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Abstract 

BPEL (Business Process Executable Language for 
Web Services) is an emerging standard for business 
application integration and B2B processing based on 
web services. As a popular specification for modeling 
and implementing business processes, building reliable 
and secure business application systems with BPEL 
becomes an important issue. In this work, BPEL models 
are automatically verified and analyzed with our Open 
Process AnaLyzer (OPAL) toolkit by formally capturing 
BPEL’s semantics in Pi Calculus. The contribution of 
the work can be concluded in four points. First, the 
semantics of BPEL is fully formalized with Pi calculus; 
Second, the soundness of the formalization is validated 
and important properties are proved to be preserved in 
the formalization. Third, a concrete scenario is 
illustrated to show how model checking is applied to 
verify the reliability of BPEL model designs. Last, 
equivalence analysis in Pi calculus and model checking 
are combined to implement restructuring algorithms by 
which a BPEL model can be restructured for 
performance enhancement with OPAL. 
 
1. Introduction 

BPEL [1] is a de facto standard for business 
application integration and business-to-business 
processing based on web services. As a language for 
modeling both executable and abstract e-business 
processes, the effective design of e-business 
applications based on BPEL is a serious issue for the 
avoidance of unexpected behaviors and errors in e-
business systems. Such a motivation comes from two 
aspects: (1) How to ensure the design of a BPEL model 
conforms to specific business constraints? Major 
business integration systems including Websphere 
Business Integrator of IBM support the direct 
transformation from a business conceptual model to a 
BPEL model as its implementation. It is thus important 
to verify that such a transformation is error-free, in that 
the resulting BPEL model captures all business 
requirements in the conceptual model without loss of 
information; (2) How to ensure the design of a BPEL 
model is semantically correct and reasonable in order to 
implement a reliable e-business application? Moreover, 
since adjusting process structures is a common behavior 
for business / IT consultants to improve the 
performance of a process design, how is it possible to 
instruct such adjustment through model analysis? 

In fact, the urgent need for the solution of these 
problems in e-business world has already been 

recognized in [2] and [3]. In reliability-critical business 
domains like banking, it is critical that its core 
businesses must follow all business regulations and 
legal compliances in the industry. For example, a bank 
should comply with: “An account can only be opened 
after detailed information of the customer is retrieved 
and his / her identity is successfully verified” in order to 
prevent financial frauds. This fictional requirement is 
made based on the financial institution of U.S. Patriot 
Act (Sect 326). Without ensuring the requirement, not 
only the bank is vulnerable to economic losses, but also 
the business operation itself is illegal. We will provide 
this e-business model in detail with BPEL in section 4.3, 
and show how this model is verified and analyzed to 
avoid the violation of the above requirement. 

The purpose of this paper is to address the previous 
two issues. We study the application of model checking 
[4] to automatically reason about the behavior of BPEL 
models with our Open Process AnaLyzer (OPAL) [5] 
toolkit. Critical issues in verifying BPEL models are 
addressed. Firstly, the semantics of BPEL is fully 
formalized with Pi Calculus [6]; secondly, algebraic 
properties and specific features in BPEL specification 
[1] are proved to be preserved in our formalism; thirdly, 
to reason about the reliability of BPEL models, it is 
shown how model checking is exploited for the 
automatic verification of BPEL models against desired 
properties; fourthly, as a further step it is also studied 
based on both equivalence analysis of Pi calculus and 
model checking how a BPEL model can be equivalently 
restructured to potentially gain a better performance. 

The organization of the paper is as follows. Section 
2 compares existing works on both BPEL formalization 
and model checking tools. In section 3, the full 
formalization of BPEL with Pi calculus is investigated. 
Section 4 proves that important laws and properties are 
well preserved in our formalism. Besides, we illustrate 
how model checking is used to analyze BPEL models 
with a concrete scenario. In section 5, transformation 
rules are deduced to implement restructuring algorithms 
that (semi-)automatically restructure a BPEL model. 
Section 6 concludes the paper. 
 
2. Related Work and OPAL Methodology 

It is already a general idea that formal models are 
necessary for complex Web Service Composition 
Languages (WSCLs) like BPEL [7]. In [8], the abstract 
operational semantics of BPEL is defined based on the 
Abstract State Machine (ASM) paradigm. Andreas, et al 
[9] translate BPEL into deterministic finite state 



automata to support the matchmaking of state 
dependent services. Farahbod, et al [10] formally define 
the abstract executable semantics of BPEL based on 
Distributed Abstract State Machine (DASM). In [11], 
Petri-net is used to formalize BPEL constructs and 
several properties including dead transitions are 
checked. Our work differs from theirs in two aspects. (1) 
Pi calculus is chosen as the formal foundation of BPEL. 
Though BPEL is claimed to be based on Pi calculus, yet 
little work “actually provides solid semantics and 
analysis methods”[7]. As a process algebra with mobility 
and compositionability, previous work has already 
proved it a competent formal composition language for 
web service composition [12]. This is why Pi calculus is 
applied in this paper. (2) Our work goes beyond formal 
BPEL formalization and validating the formalisms with 
general properties like deadlocks. It investigates the 
topics of semantic validation of our BPEL formalization, 
temporal verification and also the restructuring of 
BPEL models with a concrete application scenario. 

As far as model checker for Pi calculus is concerned, 
Mobility Workbench (MWB) [13] and HD-Automata 
Laboratory (HAL) [14] are two important ones. Their 
theoretical foundations, however, differ to each other in 
significant ways. MWB analyzes Pi calculus processes 
based on Dam’s proof system for model checking 
mobile processes [15]. HAL, on the other hand, 
transforms Pi calculus into an automata based on Pi 
calculus’s early transition semantics. Its verification is 
based on the integration of JACK model checker. Our 
OPAL toolkit follows the latter methodology. Figure 1 
shows an overview of its architecture. 
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Fig. 1. Architecture of OPAL Toolkit. 

Different from HAL, OPAL focuses itself more on 
the usability and scalability issue in order to make it 
practical to introduce the rigid model checking into e-
business domain. It further addresses the following 
business domain specific verification problems: (1) By 
usability, OPAL supports the automatic formalization 
of different business process models (including BPEL) 
with Pi Calculus. It also enables the translation of Pi 
calculus processes to finite state transition system, 
during which deadlocks and redundant activities in a 
process are detected. (2) Property specification is a 
serious obstacle for applying model checking in e-
business domain [5] since common logical formulae are 
too complex to use and understand. OPAL solves the 
problem by providing a visualized Business Property 
Specification Language (BPSL) [5], with intuitive 

business property patterns. (3) By scalability, OPAL 
provides an open integration environment for various 
business process modelers including BPEL Designer [16], 
WBI, etc (through formalization adapter) and different 
model checkers like NuSMV [17] (through model 
checker adapter). Separate topics including BPSL and 
OPAL are addressed in our separate work [5]. This paper 
primarily focuses on the formalization, verification and 
restructuring of BPEL models with OPAL. 

 
3. Formalizing BPEL with Pi Calculus 
3.1. An Overview of Pi Calculus and BPEL 

The version of Pi-calculus used here is the polyadic 
Pi calculus [6] with the allowance of negation “¬”. Its 
syntax is summarized as follows. 

 

The simplest entities of Pi calculus are names (in 
lowercase) and processes (in uppercase). Processes can 
evolve by performing actions. x’<y> is an output 
action which sends name y via x and x(z) is an input 
action which receives a name via x. In composition P|Q, 
process P and Q proceeds independently and interacts 
via shared names. A sum π1.P1 +…+ πn.Pn is a non-
deterministic choice of process execution. In 
restriction (new x) P, the usage of name x is bounded 
to P. Replication !P is an infinite composition P |P | …. 
φP is a process that is guarded by a Boolean expression 
φ for name matching. For example, [x=y]P means that 
P can be performed if name x is the same with y. 
A(y1,…, yn) is a parameterized process identifier, with 
its parameters to be the free names of the process.  

On the other hand, BPEL can be regarded as a 
business workflow language designed for web services. 
A complete list of relevant model elements in BPEL is 
presented in the following. 

Correlation
Termination

Empty
Activity

Scope
Throw

FaultHandler
Compensation

Scope

Assign
Invoke
Reply

Receive
Activity

While
Switch

Sequence
Structure

Link
Flow
Pick

Structure

 
Since everything is a process in Pi calculus, detailed 

semantics of BPEL will all be formally captured as Pi 
processes in the next sub-sections. Consequently, the 
composition of these Pi processes forms the 
specification of the BPEL application (e.g. the one in 
4.3) that is composed by these elements. 
 
3.2. Formalizing BPEL Activity Constructs 
3.2.1. Variable 

BPEL contains program variables which are 
assigned with values. Here the semantics of a program 
variable holding a value of x can be defined as 
a ’storage location’ by a storage register as follows: 

Variable(x) = Reg(x) 
Reg(x) = put(y).Reg(y) + get’<x>.Reg(x) 
The above formalization means that the stored value 

x of the variable can be read from the storage location 
via action get’<x>, and a new value y can be written 
into the location via put(y). 



3.2.2. Basic Semantics of BPEL Activity Constructs 
The basic activities of BPEL (Receive, Reply, Invoke, 

Assign, Empty) define how message communication, 
service invocation and variable assignment are done. 
The basic formalization of these activities is in the 
following. More complex semantics like message 
correlation, global termination, etc are addressed laler. 
Receive(start, γ, put, done) = start.γ(v).put’<v>.done’ 
Reply(start,get, γ ,done)=start.get(v).γ’<v>.done’ 
Invoke(start,get, γ ,put, done) =  

start.get(v). γ’ <v>.γ(w).put’ <w>.done’ 
Assign(start,get,put,done) =  

new c (start.get(v).c’ <v> | c(x).put’ <x>.done’) 
Empty(start,done) = start.done’  

‘link name’, ‘partner name’ and ‘operation name’ 
are three elements in BPEL activities and they often 
appear at the same time. Therefore, here they are 
denoted as a unified name ‘γ’. The parterLinks and data 
sharing in these BPEL activities are mapped to the input 
and output prefixes of ‘γ’, ‘get’, ‘put’. In addition, two 
special names ‘start’ and ‘done’ are used to indicate 
common internal communications in a BPEL process. 
 
3.2.3 Message Correlation in BPEL Activities 

Typically, multiple conversations exist in multiparty 
business interactions. BPEL uses correlation sets to 
identify different conversation and route messages to 
the correct service instance. Each participant process in 
a correlated message exchange can serve either as an 
initiator or as a follower of the exchange. The initiator 
is responsible for initiating the value of the correlation 
set, which can be thought of as an alias for the identity 
of the business process instance. To implement this 
feature, the “alias for the identity of the business 
process instance” can be represented by a restricted 
name in Pi calculus. It is the initiator’s responsibility to 
receive and store this restricted name in correlation set 
so that the follower can use it as a private channel to 
communicate with the correct process of service 
instance. Take asynchronized message exchange as an 
example, the correlation semantics can be further 
encoded into the Receive / Reply activity in 3.2.2 as: 
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The CorrelationSet is implemented as a variable. Reply 
will use the identity initiated by Receive as a private 
channel to guard the sending of v to a correct service. 
 
3.2.4 Global Termination of Activity 

In BPEL, activity instance is interrupted and forced 
to terminate if a terminate activity or a fault is reached. 
To implement this, three steps can be followed. First, a 
private termination channel represented by a restricted 
name (term) should be added to each activity. Each 
activity registers its private term channel once it is 
instantiated and listens to this channel for receiving the 

termination (term) of its execution. Secondly, an 
InstanceManager (InstMgr) is implemented to record 
the term channels of each activity. The register (reg) 
and remove (rm) channel is used for the registration of 
removal of the term channels and head channel (h) is 
used to retrieve the first term channel stored in the 
manager. Note that in our real implementation, a max 
number of the term channel must be set to control the 
size of the InstMgr to make its behavior remain finite. 
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Thirdly, the termination activity should recursively 
retrieve the term channels from InstMgr and force the 
termination of each instantiated activity. 

=
f h chan chan term term start Termination t
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3.3 Formalizing BPEL Structure Constructs 
3.3.1 Basic Semantics of BPEL Structure Constructs 

BPEL Structures imply different control relations 
(e.g. sequence, choice, etc) between BPEL activities. 
Define function fn(P) to be the set of all free names in a 
Pi Calculus process identified by P; denote also startP 
to be the start name of P (see 3.2.2). Consequently, the 
basic semantics of the five structures are defined as: 
Seq (fn(P),fn(Q)) =  new startq ({startq/done}P | Q) 
Switch(b1,fn(P),b2,fn(Q)) =  

[b1]P + [¬ b1 ∧ b2]Q + [¬ b1 ∧ ¬ b2] Empty 
While(b,fn(P))=[b]( Seq(fn(P),fn(While)) + [¬b]Empty 
Pick (γ1, fn(P1), γ2, fn(P2), put)= 

(new c(γ1 (v).put’ <v>.c’|c.P1)) + 
(new c(γ2 (v’).put’ <v’>.c’| c.P2))  

Flow (fn(P),fn(Q),done) = 
new ack ((new done1{ done1/done}P | done1.ack’)| 
(new done2 {done2/done}Q|done2.ack’)|ack.ack.done’) 
In the formalization, {start/done} is a substitution in 

Pi calculus, which means that name done is replaced by 
start so that an internal interaction can be formed 
between P and Q. Note the above Switch implies that 
when several branching conditions hold at the same 
time, the branches are taken in the order in which they 
appear, which follows exactly the semantics of BPEL. 

 
3.3.2 Synchronizing with Links 

The synchronization dependencies between activities 
are expressed by link in BPEL. Activity with incoming 
links will not start until the following three conditions 
are satisfied: (1) Its preceding activity is completed; (2) 
The status of all its incoming links has been determined, 
e.g., by bpws:getLinkStatus function; (3) The join 
condition of the activity is true, otherwise a standard 
joinfailure is thrown. Let BPELAct represent any 



activity formalized in 3.2.2, and let Links be all links 
that targets to this activity, the feature is formalized as. 
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Here donein indicates the proper termination of the 
source activity of the link, donepreceding indicates the 
proper termination of preceding activity (if there is any, 
or otherwise it is simply removed). Note when a death-
path is detected (e.g. if a branch in a Switch is not 
selected), the above formalization also captures the 
propagation of negative tokens (neglink) through the 
outgoing links of an activity which conforms to the 
BPEL specification of links. This ensures that the 
execution of activities in a death-path is eliminated. The 
implementation of Throw can be referred in 3.4.1. 
 
3.3.3 Manipulation of Timeout 

The Pick activity is used to block and wait for the 
arrival of a suitable message or a timeout alarm to go 
off. Since the semantics of picking a suitable message is 
specified in the previous section, the manipulation of 
timeout alarm in Pick activity is addressed here. In the 
following formalism, starttimer is used to trigger the 
evaluation of deadline conditions by a proper timer. 
The omitted part ‘…’ is the corresponding formalism of 
Pick in 3.3.1. An extra timeout input is added to listen 
to the competition for the arrival of a timeout event. 
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To simulate the observation of time with Pi calculus, 
the following pseudo-implementation of a Timer is 
provided. Here wait indicates the elapse of a default 
unit of time if the deadline expression is evaluated to be 
false, otherwise a timeout will be sent out immediately. 
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( | ( , , ))

imer starttimer deadline timeout eval new wait
starttimer deadline timeout
Timer TimeEval deadline timeout eval
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To better specify the real time aspects in BPEL, a 
timed version of Pi calculus [18] can also be used instead.  

 
3.4 Formalizing BPEL Scope Constructs 
3.4.1 Fault Handling and Compensation 

Fault handling and compensation is an important 
issue in BPEL. However, its implementation in BPEL 
can be complex since it involves the concept of scope 
(refer to 3.4.2) in related to fault / compensation 
handlers. Take the fault handlers specified within an 
Invoke construct as an example. Since the fault / 
compensation handlers specified within a scope do not 
change dynamically, the names for all fault / 

compensation handlers within a scope can thus be pre-
defined and stored in vectors (FHandlers and 
Chandlers). Therefore the feature of fault handling and 
compensation in BPEL is formalized in the following. 
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In the above, the fault type (ftype) of type1, … typen 
can be caught during the execution of Invoke and 
corresponding BPELAct will be launched. If the fault 
handler for a fault is missed (e.g. for types other than 
type1, … typen), two things will happen. One is that the 
fault handler will rethrow this fault to the next 
enclosing parent scope through fready channel; the 
other is that it will try to invoke all compensation 
handlers for immediately enclosed scope. Note that in 
the process of FaultHandling, the output of compensate 
channel is in a sequential order such that it is possible 
for the invocation of compensation handlers to be in the 
reverse order of completion of the corresponding 
scopes [1]. Such formalization can be further combined 
with the one in 3.2.4 to implement the global 
termination feature in fault handling and compensation. 

A Throw is responsible for the generation of a fault 
event and can be simply formalized as below. 

= < >

( , ) . (

  | . )   (

.
)CursSope

BPELAct

BPELAct

CompHandler done compensate done compensate new done

BPELAct done CompHandler compensate CHandler

=

∈

 
A Compensationhandler (CompHandler) is available 

for invocation only when its scope is completed 
normally. It can be invoked either explicitly by 
corresponding compensate activity or implicitly by the 
behavior of the implicit fault handler created by BPEL 
(which is the case of the above implementation). 
Therefore, the formalization of compensation handler is: 

 uuuuuuuuuuuur

The action done is generated by the activity in the 
corresponding scope (in this case, it is the immediately 
enclosed scope of Invoke and we named it CurScope) 
and its reception in CompHandler indicates the normal 
completion of the scope. The BPELAct in the process of 
FaultHandling and CompHandler is the actual activity 
that is specified in the corresponding fault handler or 
compensation handler. The effective scope (in the next 
section) is extremely important in implementing the 
error handling feature of BPEL and must be correctly 
modeled when composing the Throw, FaultHandling 
and CompHandler by restricting free names (e.g. fault, 
names in CHandler and FHandler) in these processes. 

 
3.4.2 Formalizing Scope in BPEL 

In BPEL, scope is used to define an effective range 
of the usage of variables, compensation / fault handlers 
and other activities. Considering all these BPEL 
constructs can be related to an effective scope, we 



collect their free names in a scope with a predefined 
function, GetNames(s), where s is the scope. Hence the 
restriction operator ‘new’ us used to restrict the access 
to these elements according to their effective scope. 

uuu r
Scope ( res ) =new GetNames(s) (P1 | P2 | …| Pn) tnames

uuuuuuu

restnames

where Pi (i=1,…,n) can be a Pi process for any 
activity, structure, or scope constructs defined in this 
paper, and 

uuu
 is defined as a free name set of  

uuuuuuur

(fn(P1)∪fn(P2)∪……∪fn( Pn))/GetNames(s) 
 
4. Model Checking BPEL Processes 

In this section, our above formalizations will be 
validated first with model checking to ensure that they 
do not violate the semantics of BPEL 1.1 specification, 
and important algebraic laws are well-preserved. Based 
on the validation, we can thus continue to use model 
checking to verify a BPEL application against ad-hoc 
user desired properties to ensure its reliability. 

 
4.1 Correctness Validation of BPEL Formalization 

It is critical to prove that the formalization in section 
3 conform exactly to the semantics of BPEL in order to 
raise the confidence in their correctness. To do that, 
BPEL specifications can be hand coded as logical 
formulae and model checking is applied with our OPAL 
toolkit to check the previous formalizations against 
BPEL specification. Although it is difficult (if not 
impossible) to strictly prove the completeness of the 
correctness checking, model checking with its tool 
support does provide an effective way to verify any 
correctness criterion that one has in his / her mind. 

With the size limitation, an important entry in the 
BPEL specification, "Synchronizing with links" in 3.3.2, 
is chosen as the example. There are two important 
aspects in validating the formalization of "links". One is 
“synchronization”, which means the three conditions in 
3.2.2 must be satisfied before an activity with incoming 
links can start; the other is “propagation”, which is used 
to model Death-Path-Elimination in BPEL. To apply 
OPAL for the validation, the above semantics are 
specified with temporal logics of LTL [4] or CTL [4]. 

First we check the reachability of the BPELAct: Note 
neglink, evalJoin are names in the formalism of 3.2.2. 
G ! neglink -> F evalJoin  /* LTL Spec 1 

It means that when negative links never happen, the 
action for evaluating join conditions (evalJoin) will 
eventually be executed in our formalization of link. In 
turn, if the evaluated result (t is received after evalJoin) 
is true, the corresponding BPELAct can be started. 

Second, we check the “synchronization” semantics: 
!E [ (!donepreceding | !donein1 | ... | !doneinn) U evalJoin]
    /* CTL Spec 2 

It ensures that there is no computation path in the 
formalization in which before the possible execution of 
evalJoin, a "done" action has never been executed. 

Last, we check the “propagation” semantics: 
AG ( neglinkin -> AF neglinkout )   /* CTL Spec 3 

This shows that whenever a negative link NL is 
evaluated, it will be propagated to all outgoing links of 
the activity whose incoming links contain NL. 

The validation procedure is simple and automatic. 
OPAL takes both the BPEL script (which in this case is 
a single link construct) and the above formulae in LTL 
and CTL as inputs. With the result of 3.3.2, OPAL is 
able to automatically transform the link construct into 
Pi formalization. After this step is done, OPAL detects 
that there are no deadlocks and redundant actions in the 
formalization by itself. Meanwhile it also enables the 
integration of different model checkers for model 
checking LTL/CTL on the link construct. For example, 
in our current implementation, a NuSMV2 adapter is 
available in OPAL so that OPAL can automatically 
transform the above two inputs to the language of 
NuSMV2 [17] and invoke the validation on the engine. 
With this capability, the validation result shows that our 
formalization satisfies all of the above three formulae 
(all verified to be true by NuSMV2). More detailed 
application scenarios of OPAL can be found in the 
following sections where OPAL will also be used for 
the verification and structural analysis of BPEL models. 
 
4.2 Property Preservation in BPEL Formalization 

Aside from the validation, interesting laws are also 
given in this section to show that common algebraic 
properties are satisfied in our formalization. These laws 
are deduced based on the weak bi-simulation (denoted 
as '~'), which is a useful approach to show the 
equivalence between different Pi calculus processes. 
The identified laws (in 4 groups) are listed below. 
Group 1: showing permutation laws are well-preserved 
[Law 1]  Sequence(fn(P),Sequence(fn(Q), fn(R))) ∼  

Sequence(Sequence(fn(P), fn(Q)), fn(R)) 
[Law 2]  Flow(fn(P), fn(Q)) ∼ Flow(fn(Q), fn(P)) 
[Law 3]  Flow(fn(P), Flow(fn(Q), fn(R))) ∼  

Flow(Flow(fn(P), fn(Q)), fn(R)) 
Group 2: showing associative laws are well-preserved 
[Law 4]  Sequence(fn(Switch(b, fn(P),¬b, fn(Q))),fn(R))  

~ Switch(b, fn(Sequence(fn(P),fn(R))), 
¬b, fn(Sequence(fn(Q),fn(R)))) 

[Law 5] Flow(fn(Switch(b, fn(P),¬b,fn(Q))), fn(R),done)  
~ Switch(b, fn(Flow(fn(P), fn(R))), 

¬b ,fn(Flow(fn(Q), fn(R),done))) 
Group 3: branches in Switch are taken in the order in 
which they appear, and only one branch is taken 
[Law 6] Switch(b1 , fn(P), b2 , fn(Q)) ~  

Switch(b2 ,fn(Q), b1 , fn(P)),  
if b1 and b2 does not hold at the same time 

[Law 7]  Switch(b1 , fn(P), b2 , fn(Q)) ~ P 
if b1 and b2 hold at the same time 

[Law 8]  Switch(b , fn(P), ¬b, fn(Q)) ~ P 
Group 4: showing the property of Empty 
[Law 9]   Sequence(EmptyAct, fn(P)) ~ P 
[Law 10]  Flow(EmptyAct, fn(P)) ~ P 

Here we only give the formal proof of Law 1 and 9 
as examples. Other proofs are omitted here since they 
have strong similarity with these example proofs. 
Proof 1:    
RHS = new s1 ({s1/done} new s ({s/done}P | s.Q) | s1.R) 

= new s1 (new  s ({s/done}P | { s1/done} s.Q)| s1.R)) 
= new s1 s ({s/done}P | { s1/done}start.Q) | s1.R)     



/* structural congruence of Pi calculus 
LHS = new s( {s/done}P | s. new s1 ({s1/done}Q| s1.R))  

 = new s1 s  ({s'/done}P | s1.({s/done]Q | s.R))      
 /* structural congruence of Pi calculus 

RHS ~ LHS ⇒ Law 1 holds.    
Proof 9:  
LHS = new s ({s/done} Empty | P)     

 = new s (start.s’.0 | P) /* Def. of EmptyAct 
 ~ P           /* the start name of P is ‘s’; 

RHS ~ LHS ⇒ Law 9 holds.    
 
4.3 Verification Scenario of BPEL Process 

To truly ensure the reliability of e-business 
applications, we further verify specific BPEL models 
against ad-hoc business requirement from user. Recall 
the banking example mentioned in the introduction, its 
realistic BPEL implementation is illustrated in figure 2 
(though in the current implementation of OPAL, BPEL 
Designer [16] is the integrated BPEL modeler, figure 2 
still illustrates our application in a general graphical 
form to make it independent of specific BPEL model 
designer). Though the size of the model is moderate, it 
contains most BPEL constructs including: sequence 
(dashed arcs), link (arcs), flow (rounded rectangle), 
switch (dashed rectangle), basic activity (rectangle), 
variable (column with mid-arrows) and compensation 
(octagon). The Pi calculus semantics for this complete 
banking BPEL process can be directly got by the 
composition of corresponding formalization of the 
model elements based on the results in section 3. 
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Fig. 2. BPEL Process Example – Account Opening. 
The BPEL model represents the operation process of 

opening an account for specific customers. However, 
before actually implementing the application, it is 
necessary to ensure that the design of the BPEL model 
satisfies specific requirements of the process owner. Let 
us recall the requirement mentioned in the introduction: 
Strong Security Protocol: An account can only be 
opened after detailed information of the customer is 
retrieved and his / her identity is successfully verified. 

To verify the application against this requirement, 
first the BPEL model is automatically formalized by 
OPAL based on section 3. OPAL then translates the Pi 
formalizations into a state transition system based on its 
early operational semantics during which no deadlocks 
or unreachable activities in the process are found. The 
translated transition system contains totally 4498 
reachable state, based on which OPAL will further 
symbolically merge the states that are associated with 
undistinguishable processes in order to reduce the state 
space. This step takes 3 seconds and the final transition 
system contains 1912 states and 4758 transitions. On 

the other hand, the requirement can be interpreted in the 
following basic set of LTL/CTL formulae: 
G (! faultselect) -> G ( RetrieveFullCustomerDtl ->  

F VerifyCustomerIdentity )   /* LTL Spec 1  
! E [ (! RetrieveFullCustomerDtl | 

 ! VerifyCustomerIdentity) U OpenAccount] 
/* CTL Spec 2 

With NuSMV2, the verification of the two formulae 
by OPAL takes 28 seconds. Results show the model 
successfully follows the first specification, indicating if 
exceptions in activity SelectService is not considered (G 
(! faultselect)), then whenever the customer detail is 
retrieved, his identity will be verified. But the model 
fails the second one. Counter example shows that there 
is a possible execution path on which the customer 
identity has not been verified when the account is 
opened. Thus a pitfall in the BPEL design is found that 
may lead to violation of the requirement. Some 
snapshots for OPAL toolkit can also be found in [19]. 

However, the reality is that checking a customer’s 
identity is time consuming and in many cases, people in 
charge of the identity checking and the account opening 
works in different department. Therefore, restricting the 
account opening strictly after his identity checking may 
result in an inefficient operational process. The above 
strong security requirements should thus be relaxed. 
Weak Security Protocol: An account can only be 
opened after detailed information of the customer is 
retrieved. In the case when his / her identity is not 
successfully verified, the corresponding opened account 
must be closed as compensation. 

Similarly, the above requirement is interpreted into 
the following set of LTL/CTL formulae: 
G ! (faultselect | joinfailure) ->  

G (RetrieveFullCustomerDtl ->  
(F VerifyCustomerIdentity & F OpenAccount))   

    /* LTL Spec 3  
!E [ (! RetrieveFullCustomerDtl) U OpenAccount]  
    /* CTL Spec 4 
!E [ (!OpenAccount) U CloseAccount]    
    /* CTL Spec 5 
G (! joinfailure) -> G ( verificationfailed ->  

F CloseAccount)   /* LTL Spec 6  
Specification 4 is a relaxation of specification 2 

(since now VerifyCustomerIdentity does not need to 
execute strictly before OpenAccount). Specification 5 
and 6 express the compensation requirement: if failures 
in the evaluation of join conditions in links are not 
considered (G (! joinfailure)), the identity verification 
failure will lead to the closing of an opened account. 
“verificationfailed” here is the name used to indicate a 
branch in the Switch structure. It took OPAL up to 62 
seconds to finish verifying the four formulae. The 
results show that although the BPEL process model 
fails to follow the strong security protocol, it does 
satisfy the weak version of the security requirement. 
 
5. BPEL Process Restructure 

Now that a BPEL model is verified, this section 
addresses the further issue of “how to equivalently and 



correctly restructure a BPEL model to potentially 
enhance its performance?”. In this section, equivalence 
relation is defined with Pi calculus based on which 
important laws for BPEL structures are discovered. 
Restructure algorithm is then implemented in OPAL to 
support the automatic restructure of BPEL models. 
 
5.1 State Equivalence and Restructure Rules 

Common strong/weak bisimulation in Pi calculus 
orders strict (observable) behavior equivalence between 
two systems. However, in business domain it is too 
ideal to ask two processes to be exactly the same to 
qualify their equivalence. E.g., in the above account 
opening application, two BPEL models can be regarded 
as equivalent if their execution results in both the 
insertion of a correct customer record in the variable of 
“CustomerInfo” and a correct account record in 
“AccountInfo”. More specifically, two e-business 
processes can often be regarded as equivalent if they 
run the same business task and generate the same result. 
Denote PUT(P) and GET(P) to be the set of name 
parameters of put(v) and get(v) in Pi process P; denote 
→* to be multiple transitions fired by any action. 
Therefore, the following state equivalence relation of 
two BPEL models is defined with Pi calculus: 
Definition 1: A process P can terminate with 
environment Env, if: (P | Env) →*  done’ | Env'. 
Definition 2: Suppose V is a set of variables defined in 
BPEL, P1 and P2 are two processes. Then P1 and P2 
are state equivalent on variable V in Env, denoted as P1 
≈s,v,Env P2, if: (1) P1 | V | Env →* done’ | V* | Env* and 
P2 | V | Env →*done’ | V** | Env** ; (2) V*= V**. 

Definition 2 specifies that two BPEL models are 
state equivalent, if they can terminate in the same 
environment and result in the same set of variables. As 
syntax sugar, denote P;Q and P||Q as abbreviation for 
Seq(fn(P),fn(Q)) and Flow(fn(P),fn(Q),done) in section 
3.3; The relaxation of state equivalence can lead to the 
following interesting results. 
Property 1: (P1;P2) | Env →* done’ | Env*, iff P1 | 
Env →* done’| Env** and P2 | Env** →* done’ | Env*. 
Law 5.1: P1;P2 ≈s,v,Env P2;P1 is satisfied if PUT(P1) ∩ 
GET(P2) = ∅ ∧ PUT(P2) ∩ GET(P1)= ∅ ∧ PUT(P1) 
∩ PUT(P2)= ∅, where P1;P2 can terminate with (V | 
Env) and PUT(Pj) / GET(Pj) are previously defined. 
Proof: From the side condition, we know only P1 or P2 
can exclusively change the values of V. As P1;P2 can 
terminate with (V|Env), from Property 1 we have P1 | V 
| Env →* done’ | V** | Env** and P2 | V** | Env** 
→* done’ | V* | Env*. Besides from the side condition, 
we have V=V** or V**=V*. Consequently, P2;P1 | V | 
Env →* done’ | V* | Env**' as well. Therefore, based 
on state equivalence, we have (P1;P2 ) ≈s,v,Env (P2;P1)  

Law 5.1 actually means that for two basic BPEL 
activities P1 and P2 in section 3.2.2, their sequential 
execution in Seq and parallel execution in Flow is not 
distinguished by state equivalence. In another word, 
when comparing two BPEL models by whether they 
run the same business tasks and generate the same 
results, sequential execution of activities can be 

equivalently replaced by a parallel execution. Therefore, 
it is possible to dig out more concurrencies in a process 
to more efficiently run those activities whose execution 
may otherwise be unnecessarily guarded. This 
important law makes us keep conducting the following 
state equivalent rules for transforming BPEL models. 
Rule 1: P1;P2 ≈s P1 || P_2  if PUT(P1) ∩GET(P2) = ∅ 
∧ PUT(P2) ∩GET(P1)= ∅ ∧ PUT(P1) ∩PUT(P2)= ∅. 
Rule2.1: (P1||P2);P3≈s(P1;P3)||P2 if PUT(P3)∩ 
GET(P2)=∅ ∧ PUT(P2)∩GET(P3)= ∅ ∧ 
PUT(P3)∩PUT(P2)= ∅. 
Rule2.2: (P1||P2);P3≈sP1||(P2;P3) if PUT(P3)∩ 
GET(P1) = ∅ ∧ PUT(P1)∩GET(P3)= ∅ ∧ 
PUT(P3)∩PUT(P1)= ∅. 
Rule 3: (P1;(P2||P3) ≈s (P1;P2)||P3 if PUT(P3)∩ 
GET(P1) = ∅ ∧ PUT(P1) ∩GET(P3)= ∅ ∧ PUT(P3) 
∩PUT(P1)= ∅. 

These rules can be recursively applied to different 
sequential structures in BPEL model for discovering 
hidden concurrencies. Restructuring result of a BPEL 
model based on these rules can be ensured to be state 
equivalent to the original one. Besides by combining 
model checking, we can also further impose property 
preservation constraints on the resulted process. 

 
5.2 Restructuring Algorithm and Its Application 

A restructuring algorithm (as shown in figure 3) is 
thus implemented in OPAL to (semi)automatically 
apply the above rules to restructure BPEL models.  
Input: P1;P2;P3; …;Pn;NULL which are stored in variable 
str (NULL represents the terminator)
Initial: cp and np denotes the current pointer and new 
element pointer initially to be 1 and 0, respectively (pointing 
to the position where activity P2 and P1 is located); str is a 
data structure to store the current sequential BPEL process 
structure; c is an upper bound for retry times; props is a set 
of pre-define
satisfy.
Procedure: 
For (i=0; i < c;
   repeat
      case: np an
         if (satis
            apply 
            np poi
         else     
      case: np 
         if (satis
            apply 
            if (np 
         else   np
       case: np d
          if (satis
            apply 
            call Tra
                       
            if (np
          else if (s
            apply 
            call Tra

     
    i

           else   
   until (cp=
   if (Check(P1

/*M
   Report Succ
End For

d properties that the input BPEL process must 

Transp(np, cp, str, c, props)
 i++)

d cp both point to basic activities
fyRule1)   
Rule 1, update str; 
nts the new element;   cp = np + 1;

     np = cp;  cp = cp + 1;
does not point to a basic activity AND cp < np
fyRule3) 
Rule 3, update str; np points the new element;
!= 1)  cp = np - 1;  else  cp = np + 1;
 = cp;  cp = cp + 1;
oes not point to a basic activity AND cp > np

fyRule2.2)  
Rule2.2, update str; np points the new element;

nsp(pointer right to np, pointer right to np+1, 
        right structure of str, c, props);

!=1)  cp = np - 1;  else cp = np + 1;
atisfyRule2.1)

Rule2.1, update str; np points the new element;
nsp(pointer left to np, pointer left to np+1, 

          left structure str, c, props);
f (np!=1) cp = np - 1; else cp = np + 1;

np = cp;  cp = cp + 1;
NULL)

;P2;P3; …;Pn, props) = true)
odel checking if the model still satisfies props

ess; Terminate;
 

Fig. 3. Restructuring Algorithm in OPAL. 



The idea of the algorithm is concluded as follows. 
First the BPEL model is traversed by its basic activities. 
Each activity and its predecessors are matched with the 
previous rules for potential transformations. After the 
traverse is over, model checking is then applied to 
verify that the restructured model satisfies the pre-
defined set of property specifications (if there is any). If 
the verification fails, the rule matching process is 
retried until a retry upper bound is reached.  

To illustrate the application of the algorithm, let us 
revisit the BPEL model in 4.3. In this model, the core 
business operations of account opening and customer 
identity verification cannot start until the open account 
proposal is prepared. Meanwhile, this preparation can 
only start after the first flow structure is completed. 
This makes the PrepareOpenAccProposal activity a 
potential bottleneck in the process and lead to a low 
utility of resources (people who prepares the proposal). 
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Fig. 4. Restructured Result with OPAL. 

Figure 4 shows the restructure result of OPAL based 
on the algorithm, in which PrepareOpenAccProposal is 
now concurrently executed with RetainCustomerInfo. 
The result is not only state equivalent to the model in 
figure 2 (because PrepareOpenAccProposal has no 
incoming links and does not share variable with other 
activity), but also preserves the weak security protocol 
in section 4.3. However, a problem here is that updating 
a sequential process to a parallel one may not definitely 
lead to performance improvement since the execution 
logic of a business process is also determined by other 
factors like data dependency, policies, etc. Therefore, it 
must be clear that the result of the algorithm is only a 
guide for possible restructuring. Business consultants 
can manually adjust the restructured results based on 
the synergy of multiple factors. 
 
6. Conclusion 

The contribution of this paper includes three parts. 
First, the semantics of BPEL is fully formalized with Pi 
calculus. It is proved that algebraic laws and important 
properties abstracted from BPEL 1.1 specification are 
also well preserved in the formalization. Second, it is 
shown how model checking is applied for the automatic 
validation and verification of BPEL models with our 
OPAL toolkit. The verification result of a concrete 
BPEL model explains that the formalization of BPEL 
with Pi calculus has realistic values. Thirdly, based on 
the definition of state equivalence for Pi calculus, 
transformation rules are conducted to restructure a 
BPEL process such that the resulted process satisfies 
the same set of property specifications and fulfills the 
same business goals as the original one. But meanwhile 

it can potentially gain better performance. A restructure 
algorithm is implemented based on these rules in OPAL 
toolkit and tested on a concrete BPEL model. It 
illustrates that the combination of equivalence analysis 
of Pi calculus processes and the model checking is 
valuable in solving real business problems. 
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