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Biased Diffusion and Universality in Model Queues

G. Grinstein and R. Linsker
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Yorktown Heights, NY 10598

(Dated: May 16, 2006)

We study the structure and robustness of universality classes for queueing, deriving analytic
results for priority-based models with continuous-valued priorities. By mapping one model onto the
problem of biased diffusion, we show that its distribution of waiting times, P (τ), decreases for large

times τ as P (τ) ∼ τ−3/2 or as P (τ) ∼ τ−5/2 exp(−τ/τ0) in different parameter regimes. In a second
model, introducing a cost for switching between different classes of tasks substantially changes the
asymptotic behavior of P (τ).

PACS numbers: 02.50.-r, 02.50.Ey, 89.20.-a

I. Introduction
The management of queues is a pervasive feature of

modern life, from the operation of hospital emergency
rooms, to highway congestion, to computer jobs await-
ing an available processor. Most of the intensive study
of the statistics of model queues[1–3] has been devoted
to situations wherein the distribution, P (τ), of waiting
times, τ , in the queue falls off rapidly – typically ex-
ponentially – with time. A series of interesting recent
papers[4–6] by Barabási and co-workers has focused at-
tention on waiting-time distributions with longer tails,
by analyzing data on such activities as the exchange of
letters and e-mail messages, web browsing, and library
use. These activities were reported to have waiting time
distributions with heavy tails consistent with power laws,
P (τ) ∼ τ−α, over some range of τ . The reported values
of α were close to 3/2 for written correspondence and
close to 1 for the other activities. Refs. [4–6] also de-
scribed two queueing models devised to try to account
for this behavior. The first, a fixed-length queue, has
tails with α = 1[4, 7], while the second, a variable-length
queue, was reported numerically to have α near 3/2.

A full explanation of heavy tails in the waiting-time
statistics of human activities will obviously require both
larger data sets[8] and progressively more realistic mod-
els. Here we are concerned with the latter issue, studying
power-laws and universality in queueing in two different
models. First, we map the variable-length, continuous-
priority-queue model studied in refs. [4–6] onto the fami-
lar model of biased diffusion[9]. In this way we derive
analytic, asymptotic expressions for P (τ), thereby ex-
plaining the origin of the numerical result P (τ) ∼ τ−3/2

for λ ≥ µ, where λ and µ are the respective rates of task
arrival and of task execution. We show further that for
λ < µ, P (τ) ∼ e−τ/τ0τ−5/2 for asymptotically large τ ,
i.e., for τ >> τ0, where τ0 is a characteristic time that
diverges as 1/(µ− λ)2 as λ → µ[5].

Second, we generalize the fixed-length model queue[4]
to contain tasks of two or more different classes, with a
“start-up cost” for switching from one class to another,
thereby representing schematically the management of

jobs of different types – e-mail messages to be answered
and household chores to be performed, for example. We
show numerically that this seemingly modest modifica-
tion produces a substantial change in behavior: For in-
termediate waiting times τ and moderate values of the
switching cost, P (τ) still exhibits power-law behavior,
but with an exponent α of approximately 3/2, rather
than 1. Beyond a characteristic time that grows with
the length L of the fixed-length queue, the decay of P (τ)
becomes exponential. We explain these results, and why
they differ from those for single-class models.

II. Models
Model A: One-Class, Continuous-Priority

Queue: We start by considering Model A, defined as
follows. At each discrete time step: (1) With probability
λ, a new task with priority x (0 ≤ x ≤ 1), chosen from
the probability distribution ρ(x), arrives in the queue.
(2) Then, with probability µ, the highest priority task
in the queue is executed. The execution is assumed to
occur instantaneously. The case λ = µ = 1 is analyzed in
ref. [4]; numerical results and scaling arguments for other
(λ, µ) are given in refs. [4]-[7].

For any µ and λ, the transformation from the original
priority variable x to a new variable y ≡ ∫ x

0
ρ(z)dz with

a uniform distribution, ρ̃(y) = 1, over the interval 0 ≤
y ≤ 1, satisfies ρ̃(y)dy = ρ(x)dx, and so produces a model
equivalent to the original[7]. Thus we take ρ(x) = 1 here.

The case λ = µ = 1 of model A is special in that the
queue length remains strictly constant, and the distribu-
tion of priorities of tasks in the queue approaches δ(x) in
the long-time limit. The highest value, xM , of x in the
queue after each complete time step is a nonincreasing
function of time that approaches 0 as the number of time
steps, T , becomes large. Thus, as T →∞, the probabil-
ity of newly arrived tasks having priorities x > xM and
so being executed immediately approaches unity. The
result[4], P (τ) ∼ 1/τ , applies to the remaining tasks that
have x < xM on arrival[10].

We now analyze Model A for λ and µ less than unity.
Eq. (1) expresses the overall probability, P (τ), that a
given task sits in the queue for a time τ before being ex-
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ecuted, in terms of two quantities[3]: (a) the probability,
G(n, x, τ), that a given task of priority x, which arrives
in the queue at time t = 0 with exactly n items of higher
priority (i.e., larger x) already in the queue, gets executed
at precisely time t = τ ; and (b) the probability, Q̃(n, x),
of there being exactly n items in the queue with priority
greater than x, once a steady state has been achieved.

P (τ) = Σ∞n=0

∫ 1

0

dx Q̃(n, x)G(n, x, τ) . (1)

Let Q(m,x, t) be the probability that at time t there
are precisely m tasks with priority greater than x in the
queue. Then Q(m,x, t) satisfies the discrete master equa-
tions, valid for m > 0 and m = 0, respectively:

Q(m,x, t + 1) = a(x)Q(m + 1, x, t) + b(x)Q(m− 1, x, t)
+(1− a(x)− b(x))Q(m,x, t) ;

Q(0, x, t + 1) = a(x)Q(1, x, t) + (1− b(x))Q(0, x, t); (2)

here a(x) = µ(1 − q(x)) and b(x) = q(x)(1 − µ) are the
respective probabilities of the number of tasks with pri-
orities > x in the queue decreasing and increasing by 1
in a given time step, where q(x) = λ

∫ 1

x
ρ(z)dz = λ(1−x)

is the probability of a task with priority > x arriving in
the queue during phase (1) of a given time step.

We first consider λ < µ < 1. In steady state,
Q(m,x, t + 1) = Q(m,x, t), which yields the normalized
steady-state distribution

Q̃(m, x) = [1− b(x)/a(x)][b(x)/a(x)]m. (3)

As λ approaches µ from below, b(0) approaches a(0), and
the distribution Q̃(m, 0) becomes uniform in m. The
mean number of tasks in the queue in steady state,
〈m(x = 0)〉, thus diverges as 1/(µ − λ). In this strict
sense, the steady-state distribution is ill-defined for λ =
µ[1–3]. However, the mean number of tasks having prior-
ities greater than x, 〈m(x)〉, remains finite for any x > 0
when λ = µ, behaving as 1/x as x → 0. Owing to this
fact, the queue does have well-defined steady-state prop-
erties, as we shall see.

Next we compute G(n, x, t) of Eq. (1) by deriving an
estimate for Q(m,x, t), starting from the initial condition
in which exactly n tasks have priority exceeding x in
the queue at t = 0. This is most easily accomplished
through study of the continuum limit of Eq. (2) in both
the variable m [11] and the time, t, viz.:

∂Q(y, x, t)/∂t = c(x)∂2Q/∂y2 + d(x)∂Q/∂y. (4)

Here the discrete number of tasks m has been replaced
by the continuum variable y, t is now a continuous time
variable, c(x) ≡ ra(x) and d(x) ≡ r[a(x) − b(x)], where
r is an arbitrary time constant that sets the time scale
for the biased-diffusion equation (4). Eq. (4), with the
initial condition Q(y, x, t = 0) = δ(y − n) corresponding
to there being n tasks in the queue initially, and the

absorbing boundary condition Q(y = 0, x, t) = 0, has
the solution[9] (with the x-dependence of a, b, c, and d
suppressed):

Q(y, x, t) =
1√
4πct

[e(−(y+dt−n)2/4ct−edn/ce(−(y+dt+n)2/4ct].

(5)
The probability of there being a positive number of

tasks having priority greater than x in the queue, at time
t, is R(n, x, t) =

∫∞
0

Q(y, x, t)dy. The probability that
the queue of tasks with priorities greater than x empties
at precisely time t (i.e., the first-passage probability) is
G(n, x, t) = −∂R/∂t, yielding, from (5)[9]:

G(n, x, t) =
n√

4πc t3/2
e−(dt−n)2/4ct. (6)

Given expressions (6) and (3), Eq. (1) for P (τ) is

P (τ) = Σ∞n=0

∫ 1

0

dx g(n, x, τ) e[− (dτ−n)2

4cτ +n log(b/a)] , (7)

where g(n, x, t) ≡ n
2
√

πc t3/2 (1 − b/a) . Rescaling n via
n = lτ , where l = 0, 1/τ, 2/τ, ... yields

P (τ) = τ−1/2Σl=0,1/τ,2/τ,...

∫ 1

0

dx h(l, x) e−τj(l,x) , (8)

with h ≡ l(1− b/a)/2
√

πc and j ≡ −l log(b/a) + (d−l)2

4c .
For large τ , the right side of (8) is dominated by the
smallest value of j(l, x), which can be shown to occur
at l = x = 0. The behavior of P (τ) for asymptotically
large τ is derived by expanding the functions h and j
around this point and extending the integral over x to
infinity. We consider three cases, distinguished by the
relative arrival and execution rates of tasks.

Case (1): λ = µ < 1. Here h(l, x) and j(l, x) are
quadratic in l and x for small l and x, and j(l, x) is never
negative. The rescaling (x, l) = τ−1/2(x̃, l̃) then removes
the τ dependence from the integrand, whereupon, for
large τ , the sum over l̃ can be replaced by an integral,
Σl̃=0,τ−1/2,2τ−1/2,... → τ1/2

∫∞
0

dl̃. This leaves P (τ) pro-
portional to τ−3/2 times a convergent double integral over
x̃ and l̃; i.e., P (τ) ∼ τ−α with α = 3/2.

Case (2): λ < µ < 1. Again, j(l, x) is never nega-
tive. For small l and x, j(l, x) has a term, 1/τ0 ≡ r(µ−
λ)2/4µ(1−λ), independent of l and x, and terms both lin-
ear and quadratic in l and x; h(l, x) has terms of O(l) and
of O(lx). The 1/τ0 term produces the exponential factor
e−τ/τ0 in P (τ). For τ À τ0, the linear terms dominate,
and the rescaling (x, l) = τ−1(x̃, l̃) removes the τ depen-
dence from the integrand, yielding P (τ) ∼ e−τ/τ0τ−5/2.
For 1 ¿ τ ¿ τ0, the quadratic terms dominate, and Case
(1) is recovered, yielding P (τ) ≈ e−τ/τ0τ−3/2 ≈ τ−3/2.
These behaviors are confirmed numerically in Fig. 1.

Case (3): µ < λ < 1. Here tasks arrive faster than they
are executed on average, producing a queue that grows
in time t like (λ − µ)t. A fraction x? ≡ (λ − µ)/λ of
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FIG. 1: P (τ) exp(τ/τ0) vs. τ , for Model A with T = 108,
λ = 0.6, µ = 0.9, and τ0 = 7.33. This τ0 was obtained
as the best-fit constant value of A(τ, α) ≡ −τ/[log(P (τ)) +
α log τ ] at large τ for α = 5/2; A(τ, α) is not constant for

α = 3/2. Guide lines are ∝ τ−3/2 and τ−5/2, confirming

that P (τ) ≈ τ−3/2 exp(−τ/τ0) for τ ¿ τ0, and that P (τ) ∼
τ−5/2 exp(−τ/τ0) for τ À τ0.

arriving tasks waits in the queue forever without getting
executed. The analysis of the tasks that do get executed,
however, can be cast in a form identical to Case (1). To
see this, note that for x > x?, the rate, λ(1−x), of arrival
of tasks with priority greater than x is less than the rate,
µ, at which such tasks are executed. Thus for x > x?,
our earlier analysis of the master equation (2) remains
valid. In particular, the steady-state distribution of Eq.
(3) holds for x > x?; the mean number of particles hav-
ing priority greater than x, 〈m(x)〉 = Σ∞m=0m Q̃(m, x),
diverges as x → x? from above. Changing the variable
x to the new variable y defined by x = x? + (1 − x?)y
maps the range x? < x < 1 onto the range 0 < y < 1,
and transforms the quantities a(x) and b(x) in Eq. (2)
to ã(y) = µ̃(1 − q̃(y)) and b̃(y) = q̃(y)(1 − µ̃), where
q̃(y) ≡ λ̃(1 − y), µ̃ ≡ µ, and λ̃ ≡ λ(1 − x?). Thus,
apart from the change from (µ, λ) to (µ̃, λ̃), the func-
tions ã(y) and b̃(y) are the same as the original functions
a(y) and b(y), respectively. Given the definition of x?,
moreover, µ̃ = λ̃, so the problem maps precisely onto
Case (1) above, with the asymptotic result P (τ) ∼ τ−3/2.
Concerning those tasks having x < x?: Because the total
number of tasks in the queue with x > x? grows without
bound as time progresses, the probability of executing a
task with x < x? approaches 0 in the long-time limit.
Asymptotically, all such tasks thus remain in the queue
in perpetuity.

Model B: Multi-Class, Fixed-Length Queue
with Switching Cost: We now modify Model A in
the fixed-length-queue limit λ = µ = 1, by assigning to
each task a class label as well as a priority. We consider
the case of two classes. At time t = 0 the queue contains
L tasks and one of the classes (say class I) is arbitrarily

designated the ‘active’ class. At each subsequent time
step, a task of either class (chosen with probability 1

2 ),
having priority 0 < x < 1 chosen from a uniform distri-
bution, is added to the queue. If the highest priority of all
the tasks of the inactive class exceeds that of the active
class by at least a fixed amount c (or if the active class
has no remaining tasks in the queue), then the inactive
queue becomes active and the active queue inactive. The
highest priority task of the active queue is then executed.
Taking c > 0 simulates the inertia, or start-up cost, of
shifting from one type of activity to another. Model A
with λ = µ = 1 is recovered for c = 0.

Figure 2a shows simulation results for the waiting-time
distribution P (τ) of tasks for Model B as a function of
τ , on a log-log plot, for queue lengths L from 2 to 1000.
For τ ≥ 10 but not too large, P (τ) decays as τ−α, with
α close to 3/2. Beyond a characteristic time that in-
creases with L, however, P (τ) falls off from the power-
law curve and decreases much more rapidly, consistent
with exponential rather than algebraic decay. Figure
2b is a semilog plot of P (τ)τ3/2 vs. τ/Lβ for β = 2.25.
The roughly linear behavior (apart from large-τ statisti-
cal fluctuations) shows that P (τ) ∼ τ−3/2 exp[−τ/τ0(L)].
The fact that the curves for widely differing L approx-
imately collapse onto one another for β = 2.25 shows
that τ0(L) is approximately proportional to Lβ for this
β. In contrast, if the Fig. 1b curves are replotted using
β ≤ 2.125 or ≥ 2.375 (not shown), they remain approx-
imately linear but have quite different slopes from one
another. [The characteristic time at which P (τ) departs
from the power-law curve also scales approximately as
Lβ with the same β.]

To understand this behavior heuristically, first note
that even though the queue length L is fixed, the model
generates, for c > 0, a distribution of tasks in which
the highest priority value of the tasks in the queue does
not tend to zero as the number of time steps T becomes
large. In this respect, Model B is more like Model A with
a variable-length queue (i.e., λ and µ < 1), than it is like
the fixed-length version of Model A with λ = µ = 1. The
inactive class is constantly replenished by the addition of
tasks that cannot be executed until that class becomes
active; thus the sizes of the individual classes fluctuate
while L stays fixed. The rules for the addition and re-
moval of tasks of a given class (I, say), look very similar
to the rules for the single-class Model A, with λ = µ = 1

2 .
This is because the probability of executing a class-I task
is (1+xM + c)/2 or (1−xM − c)/2 when the active class
is class I or class II, respectively, where xM is the high-
est priority of all tasks in the queue. Thus the average
probability of executing a class-I task is 1

2 , as is the prob-
ability of adding a class-I task to the queue. One would
therefore expect P (τ) ∼ τ−3/2 for modest τ values.

This argument, however, ignores the fixed length, L,
of the queue, which allows all tasks of a given class to
be eliminated in at most L + 1 time steps with nonzero
probability. To see this, consider the example where all
L tasks in the queue belong to class I, which is the active
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FIG. 2: (a) Waiting-time distribution P (τ) vs. τ (log-log
plot), from Model B numerical simulations with ‘switching
cost’ 0.2, and L = 2, 5, 10, 20, 50, 100, 200, 500, 1000 (denoted
by: ·, +,©, ∗, ♦,×, O, M, and left-pointing triangle). Guide

line is ∝ τ−3/2. Total number of time steps T = 106 for
L ≤ 100 and 4 × 106 for L ≥ 200. Bins for computing P (τ)
are of unit width for 1 < τ ≤ 10, and proportional to τ (log-

binned) for τ > 10. (b) Semilog plot of P (τ)τ3/2 vs. τ/Lβ for
β = 2.25, showing power-law times exponential falloff of P (τ)
at large τ and scaling of the coefficient of τ in the exponential
as L−β (see text). Bins are as in (a). For clarity, only points
having both τ > 10 and P (τ) > 10−9 are plotted in (b).

class. If on each of the subsequent L time steps, the task
added to the system belongs to class II and has priority
x < c, then class I will remain the active class, and all the
class-I tasks will be executed. Thus (c/2)L is a loose lower
bound for the probability of the class-I queue being elim-
inated in L time steps, in this case. Similar arguments
for arbitrary initial conditions of the queue show that the
class-I tasks can always be eliminated in L+1 time steps
with probability qL = (c/2)L+1. Thus on average the
class-I queue will take no longer than (L + 1)/qL time
steps to empty. One concludes that the waiting-time dis-
tribution must decay – presumably exponentially – with
a characteristic time τL bounded above by (L + 1)/qL.
This is consistent with the numerical results of Fig. 2.

Thus the essential difference between Model A with
λ = µ < 1 and Model B is that the number of tasks in
the queue of Model A performs a random walk and thus
can increase without bound. It is these large excursions
of the queue length that allow[5] the long waiting times
necessary to produce the asymptotic power-law behavior
of P (τ) in Model A with λ = µ < 1, rather than more
rapid, e.g., exponential, decay.

III. Discussion
By mapping the continuous-priority queueing model
(here called Model A) onto the biased-diffusion model, we
have shown analytically that the exponent α character-
izing the asymptotic decay of P (τ) has the value 3/2 for
λ ≥ µ, in agreement with existing numerical results[4–6].
For λ < µ, our result, P (τ) ∼ e−τ/τ0τ−3/2 for τ . τ0, is
consistent with our simulation results (Fig. 1) and those
of ref. [5], while the result P (τ) ∼ e−τ/τ0τ−5/2 for τ À τ0

is also consistent with Fig. 1.
Our Model B attempts to make the fixed-length-queue

model[4] more realistic, by incorporating schematically
the cost of switching execution between different classes
of tasks. We showed that this produces a notable change
in behavior, making the fixed-length queue model look
much like the variable-length Model A, with P (τ) de-
creasing as τ−3/2 for 1 ¿ τ . τL, where τL ∼ Lβ . Em-
pirically, we found β ≈ 2.25 for the range of L’s studied.
This is close to, but distinct from, two – the value one
might expect asymptotically[5], since the diffusion time
over distance L behaves like L2. For τ & τL, P (τ) decays
exponentially, since with nonzero probability the queue
empties of all tasks of a particular class.

The marked difference in behavior between the fixed-
length queue models with one and two classes of tasks
suggests that the study of simple models like the ones
treated here may be useful in identifying efficient pri-
oritizing strategies. More generally, the analysis of
such models is essential for understanding the intrigu-
ing phenomenology[1]-[6] of human activities that involve
waiting times.

We thank Sid Redner for providing helpful information
about first-passage probabilities.
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