FPGenGap if necessary, and used to estimate
the propagation skew/delays in receiving pairs of calibration
events. As an example, a calibration frame with FPResolution
= 2000 msecs and FPGenGap = 2005 msecs indicates that the
end event, E2, of a calibration frame was delayed by 5 msecs.
On the receiver end, we adjust the difference in arrival times
by 5 msecs to compensate for the delay in event generation.
Whereas it is possible for events generated Tgen + ε to have a
difference in arrival times of Tgen, due to delays/congestion in
the network or packet processing delays on the receiver end,

we take the conservative approach of adjusting arrival times
at the receiver end primarily to mitigate any scheduling/load
issues at the sender that may have delayed event generation.

Finally, a Siena Event Router is responsible for managing
client subscriptions, receiving published events and routing
them (based on their contents) to interested subscribers. The
Event Distiller, is an example an interested subscriber of
calibration events.

We study four configurations of these three components
running on a mix of Windows XP and Linux platforms. A total
of four machines in our CS network are used; Kathmandu.clic,
Lisbon.clic, Amman.clic and Liberty.psl. Kathmandu, Lisbon
and Amman each have a single 3.2 GHz Intel Pentium 4
processor, 1 GB RAM running a 2.6.9-22.0.2.EL Linux kernel.
Liberty is a 3 GHz Pentium 4 with 1 GB RAM running
Windows XP SP2.

Configuration A is a mixed-platform 3-machine configu-
ration. The Calibration Event Generator runs on the Linux
host, Kathmandu.clic, the Siena Event Router runs on the
Linux host, Lisbon.clic, while the Event Distiller runs on
the Windows XP host, Liberty.psl. Configuration B is a
homogeneous-platform 3-machine configuration. The Calibra-
tion Event Generator, Siena Event Router and Event Distiller
run on Linux hosts Kathmandu.clic, Lisbon.clic and Am-
man.clic respectively. Configurations C and D are 2-machine
configurations where the Siena Router and Event Distiller are
collocated on the same host. Collocation of the Event Distiller
and the Siena Event Router is intended to mimic situations
where there is contention for machine resources such as CPU,
memory and/or network resources at the management station.
Configuration C is a mixed-platform 2-machine configuration
where the Calibration Event Generator runs on the Linux host,
Kathmandu.clic, and the Siena Event Router and Event Dis-
tiller both run on the Windows XP host, Liberty.psl. Configu-
ration D is a homogeneous-platform 2-machine configuration
where the Calibration Event Generation runs on the Linux
host, Kathmandu.clic, and the Siena Event Router and Event
Distiller both run on the Linux host, Lisbon.clic. For each
configuration all machines were located on the same campus
LAN and exhibited ping times on the order of <1ms for 32
bytes of data between machines.

In our experiments we observed large variations in the
propagation skews measured in configuration C as compared
to those measured in configurations A, B and D, Figure 4. It
seems counter-intuitive that propagation skews would be larger
for a 2-machine configuration than for a 3-machine config-
uration. Our initial conjecture was that using the difference
in arrival times of calibration events at the Event Distiller
captures more than network delays. This time difference may
also be influenced by contention for shared resources such as
the CPU and network I/O stack, which the collocated Siena
Event Router and Event Distiller compete for.

We considered it improbable that the relatively large prop-
agation skew values observed in configuration C could be at-
tributed to an extremely inefficient mechanism within Siena for
delivering events to a local subscriber, especially when Siena is
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intended to be a scalable, wide-area event notification service
[11]. Based on a side-by-side comparison of the 2-machine
configurations, C and D, where the Siena Event Router and
Event Distiller are collocated on a Windows XP machine and
a Linux machine respectively we conclude that variations in
propagation skew are more pronounced under Windows XP
than under Linux and our measure of propagation skew is
also influenced by resource contention/the current workload
on the machine running the Event Distiller.

Figure 4 reports data from configurations A through D. In
configurations A, B and D, the propagation skews are tightly
clustered around 0, although there are a few large spikes.
The second plot in the top row is the cumulative distribution
function (CDF), which reinforces the view that values are
tightly clustered. Also plotted are the autocorrelations between
propagation skews. Note that all autocorrelations lie within the
dashed lines, indicating that they are not statistically significant
according to the Bartlett Test [12]. In 2-machine configuration
C, propagation skews are much more variable and considerably
larger. We also see substantial autocorrelations, possibly due
to periodic activities and/or resource contention.

Figure 5 assesses the effectiveness of using fixed slack
times. The horizontal axis is the slack time ∆ and the vertical
axis is Minimum Average Probability of a Correct result
(MAPC). Large MAPC values are achieved with a fixed
slack time near 0 in configurations A, B and D. However,
for the 2-machine configuration C, MAPC is maximized at
larger fixed slack times. This can be explained by looking

at the distribution of propagation delays. The solid line in
Figure 5 plots the MAPC values achieved by our adaptive
control algorithm.In all cases, the algorithm selects slack times
very close to the value of fixed slack time that maximizes
MAPC. This is impressive in two respects: First, we did not
have to parameterize or train the controller, i.e., slack times are
selected in a self-managing manner. Second, we achieve near-
optimal results in the 2-machine configurations, even though
the data may have significant autocorrelations.

V. CONCLUSIONS

Achieving QoS in distributed systems often requires that
events be correlated from multiple systems using temporal
patterns. This paper addresses how to specify timer values
for temporal patterns so as to reduce missed alarms and false
alarms caused by lost events and unsynchronized clocks. A
central concern is addressing propagation skew, the variability
in event propagation times due to contention for network and
server resources and other factors. We develop a three part
approach to adjusting timer values based on propagation skew:
(1) an infrastructure for real-time measurement of propagation
skew, (2) a statistical approach to estimating propagation skew,
and (3) a controller that uses estimates of propagation skew
to update timer values in temporal rules. Our future work will
involve more extensive measurements of propagation skews
and extensions to more complex temporal patterns.
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