
RC23961 (W0605-108) May 18, 2006
Computer Science

IBM Research Report

Obtaining Formal Knowledge from Informal Text Analysis

J. William Murdock, Christopher Welty
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Obtaining Formal Knowledge from Informal Text Analysis
J. William Murdock & Christopher Welty

IBM Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532, USA
{murdockj, welty}@us.ibm.com

Abstract
Populating formal knowledge-bases from natural-language text is a long-standing objective in computer
science. Recent advancements in both ontology research and information extraction research are making
this objective increasingly obtainable. However, there are still serious obstacles to performing automated
reasoning over the contents of text documents. This paper focuses on one of those obstacles: differences
between the formal ontologies used by reasoning systems and the informal ontologies used by extraction
systems. We describe a framework for automating translation from extracted information to formal
knowledge, and we describe a complex, implemented system that uses this framework. We also describe
results from this system applied to a moderately large (approximately 75 MB) text corpus.

1. Introduction
Ontologies describe the kinds of phenomena (e.g., people, places, events, relationships,
etc.) that can exist. Reasoning systems typically rely on ontologies that provide extensive
formal semantics, since those semantics enable those systems to draw complex
conclusions. In contrast, systems that extract information from text typically use much
lighter-weight ontologies to encode their results, because those systems are generally not
designed to enable complex reasoning.
The Unstructured Information Management Architecture, UIMA, (Ferrucci & Lally,
2004) is an open-source middleware platform for integrating components that analyze
unstructured sources such as text documents. UIMA-based systems define “type
systems” (i.e., ontologies with extremely limited semantic commitments) to specify the
kinds of information that they manipulate (Götz & Suhre, 2004). UIMA type systems
include a type/subtype hierarchy (single inheritance only) and allow atomic domain/range
restrictions on properties (i.e., one can specify a “feature” that connects instances of one
specified type to instance of another specified type). These capabilities enable very few
inferences (e.g., if A is an instance of a type X, and the supertype of X is Y, then A is an
instance of Y). Thus to do substantive reasoning over the results of UIMA-based
extraction, one needs to convert results into a more expressive ontology than the UIMA
type system language allows.

2. Related Work
The work reported in this paper bridges a gap between two existing lines of research:

• Research on extraction of formal knowledge from text (e.g., Dill, Eiron, et al.
2003) typically assumes that text analytics are written for the ontology that the
knowledge should be encoded in. Building extraction directly on formal
ontologies is particularly valuable when the extraction is intended to construct or
modify the original ontology (Maynard, Yankova, et al. 2005; Cimiano & Völker,
2005). However, there is a substantial cost to requiring text analytics to be

consistent with formal ontology languages. There are many existing systems that
extract entities and relations from text using informal ontologies that make
minimal semantic commitments (e.g., Marsh, 1998; Byrd & Ravin, 1999; Liddy,
2000; Miller, Bratus, et al., 2001; Doddington, Mitchell, et al., 2004). These
systems use these informal ontologies because those ontologies are relatively
consistent with the way concepts are expressed in text and are well-suited for their
intended applications (e.g., document search, content browsing). However, those
ontologies are not well-suited to applications that require complex inference. Our
work provides an explicit knowledge integration step that allows us to populate
semantically-rich ontologies using content that was extracted by extraction
systems that provide semantically-impoverished outputs.

• Research on schema matching for knowledge integration (e.g., Milo & Zohar,
1998; Noy & Musen, 2001) typically focuses on finding very simple (e.g., one-to-
one) mappings among terms in ontologies. Schema matching is useful when the
ontologies are large and complex, so that these mappings, while individually
simple, are numerous and challenging to find. Our work focuses on the opposite
circumstance: We assume that the ontologies are small and manageable enough
that one can find the correspondences manually and that the mappings may be
more complex (conditional, many-to-many, etc.) than an automated matching
system can handle.

The difference between our work and schema matching work is largely driven by our
experience with the problem of extracting formal knowledge from text. Adding a term to
a text extraction ontology is generally expensive, since one needs to supply training data
and/or patterns for recognizing that term. Consequently, text extraction ontologies rarely
have more than a few dozen terms, and we are not aware of any with more than a few
hundred. Thus manually finding which terms in an extraction ontology map to terms in
some other ontology generally involves a fairly small amount of effort.

Schema-matching technologies have typically been used when the applications that the
source and target ontologies were designed for are identical or at least quite similar; e.g.,
matching one e-commerce database schema to another, matching one theorem-proving
ontology to another. In those cases, the assumption that individual mappings will tend to
be very simple can be valid; since the designers of the ontologies had the same basic
purpose in mind, it is plausible that much of their content will involve slightly different
terms that mean the same thing. Mapping extracted information into formal reasoning
ontologies does not have this characteristic; these applications are radically different and
tend to lead to radically different conceptualizations of basic content. The mapping of
temporal information discussed in Section 4 illustrates this trend. For these sorts of
differences, it is not feasible to restrict the mappings between terms to be sufficiently
simple and obvious enough that they can be discovered by state-of-the-art fully-
automated matching techniques.

3. KITE Architecture
KITE is a middleware platform for use by developers of knowledge integration
applications. KITE consists of two major components:

• KITE Core Framework: Java interfaces, data structures, and a central control
mechanism for mapping entities and relationships from one ontology to another.

• KITE Commons: A set of broadly applicable plugins that comply with the
interfaces specified in the core framework.

Figure 1 shows an abstract view of the architecture of a knowledge-integration system
implemented on KITE. A KITE-based integrator takes as input a Source Repository
(e.g., a database, an RDF XML file). Information in that repository is encoded in the
Source Ontology (which is accessed via an Ontology Language Plugin). The Source
Plugin reads from the source repository and outputs Source Data encoded in KITE data
structures for instances and tuples. Mapper Plugins may be primitive or aggregate.
Aggregate mapper plugins are composed of other (primitive or aggregate) mapper
plugins. Primitive mapper plugins are Java objects that take Source Data as input and
output Target Data (which consist of the same data structures, but are encoded in the
Target Ontology). The Target Plugin writes that data to a Target Repository and the
Provenance Plugin writes the mappings from source to target data into a Provenance
Repository.

Some knowledge integration systems can be built using only the KITE Core Framework
plus plugins in the KITE Commons (i.e., the plugins included with KITE). For example,
the KITE Commons includes source, target, and ontology language plugins for OWL and
for UIMA type systems, and KITE provides a mapper that performs one-to-one mappings
using an XML lookup table. Thus a developer who wants to write an integrator that
maps UIMA extracted information into an OWL ontology that has a one-to-one
correspondence with the extraction types can simply combine these existing plugins and
provide an XML file listing the one-to-one mappings.

However, in our experience, most integration problems cannot be solved using only the

Source
Plugin

Ontology
Language

Plugin

Mapper
Plugin(s)

Target
Plugin

Ontology
Language

Plugin

Source Data Target Data

Provenance
Plugin

Source
Repository

Target
Repository

Provenance
Repository

Source
Ontology

Target
Ontology

Figure 1: Abstract view of a KITE-based knowledge integrator.

KITE Commons plugins. For those problems, developers need to supply their own
plugins for some portions of the integration process. For example, some types in the
source ontology may have a complex m-to-n mapping to the target ontology; a developer
would need to create specialized mapping software written or wrapped in Java to handle
those mappings. If these ontologies also had other types that did map one-to-one, then
those types could be handled by KITE’s table mapper. The integrator developer would
specify an aggregate mapper that includes both the custom-built primitive mapper and
KITE’s table mapper. This aggregate mapper could then be used with KITE Commons
plugins for repositories, ontologies, etc. (if the system uses repository formats, ontology
languages, etc. that the KITE Commons plugins handle) or with custom-built plugins (for
other formats, etc.).

4. Example Knowledge Integrator
Figure 2 shows an example of a KITE-based knowledge integrator. Source data for this
application is encoded in HUTT (Hierarchical Unified Type Taxonomy), a UIMA type
system based on a variety of established information extraction taxonomies (e.g.,
Doddington, Mitchell, et al., 2004; Sauri, Litman, et al., 2004). The output ontology for
this application is the OWL ontology used in the KANI project (Fikes, Ferrucci, &
Thurman, 2005).

This input data for the example application is stored in a relational database designed to
contain UIMA extracted information. The KITE Commons includes a plugin (UIMA
Extraction Database Source Plugin) that accesses this database and outputs KITE
instances and tuples (Source Data). This source data is provided to an aggregate mapper
composed of an assortment of both generic mappers from the KITE Commons and
specialized mappers that were written for the HUTT to KANI integrator. These mappers
output target data. That data is consumed by two plugins from the KITE Commons: the

Figure 2: Example KITE-based application

UIMA Extraction
Database

Source Plugin

UIMA Type
System Plugin

HUTT→KANI
Aggregate

Mapper

RDF Store
Target Plugin

OWL Ontology
Plugin

Source Data Target Data

Extraction→RDF
Provenance Plugin

UIMA
Extraction
Database

RDF Store
Database

UIMA/RDF
Provenance
Database

HUTT
Type System

KANI OWL
Ontology

RDF Store Target Plugin writes the target data alone into a relational database for RDF
triples, and the Extraction → RDF Provenance Plugin records (potentially complex)
mappings from source data in the extraction database to target data in the RDF database;
these mappings are stored in the UIMA/RDF Provenance Database.1

Systems that access instances and triples from the RDF store can request traces of the
information extraction and knowledge integration processes that created those instances
and triples. The provenance database is able to return that information either as database
entries or in the OWL-based Proof Markup Language, PML (Pinheiro da Silva,
McGuinness & Fikes, 2006). Systems that perform additional reasoning over the
extracted knowledge can provide integrated end-to-end PML traces that explain their
conclusions as a combination of logical inferences from the RDF knowledge and
extraction inferences used to obtain that knowledge from text (Welty, Murdock, et al.,
2005).

As mentioned above, the aggregate mapper used in this application contains a
combination of mappers from the KITE Commons and mappers that were written for this
application (specifically, it includes five mapper plugins from the KITE Commons and
four custom mapper plugins). The most complex mappers that were written for this
application involve the handling of temporal information. The representation of time in
HUTT is based on TimeML (Sauri & Littman, 2004), a language for marking up
expressions of time in natural-language text. The representation of time in the KANI
ontology is OWL-Time (Hobbs, 2004), a semantic web ontology. OWL-Time makes
relatively subtle distinctions that are usually implicit in text (e.g., distinguishing between
time intervals and time interval descriptions). Furthermore, OWL-Time has distinct
properties to encode different aspects of a description of a time (year, month, day, hour,
etc.). In contrast, TimeML does not encode a time and its expression separately, and uses
a relatively compact normalized form to encode a full time description in a single string.
These differences are motivated by the different applications that these ontologies were
designed for; OWL-Time directly enables a wide variety of logical inferences about
times, while TimeML provides a convenient and compact formalism for identifying,
normalizing, and linking expressions of time in text.

The relationship between TimeML and OWL-Time illustrates our motivation for
designing KITE as a plugin framework that allows users to develop their own mappers
and combine them into aggregates. A generic mapping component that was expressive
enough to handle the mapping between these two portions of the HUTT and KANI
ontologies would be extremely complicated to develop and to use. However, many of the
other terms in HUTT and KANI are handled easily by simple, generic mappers. For this
application, KITE has enabled an effective combination of generic and special-purpose
mapping capabilities.

5. Status
The example application discussed in the previous section has been used on a variety of
text corpora to enable reasoning, knowledge-based search, and browsing of knowledge

1 The extraction, RDF, and provenance databases used in this example system are all part of a larger UIMA
data storage service called EKDB: Extracted Knowledge Database (IBM Research, 2005).

and provenance. The largest corpus we have run this application on is approximately 75
MB of text; from this text, we extracted approximately 2 million RDF triples. The
various text extraction and indexing processes took about 38 hours for this corpus, and
the KITE-based knowledge integrator took about 2 hours to convert the results from the
HUTT type system to the KANI ontology.

Examples of other systems that have been built using KITE include:

• A knowledge integrator that translates semantic search queries (Brown, Dolbey,
& Hunter, 2003) from a relatively “user friendly” OWL ontology into HUTT, the
UIMA type system discussed in Section 4. This knowledge integrator allows
users to specify their queries in the OWL ontology and have them addressed by a
fast, scalable HUTT-based semantic search index. We have built HUTT-based
semantic search indexes for corpora up to 3 GB in size. Semantic search is an
application that does not require complex reasoning, so it is not necessary to
translate the extracted information from the text into a formal ontology for this
purpose. Translating queries allows applications to provide user interaction in
terms of a formal ontology without having to convert stored data into that
ontology.

• A knowledge integrator that generates an OWL ontology (classes and properties)
from entity and relation types in a UIMA type system. This system treats each
type as a separate instance in the source data and encodes UIMA’s type/subtype
hierarchy as tuples that relate those types.

KITE is currently in undergoing internal alpha-testing within IBM Research. We expect
to make this component available to external users as an internet download when the core
API’s have become sufficiently stable and hardened. We expect future versions of the
KITE platform will include tool support to make development and integration of KITE-
compliant components and systems easier. We may develop some of these tools
ourselves; however, we expect to make other tools available by more closely aligning
KITE with existing standards for which extensive tool support already exists, e.g., UIMA
and EMF (Budinsky, Steinberg, et al., 2004).

6. Conclusions
There are many existing systems that extract entities and relations from text, and there are
many reasoning applications that require entities and relations. However, existing work
combining these capabilities has met with only limited success. One reason why such
combinations are so challenging is the dramatic differences between formal reasoning
ontologies and information extraction ontologies. The KITE middleware platform
provides a foundation for bridging this gap. We have demonstrated that KITE can
integrate radically different ontologies at moderately large scales (millions of triples).
The use of KITE in several distinct applications provides preliminary evidence of KITE’s
flexibility. As KITE’s user base expands and the framework matures, we expect it to
provide an increasingly powerful foundation for populating formal ontologies from
unstructured data.

Citations
Eric W. Brown, Andrew Dolbey, & Lawrence Hunter. 2003. IBM Research and the

University of Colorado - TREC 2003 Genomics Track. 12th Twelfth Text REtrieval
Conference.

Frank Budinsky, Ray Ellersick, Timothy J. Grose, Ed Merks, & David Steinberg. 2004.
Eclipse Modeling Framework. Addison-Wesley.

Roy Byrd & Yael Ravin. 1999. Identifying and Extracting Relations in Text. 4th
International Conference on Applications of Natural Language to Information
Systems (NLDB). Klagenfurt, Austria.

Philipp Cimiano, Johanna Völker. 2005. Text2Onto - A Framework for Ontology
Learning and Data-driven Change Discovery. 10th International Conference on
Applications of Natural Language to Information Systems (NLDB). Alicante, Spain.

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas
Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, & Jason Y. Zien.
2003. SemTag and Seeker: Bootstrapping the semantic web via automated semantic
annotation. 12th International World Wide Web Conference (WWW), Budapest,
Hungary.

 George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie
Strassel, & Ralph Weischedel. 2004. Automatic Content Extraction (ACE) program -
task definitions and performance measures. Fourth International Conference on
Language Resources and Evaluation (LREC).

David Ferrucci & Adam Lally. 2004. UIMA: an architectural approach to unstructured
information processing in the corporate research environment. Natural Language
Engineering 10 (3/4): 327–348.

Richard Fikes, David Ferrucci, & David Thurman. 2005. Knowledge Associates for
Novel Intelligence (KANI). 2005 International Conference on Intelligence Analysis
McClean, VA.

T. Götz & O. Suhre. 2004. Design and implementation of the UIMA Common Analysis
System. IBM Systems Journal 43 (3): 476-489.

Jerry R. Hobbs. 2004. An OWL Ontology of Time. http://www.isi.edu/~pan/time/owl-time-
july04.txt

IBM Research. 2005. Component Services for Knowledge Integration in UIMA (a.k.a.
SUKI). http://www.research.ibm.com/UIMA/UIMA%20Knowledge%20Integration%20Services.pdf

Elizabeth D. Liddy. 2000. Text Mining. Bulletin of American Society for Information
Science & Technology.

Elaine Marsh. 1998. TIPSTER information extraction evaluation: the MUC-7 workshop.

Diana Maynard, Milena Yankova, Alexandros Kourakis, and Antonis Kokossis. 2005.
Ontology-based information extraction for market monitoring and technology watch.
ESWC Workshop “End User Apects of the Semantic Web,” Heraklion, Crete, May,
2005.

Scott Miller, Sergey Bratus, Lance Ramshaw, Ralph Weischedel, Alex Zamanian. 2001.
FactBrowser demonstration. First international conference on Human language
technology research HLT '01.

T. Milo, S. Zohar. 1998. Using Schema Matching to Simplify Heterogeneous Data
Translation. VLDB 98, August 1998.

N. F. Noy & M. A. Musen. 2001. Anchor-PROMPT: Using Non-Local Context for
Semantic Matching. Workshop on Ontologies and Information Sharing at the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001),
Seattle, WA.

Roser Sauri, Jessica Littman, Robert Gaizauskas, Andrea Setzer, & James Pustejovsky.
2004. TimeML Annotation Guidelines, Version 1.1.
http://www.cs.brandeis.edu/%7Ejamesp/arda/time/timeMLdocs/guidetest.pdf

Paulo Pinheiro da Silva, Deborah L. McGuinness & Richard Fikes. A proof markup
language for Semantic Web services. 2006. Information Systems 31(4-5): 381-395.

Christopher Welty, J. William Murdock, Paulo Pinheiro da Silva, Deborah L.
McGuinness, David Ferrucci, Richard Fikes. 2005. Tracking Information Extraction
from Intelligence Documents. 2005 International Conference on Intelligence
Analysis, McLean, VA.

