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Abstract 
Populating formal knowledge-bases from natural-language text is a long-standing objective in computer 
science.  Recent advancements in both ontology research and information extraction research are making 
this objective increasingly obtainable.  However, there are still serious obstacles to performing automated 
reasoning over the contents of text documents.  This paper focuses on one of those obstacles: differences 
between the formal ontologies used by reasoning systems and the informal ontologies used by extraction 
systems.  We describe a framework for automating translation from extracted information to formal 
knowledge, and we describe a complex, implemented system that uses this framework.  We also describe 
results from this system applied to a moderately large (approximately 75 MB) text corpus. 

1. Introduction 
Ontologies describe the kinds of phenomena (e.g., people, places, events, relationships, 
etc.) that can exist.  Reasoning systems typically rely on ontologies that provide extensive 
formal semantics, since those semantics enable those systems to draw complex 
conclusions.  In contrast, systems that extract information from text typically use much 
lighter-weight ontologies to encode their results, because those systems are generally not 
designed to enable complex reasoning. 
The Unstructured Information Management Architecture, UIMA, (Ferrucci & Lally, 
2004) is an open-source middleware platform for integrating components that analyze 
unstructured sources such as text documents.  UIMA-based systems define “type 
systems” (i.e., ontologies with extremely limited semantic commitments) to specify the 
kinds of information that they manipulate (Götz & Suhre, 2004).  UIMA type systems 
include a type/subtype hierarchy (single inheritance only) and allow atomic domain/range 
restrictions on properties (i.e., one can specify a “feature” that connects instances of one 
specified type to instance of another specified type).  These capabilities enable very few 
inferences (e.g., if A is an instance of a type X, and the supertype of X is Y, then A is an 
instance of Y).  Thus to do substantive reasoning over the results of UIMA-based 
extraction, one needs to convert results into a more expressive ontology than the UIMA 
type system language allows. 

2. Related Work 
The work reported in this paper bridges a gap between two existing lines of research: 

• Research on extraction of formal knowledge from text (e.g., Dill, Eiron, et al. 
2003) typically assumes that text analytics are written for the ontology that the 
knowledge should be encoded in.  Building extraction directly on formal 
ontologies is particularly valuable when the extraction is intended to construct or 
modify the original ontology (Maynard, Yankova, et al. 2005; Cimiano & Völker, 
2005).  However, there is a substantial cost to requiring text analytics to be 



consistent with formal ontology languages. There are many existing systems that 
extract entities and relations from text using informal ontologies that make 
minimal semantic commitments (e.g., Marsh, 1998; Byrd & Ravin, 1999; Liddy, 
2000; Miller, Bratus, et al., 2001; Doddington, Mitchell, et al., 2004).  These 
systems use these informal ontologies because those ontologies are relatively 
consistent with the way concepts are expressed in text and are well-suited for their 
intended applications (e.g., document search, content browsing). However, those 
ontologies are not well-suited to applications that require complex inference.  Our 
work provides an explicit knowledge integration step that allows us to populate 
semantically-rich ontologies using content that was extracted by extraction 
systems that provide semantically-impoverished outputs. 

• Research on schema matching for knowledge integration (e.g., Milo & Zohar, 
1998; Noy & Musen, 2001) typically focuses on finding very simple (e.g., one-to-
one) mappings among terms in ontologies.  Schema matching is useful when the 
ontologies are large and complex, so that these mappings, while individually 
simple, are numerous and challenging to find.  Our work focuses on the opposite 
circumstance: We assume that the ontologies are small and manageable enough 
that one can find the correspondences manually and that the mappings may be 
more complex (conditional, many-to-many, etc.) than an automated matching 
system can handle. 

The difference between our work and schema matching work is largely driven by our 
experience with the problem of extracting formal knowledge from text.  Adding a term to 
a text extraction ontology is generally expensive, since one needs to supply training data 
and/or patterns for recognizing that term.  Consequently, text extraction ontologies rarely 
have more than a few dozen terms, and we are not aware of any with more than a few 
hundred.  Thus manually finding which terms in an extraction ontology map to terms in 
some other ontology generally involves a fairly small amount of effort. 

Schema-matching technologies have typically been used when the applications that the 
source and target ontologies were designed for are identical or at least quite similar; e.g., 
matching one e-commerce database schema to another, matching one theorem-proving 
ontology to another.  In those cases, the assumption that individual mappings will tend to 
be very simple can be valid; since the designers of the ontologies had the same basic 
purpose in mind, it is plausible that much of their content will involve slightly different 
terms that mean the same thing.  Mapping extracted information into formal reasoning 
ontologies does not have this characteristic; these applications are radically different and 
tend to lead to radically different conceptualizations of basic content.  The mapping of 
temporal information discussed in Section 4 illustrates this trend.  For these sorts of 
differences, it is not feasible to restrict the mappings between terms to be sufficiently 
simple and obvious enough that they can be discovered by state-of-the-art fully-
automated matching techniques. 

3. KITE Architecture 
KITE is a middleware platform for use by developers of knowledge integration 
applications.  KITE consists of two major components: 



• KITE Core Framework: Java interfaces, data structures, and a central control 
mechanism for mapping entities and relationships from one ontology to another. 

• KITE Commons: A set of broadly applicable plugins that comply with the 
interfaces specified in the core framework. 

Figure 1 shows an abstract view of the architecture of a knowledge-integration system 
implemented on KITE.  A KITE-based integrator takes as input a Source Repository 
(e.g., a database, an RDF XML file).  Information in that repository is encoded in the 
Source Ontology (which is accessed via an Ontology Language Plugin). The Source 
Plugin reads from the source repository and outputs Source Data encoded in KITE data 
structures for instances and tuples.  Mapper Plugins may be primitive or aggregate. 
Aggregate mapper plugins are composed of other (primitive or aggregate) mapper 
plugins.  Primitive mapper plugins are Java objects that take Source Data as input and 
output Target Data (which consist of the same data structures, but are encoded in the 
Target Ontology).  The Target Plugin writes that data to a Target Repository and the 
Provenance Plugin writes the mappings from source to target data into a Provenance 
Repository. 

Some knowledge integration systems can be built using only the KITE Core Framework 
plus plugins in the KITE Commons (i.e., the plugins included with KITE).  For example, 
the KITE Commons includes source, target, and ontology language plugins for OWL and 
for UIMA type systems, and KITE provides a mapper that performs one-to-one mappings 
using an XML lookup table.  Thus a developer who wants to write an integrator that 
maps UIMA extracted information into an OWL ontology that has a one-to-one 
correspondence with the extraction types can simply combine these existing plugins and 
provide an XML file listing the one-to-one mappings. 

However, in our experience, most integration problems cannot be solved using only the 
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Figure 1: Abstract view of a KITE-based knowledge integrator. 



KITE Commons plugins.  For those problems, developers need to supply their own 
plugins for some portions of the integration process.  For example, some types in the 
source ontology may have a complex m-to-n mapping to the target ontology; a developer 
would need to create specialized mapping software written or wrapped in Java to handle 
those mappings.  If these ontologies also had other types that did map one-to-one, then 
those types could be handled by KITE’s table mapper.  The integrator developer would 
specify an aggregate mapper that includes both the custom-built primitive mapper and 
KITE’s table mapper.  This aggregate mapper could then be used with KITE Commons 
plugins for repositories, ontologies, etc. (if the system uses repository formats, ontology 
languages, etc. that the KITE Commons plugins handle) or with custom-built plugins (for 
other formats, etc.). 

4. Example Knowledge Integrator 
Figure 2 shows an example of a KITE-based knowledge integrator.  Source data for this 
application is encoded in HUTT (Hierarchical Unified Type Taxonomy), a UIMA type 
system based on a variety of established information extraction taxonomies (e.g., 
Doddington, Mitchell, et al., 2004; Sauri, Litman, et al., 2004).  The output ontology for 
this application is the OWL ontology used in the KANI project (Fikes, Ferrucci, & 
Thurman, 2005). 

This input data for the example application is stored in a relational database designed to 
contain UIMA extracted information.  The KITE Commons includes a plugin (UIMA 
Extraction Database Source Plugin) that accesses this database and outputs KITE 
instances and tuples (Source Data).  This source data is provided to an aggregate mapper 
composed of an assortment of both generic mappers from the KITE Commons and 
specialized mappers that were written for the HUTT to KANI integrator.  These mappers 
output target data.  That data is consumed by two plugins from the KITE Commons: the 

Figure 2: Example KITE-based application 
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RDF Store Target Plugin writes the target data alone into a relational database for RDF 
triples, and the Extraction → RDF Provenance Plugin records (potentially complex) 
mappings from source data in the extraction database to target data in the RDF database; 
these mappings are stored in the UIMA/RDF Provenance Database.1 

Systems that access instances and triples from the RDF store can request traces of the 
information extraction and knowledge integration processes that created those instances 
and triples.  The provenance database is able to return that information either as database 
entries or in the OWL-based Proof Markup Language, PML (Pinheiro da Silva, 
McGuinness & Fikes, 2006).  Systems that perform additional reasoning over the 
extracted knowledge can provide integrated end-to-end PML traces that explain their 
conclusions as a combination of logical inferences from the RDF knowledge and 
extraction inferences used to obtain that knowledge from text (Welty, Murdock, et al., 
2005). 

As mentioned above, the aggregate mapper used in this application contains a 
combination of mappers from the KITE Commons and mappers that were written for this 
application (specifically, it includes five mapper plugins from the KITE Commons and 
four custom mapper plugins).  The most complex mappers that were written for this 
application involve the handling of temporal information.  The representation of time in 
HUTT is based on TimeML (Sauri & Littman, 2004), a language for marking up 
expressions of time in natural-language text.  The representation of time in the KANI 
ontology is OWL-Time (Hobbs, 2004), a semantic web ontology.  OWL-Time makes 
relatively subtle distinctions that are usually implicit in text (e.g., distinguishing between 
time intervals and time interval descriptions).  Furthermore, OWL-Time has distinct 
properties to encode different aspects of a description of a time (year, month, day, hour, 
etc.).  In contrast, TimeML does not encode a time and its expression separately, and uses 
a relatively compact normalized form to encode a full time description in a single string.  
These differences are motivated by the different applications that these ontologies were 
designed for; OWL-Time directly enables a wide variety of logical inferences about 
times, while TimeML provides a convenient and compact formalism for identifying, 
normalizing, and linking expressions of time in text. 

The relationship between TimeML and OWL-Time illustrates our motivation for 
designing KITE as a plugin framework that allows users to develop their own mappers 
and combine them into aggregates.  A generic mapping component that was expressive 
enough to handle the mapping between these two portions of the HUTT and KANI 
ontologies would be extremely complicated to develop and to use.  However, many of the 
other terms in HUTT and KANI are handled easily by simple, generic mappers.  For this 
application, KITE has enabled an effective combination of generic and special-purpose 
mapping capabilities. 

5. Status 
The example application discussed in the previous section has been used on a variety of 
text corpora to enable reasoning, knowledge-based search, and browsing of knowledge 

                                                 
1 The extraction, RDF, and provenance databases used in this example system are all part of a larger UIMA 
data storage service called EKDB: Extracted Knowledge Database (IBM Research, 2005). 



and provenance. The largest corpus we have run this application on is approximately 75 
MB of text; from this text, we extracted approximately 2 million RDF triples.  The 
various text extraction and indexing processes took about 38 hours for this corpus, and 
the KITE-based knowledge integrator took about 2 hours to convert the results from the 
HUTT type system to the KANI ontology. 

Examples of other systems that have been built using KITE include: 

• A knowledge integrator that translates semantic search queries (Brown, Dolbey, 
& Hunter, 2003) from a relatively “user friendly” OWL ontology into HUTT, the 
UIMA type system discussed in Section 4.  This knowledge integrator allows 
users to specify their queries in the OWL ontology and have them addressed by a 
fast, scalable HUTT-based semantic search index.  We have built HUTT-based 
semantic search indexes for corpora up to 3 GB in size.  Semantic search is an 
application that does not require complex reasoning, so it is not necessary to 
translate the extracted information from the text into a formal ontology for this 
purpose.  Translating queries allows applications to provide user interaction in 
terms of a formal ontology without having to convert stored data into that 
ontology. 

• A knowledge integrator that generates an OWL ontology (classes and properties) 
from entity and relation types in a UIMA type system.  This system treats each 
type as a separate instance in the source data and encodes UIMA’s type/subtype 
hierarchy as tuples that relate those types. 

KITE is currently in undergoing internal alpha-testing within IBM Research.  We expect 
to make this component available to external users as an internet download when the core 
API’s have become sufficiently stable and hardened.  We expect future versions of the 
KITE platform will include tool support to make development and integration of KITE-
compliant components and systems easier.  We may develop some of these tools 
ourselves; however, we expect to make other tools available by more closely aligning 
KITE with existing standards for which extensive tool support already exists, e.g., UIMA 
and EMF (Budinsky, Steinberg, et al., 2004). 

6. Conclusions 
There are many existing systems that extract entities and relations from text, and there are 
many reasoning applications that require entities and relations.  However, existing work 
combining these capabilities has met with only limited success.  One reason why such 
combinations are so challenging is the dramatic differences between formal reasoning 
ontologies and information extraction ontologies.  The KITE middleware platform 
provides a foundation for bridging this gap.  We have demonstrated that KITE can 
integrate radically different ontologies at moderately large scales (millions of triples).  
The use of KITE in several distinct applications provides preliminary evidence of KITE’s 
flexibility.  As KITE’s user base expands and the framework matures, we expect it to 
provide an increasingly powerful foundation for populating formal ontologies from 
unstructured data. 
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