
RC23962 (C0605-012) May 22, 2006
Computer Science

IBM Research Report

Formalization, Verification and Restructuring of BPEL
Models with Pi Calculus and Model Checking

Ke Xu1,2, Ying Liu2, Geguang Pu2

1Department of Automation
Tsinghua University

Beijing, China 100084

2IBM Research Division
China Research Laboratory

HaoHai Building, No. 7, 5th Street
ShangDi, Beijing 100085

China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

 .

Formalization, Verification and Restructuring of BPEL Models with Pi
Calculus and Model Checking

Ke Xu 2 1, Ying Liu 2, Geguang Pu 2

1 Department of Automation, Tsinghua University, Beijing China 100084
2 IBM China Research Laboratory, Beijing, China 100085

Abstract

BPEL (Business Process Executable Language for
Web Services) is an emerging standard for business
application integration and B2B processing based on
web services. As a popular specification for modeling
and implementing business processes, building reliable
and secure business application systems with BPEL
becomes an important issue. In this work, BPEL models
are automatically verified and analyzed with our Open
Process AnaLyzer (OPAL) toolkit by formally capturing
BPEL’s semantics in Pi Calculus. The contribution of
the work can be concluded in four points. First, the
semantics of BPEL is fully formalized with Pi calculus;
Second, the soundness of the formalization is validated
and important properties are proved to be preserved in
the formalization. Third, a concrete scenario is
illustrated to show how model checking is applied to
verify the reliability of BPEL model designs. Last,
equivalence analysis in Pi calculus and model checking
are combined to implement restructuring algorithms by
which a BPEL model can be restructured for
performance enhancement with OPAL.

1. Introduction

BPEL [1] is a de facto standard for business
application integration and business-to-business
processing based on web services. As a language for
modeling both executable and abstract e-business
processes, the effective design of e-business
applications based on BPEL is a serious issue for the
avoidance of unexpected behaviors and errors in e-
business systems. Such a motivation comes from two
aspects: (1) How to ensure the design of a BPEL model
conforms to specific business constraints? Major
business integration systems including Websphere
Business Integrator of IBM support the direct
transformation from a business conceptual model to a
BPEL model as its implementation. It is thus important
to verify that such a transformation is error-free, in that
the resulting BPEL model captures all business
requirements in the conceptual model without loss of
information; (2) How to ensure the design of a BPEL
model is semantically correct and reasonable in order to
implement a reliable e-business application? Moreover,
since adjusting process structures is a common behavior
for business / IT consultants to improve the
performance of a process design, how is it possible to
instruct such adjustment through model analysis?

In fact, the urgent need for the solution of these
problems in e-business world has already been

recognized in [2] and [3]. In reliability-critical business
domains like banking, it is critical that its core
businesses must follow all business regulations and
legal compliances in the industry. For example, a bank
should comply with: “An account can only be opened
after detailed information of the customer is retrieved
and his / her identity is successfully verified” in order to
prevent financial frauds. This fictional requirement is
made based on the financial institution of U.S. Patriot
Act (Sect 326). Without ensuring the requirement, not
only the bank is vulnerable to economic losses, but also
the business operation itself is illegal. We will provide
this e-business model in detail with BPEL in section 4.3,
and show how this model is verified and analyzed to
avoid the violation of the above requirement.

The purpose of this paper is to address the previous
two issues. We study the application of model checking
[4] to automatically reason about the behavior of BPEL
models with our Open Process AnaLyzer (OPAL) [5]
toolkit. Critical issues in verifying BPEL models are
addressed. Firstly, the semantics of BPEL is fully
formalized with Pi Calculus [6]; secondly, algebraic
properties and specific features in BPEL specification
[1] are proved to be preserved in our formalism; thirdly,
to reason about the reliability of BPEL models, it is
shown how model checking is exploited for the
automatic verification of BPEL models against desired
properties; fourthly, as a further step it is also studied
based on both equivalence analysis of Pi calculus and
model checking how a BPEL model can be equivalently
restructured to potentially gain a better performance.

The organization of the paper is as follows. Section
2 compares existing works on both BPEL formalization
and model checking tools. In section 3, the full
formalization of BPEL with Pi calculus is investigated.
Section 4 proves that important laws and properties are
well preserved in our formalism. Besides, we illustrate
how model checking is used to analyze BPEL models
with a concrete scenario. In section 5, transformation
rules are deduced to implement restructuring algorithms
that (semi-)automatically restructure a BPEL model.
Section 6 concludes the paper.

2. Related Work and OPAL Methodology

It is already a general idea that formal models are
necessary for complex Web Service Composition
Languages (WSCLs) like BPEL [7]. In [8], the abstract
operational semantics of BPEL is defined based on the
Abstract State Machine (ASM) paradigm. Andreas, et al
[9] translate BPEL into deterministic finite state

automata to support the matchmaking of state
dependent services. Farahbod, et al [10] formally define
the abstract executable semantics of BPEL based on
Distributed Abstract State Machine (DASM). In [11],
Petri-net is used to formalize BPEL constructs and
several properties including dead transitions are
checked. Our work differs from theirs in two aspects. (1)
Pi calculus is chosen as the formal foundation of BPEL.
Though BPEL is claimed to be based on Pi calculus, yet
little work “actually provides solid semantics and
analysis methods”[7]. As a process algebra with mobility
and compositionability, previous work has already
proved it a competent formal composition language for
web service composition [12]. This is why Pi calculus is
applied in this paper. (2) Our work goes beyond formal
BPEL formalization and validating the formalisms with
general properties like deadlocks. It investigates the
topics of semantic validation of our BPEL formalization,
temporal verification and also the restructuring of
BPEL models with a concrete application scenario.

As far as model checker for Pi calculus is concerned,
Mobility Workbench (MWB) [13] and HD-Automata
Laboratory (HAL) [14] are two important ones. Their
theoretical foundations, however, differ to each other in
significant ways. MWB analyzes Pi calculus processes
based on Dam’s proof system for model checking
mobile processes [15]. HAL, on the other hand,
transforms Pi calculus into an automata based on Pi
calculus’s early transition semantics. Its verification is
based on the integration of JACK model checker. Our
OPAL toolkit follows the latter methodology. Figure 1
shows an overview of its architecture.

2
1

3
4 5

Different Process
Modeling Languages

and Tools

Formalization Adapters Customized Properties

Pi Calculus
(with state operator)

BPSL Business
Patterns

LTL/CTL
SpecificationTransition System

Model Checker Adapters

Transformation
Rule
Base

Process Restructure

11
:: . | | ! | | | | (,...,) | 0
:: ' | () | :: [] | |

n

i

n

i ii
P P new x P P P Q P A y y

x y x y x y
π φ

π τ φ φ φ φ
=

=

= < > = = ∧ ¬
∑

Fig. 1. Architecture of OPAL Toolkit.

Different from HAL, OPAL focuses itself more on
the usability and scalability issue in order to make it
practical to introduce the rigid model checking into e-
business domain. It further addresses the following
business domain specific verification problems: (1) By
usability, OPAL supports the automatic formalization
of different business process models (including BPEL)
with Pi Calculus. It also enables the translation of Pi
calculus processes to finite state transition system,
during which deadlocks and redundant activities in a
process are detected. (2) Property specification is a
serious obstacle for applying model checking in e-
business domain [5] since common logical formulae are
too complex to use and understand. OPAL solves the
problem by providing a visualized Business Property
Specification Language (BPSL) [5], with intuitive

business property patterns. (3) By scalability, OPAL
provides an open integration environment for various
business process modelers including BPEL Designer [16],
WBI, etc (through formalization adapter) and different
model checkers like NuSMV [17] (through model
checker adapter). Separate topics including BPSL and
OPAL are addressed in our separate work [5]. This paper
primarily focuses on the formalization, verification and
restructuring of BPEL models with OPAL.

3. Formalizing BPEL with Pi Calculus
3.1. An Overview of Pi Calculus and BPEL

The version of Pi-calculus used here is the polyadic
Pi calculus [6] with the allowance of negation “¬”. Its
syntax is summarized as follows.

The simplest entities of Pi calculus are names (in
lowercase) and processes (in uppercase). Processes can
evolve by performing actions. x’<y> is an output
action which sends name y via x and x(z) is an input
action which receives a name via x. In composition P|Q,
process P and Q proceeds independently and interacts
via shared names. A sum π1.P1 +…+ πn.Pn is a non-
deterministic choice of process execution. In
restriction (new x) P, the usage of name x is bounded
to P. Replication !P is an infinite composition P |P | ….
φP is a process that is guarded by a Boolean expression
φ for name matching. For example, [x=y]P means that
P can be performed if name x is the same with y.
A(y1,…, yn) is a parameterized process identifier, with
its parameters to be the free names of the process.

On the other hand, BPEL can be regarded as a
business workflow language designed for web services.
A complete list of relevant model elements in BPEL is
presented in the following.

Correlation
Termination

Empty
Activity

Scope
Throw

FaultHandler
Compensation

Scope

Assign
Invoke
Reply

Receive
Activity

While
Switch

Sequence
Structure

Link
Flow
Pick

Structure

Since everything is a process in Pi calculus, detailed

semantics of BPEL will all be formally captured as Pi
processes in the next sub-sections. Consequently, the
composition of these Pi processes forms the
specification of the BPEL application (e.g. the one in
4.3) that is composed by these elements.

3.2. Formalizing BPEL Activity Constructs
3.2.1. Variable

BPEL contains program variables which are
assigned with values. Here the semantics of a program
variable holding a value of x can be defined as
a ’storage location’ by a storage register as follows:

Variable(x) = Reg(x)
Reg(x) = put(y).Reg(y) + get’<x>.Reg(x)
The above formalization means that the stored value

x of the variable can be read from the storage location
via action get’<x>, and a new value y can be written
into the location via put(y).

3.2.2. Basic Semantics of BPEL Activity Constructs
The basic activities of BPEL (Receive, Reply, Invoke,

Assign, Empty) define how message communication,
service invocation and variable assignment are done.
The basic formalization of these activities is in the
following. More complex semantics like message
correlation, global termination, etc are addressed laler.
Receive(start, γ, put, done) = start.γ(v).put’<v>.done’
Reply(start,get, γ ,done)=start.get(v).γ’<v>.done’
Invoke(start,get, γ ,put, done) =

start.get(v). γ’ <v>.γ(w).put’ <w>.done’
Assign(start,get,put,done) =

new c (start.get(v).c’ <v> | c(x).put’ <x>.done’)
Empty(start,done) = start.done’

‘link name’, ‘partner name’ and ‘operation name’
are three elements in BPEL activities and they often
appear at the same time. Therefore, here they are
denoted as a unified name ‘γ’. The parterLinks and data
sharing in these BPEL activities are mapped to the input
and output prefixes of ‘γ’, ‘get’, ‘put’. In addition, two
special names ‘start’ and ‘done’ are used to indicate
common internal communications in a BPEL process.

3.2.3 Message Correlation in BPEL Activities

Typically, multiple conversations exist in multiparty
business interactions. BPEL uses correlation sets to
identify different conversation and route messages to
the correct service instance. Each participant process in
a correlated message exchange can serve either as an
initiator or as a follower of the exchange. The initiator
is responsible for initiating the value of the correlation
set, which can be thought of as an alias for the identity
of the business process instance. To implement this
feature, the “alias for the identity of the business
process instance” can be represented by a restricted
name in Pi calculus. It is the initiator’s responsibility to
receive and store this restricted name in correlation set
so that the follower can use it as a private channel to
communicate with the correct process of service
instance. Take asynchronized message exchange as an
example, the correlation semantics can be further
encoded into the Receive / Reply activity in 3.2.2 as:

(, , ,) . (,). (
 ' . ' | ' . ' | . . ')

(, , ,) . ().
' . (). '. ' . '

(

newReceive start put done start v identity ack
put v ack init identity ack ack ack done

Reply start get done start get v new chan
retr chan chan identity identity v done

γ γ

γ
γ

=
< > < >

=
< > < >)

(, ,) (). '
(). (, ,)

CorrelationSet identity init retr retr chan chan identity
init identity CorrelationSet identity init retr

= < >
+

0 1

1 1

(, , ,) ().
 (, , , ,)
 (,). '.

(,
 (n

InstMgr reg rm empty h reg term
InstMgr reg rm empty h term
empty t f t

InstMgr reg rm
InstMgr reg

+

=
+

1 (
 (,). '
 '

InstMgr reg
empty t f f
chan term< >

InstMgr InstM

(, ,) (. ' , .
(. ' . (). ' .(' |) .0))

Termination start empty h new chan t f start empty t f

The CorrelationSet is implemented as a variable. Reply
will use the identity initiated by Receive as a private
channel to guard the sending of v to a correct service.

3.2.4 Global Termination of Activity

In BPEL, activity instance is interrupted and forced
to terminate if a terminate activity or a fault is reached.
To implement this, three steps can be followed. First, a
private termination channel represented by a restricted
name (term) should be added to each activity. Each
activity registers its private term channel once it is
instantiated and listens to this channel for receiving the

termination (term) of its execution. Secondly, an
InstanceManager (InstMgr) is implemented to record
the term channels of each activity. The register (reg)
and remove (rm) channel is used for the registration of
removal of the term channels and head channel (h) is
used to retrieve the first term channel stored in the
manager. Note that in our real implementation, a max
number of the term channel must be set to control the
size of the InstMgr to make its behavior remain finite.

0

1 1

1 1

(, , ,)
, , ,...,) (().
, , , , ,...,

n n nterm term term
term t

InstMgr reg rm empty h
h reg
rm empty h

+
=

1

1 1 1

1

1 1 2

) ().
, , , , ,..., ,..., ,)
. (, , , , ,...,) ().
. (, , , , ,..

n j

n j j n

n n

n

erm term
term term term term

term term

rm
rm empty h
InstMgr reg rm empty h h chan
InstMgr reg rm empty h term

+

− − +

−

+
+

+

0

.,)
1,1

nterm
gr n j n= ≥ ≤ ≤

Thirdly, the termination activity should recursively
retrieve the term channels from InstMgr and force the
termination of each instantiated activity.

=
f h chan chan term term start Termination t

< >
< > +

3.3 Formalizing BPEL Structure Constructs
3.3.1 Basic Semantics of BPEL Structure Constructs

BPEL Structures imply different control relations
(e.g. sequence, choice, etc) between BPEL activities.
Define function fn(P) to be the set of all free names in a
Pi Calculus process identified by P; denote also startP
to be the start name of P (see 3.2.2). Consequently, the
basic semantics of the five structures are defined as:
Seq (fn(P),fn(Q)) = new startq ({startq/done}P | Q)
Switch(b1,fn(P),b2,fn(Q)) =

[b1]P + [¬ b1 ∧ b2]Q + [¬ b1 ∧ ¬ b2] Empty
While(b,fn(P))=[b](Seq(fn(P),fn(While)) + [¬b]Empty
Pick (γ1, fn(P1), γ2, fn(P2), put)=

(new c(γ1 (v).put’ <v>.c’|c.P1)) +
(new c(γ2 (v’).put’ <v’>.c’| c.P2))

Flow (fn(P),fn(Q),done) =
new ack ((new done1{ done1/done}P | done1.ack’)|
(new done2 {done2/done}Q|done2.ack’)|ack.ack.done’)
In the formalization, {start/done} is a substitution in

Pi calculus, which means that name done is replaced by
start so that an internal interaction can be formed
between P and Q. Note the above Switch implies that
when several branching conditions hold at the same
time, the branches are taken in the order in which they
appear, which follows exactly the semantics of BPEL.

3.3.2 Synchronizing with Links

The synchronization dependencies between activities
are expressed by link in BPEL. Activity with incoming
links will not start until the following three conditions
are satisfied: (1) Its preceding activity is completed; (2)
The status of all its incoming links has been determined,
e.g., by bpws:getLinkStatus function; (3) The join
condition of the activity is true, otherwise a standard
joinfailure is thrown. Let BPELAct represent any

activity formalized in 3.2.2, and let Links be all links
that targets to this activity, the feature is formalized as.

1

(),

, (| (. ' . '))
(, , ,)

. ' . '
() (

|
,links

i

i in in

in in

ifn Link done eliminate

new pos neg EvalTrans pos ack neg nack
EvalTrans done pos neg neglink

done pos neglink neg
Links new ack nack

Link

+
=

+
=

'

'
()

'

... | | .(... .(. ' .)

 )) 1,...,
(, , ,)

.(. (

links

out

n

n

preceding

preceding links

done eliminate

nack eliminate
fn links neglink
evalJoin

Link ack ack nack

i n
tivityWithLinks done evalJoin

done done new t f

+

+ =
=

<

1442443

, .(.
. ()))) .(' | ... | '))out out

t f t BPELAct
f Throw joinfailure eliminate neglink neglink

> +
+

((), ,)

i iLink fn EvalTrans ack nack =

Ac

(..., ,)
(' , .(...... . '))

Pick starttimer deadline new timeout

Here donein indicates the proper termination of the
source activity of the link, donepreceding indicates the
proper termination of preceding activity (if there is any,
or otherwise it is simply removed). Note when a death-
path is detected (e.g. if a branch in a Switch is not
selected), the above formalization also captures the
propagation of negative tokens (neglink) through the
outgoing links of an activity which conforms to the
BPEL specification of links. This ensures that the
execution of activities in a death-path is eliminated. The
implementation of Throw can be referred in 3.4.1.

3.3.3 Manipulation of Timeout

The Pick activity is used to block and wait for the
arrival of a suitable message or a timeout alarm to go
off. Since the semantics of picking a suitable message is
specified in the previous section, the manipulation of
timeout alarm in Pick activity is addressed here. In the
following formalism, starttimer is used to trigger the
evaluation of deadline conditions by a proper timer.
The omitted part ‘…’ is the corresponding formalism of
Pick in 3.3.1. An extra timeout input is added to listen
to the competition for the arrival of a timeout event.

starttimer deadline timeout timeout done
=

< > +

(, ,) (
 ' , , .
 (.(' |

T

TimeEval deadline timeout eval new t f
eval deadline t f

f wait wait

=
< >

.) . ')))TimeEval t timeout+

1

(, , , , ,) (). ' .
 ((). '(

 [

IInvoke get put done fault type get v v
w put w

FaultHandlin
FaultHandling

ftype type

γ γ
γ

= < >

=

To simulate the observation of time with Pi calculus,
the following pseudo-implementation of a Timer is
provided. Here wait indicates the elapse of a default
unit of time if the deadline expression is evaluated to be
false, otherwise a timeout will be sent out immediately.

(, , ,)
((,).
(| (, ,))

imer starttimer deadline timeout eval new wait
starttimer deadline timeout
Timer TimeEval deadline timeout eval

=

To better specify the real time aspects in BPEL, a
timed version of Pi calculus [18] can also be used instead.

3.4 Formalizing BPEL Scope Constructs
3.4.1 Fault Handling and Compensation

Fault handling and compensation is an important
issue in BPEL. However, its implementation in BPEL
can be complex since it involves the concept of scope
(refer to 3.4.2) in related to fault / compensation
handlers. Take the fault handlers specified within an
Invoke construct as an example. Since the fault /
compensation handlers specified within a scope do not
change dynamically, the names for all fault /

compensation handlers within a scope can thus be pre-
defined and stored in vectors (FHandlers and
Chandlers). Therefore the feature of fault handling and
compensation in BPEL is formalized in the following.

). ().
(, , ,))

(, , ,)
]

'
I

I

invdone fault ftype
g ftype type rethrow done
ftype type rethrow done
BP

+

=

uuur

uuur

uuur

1

1

1

, ..

... []

 [](|

)

(

'
'. '

,

n

i fname

cname cname

currentscope parentscope

n

n

i I i n

i

ELAct ftype type BPELAct

ftype type fready ftype

compensate compensate

cname CHandler fname FHandler

∈ ≠

+ + =

= < >

+

∈ ∈

∑

uuuuuuuuuuuuuur uuu r
)

uuuuuuuuuuu

(, ,) . ' .Throw fready fault ftype fready fault ftype Throw

In the above, the fault type (ftype) of type1, … typen
can be caught during the execution of Invoke and
corresponding BPELAct will be launched. If the fault
handler for a fault is missed (e.g. for types other than
type1, … typen), two things will happen. One is that the
fault handler will rethrow this fault to the next
enclosing parent scope through fready channel; the
other is that it will try to invoke all compensation
handlers for immediately enclosed scope. Note that in
the process of FaultHandling, the output of compensate
channel is in a sequential order such that it is possible
for the invocation of compensation handlers to be in the
reverse order of completion of the corresponding
scopes [1]. Such formalization can be further combined
with the one in 3.2.4 to implement the global
termination feature in fault handling and compensation.

A Throw is responsible for the generation of a fault
event and can be simply formalized as below.

= < >

(,) . (

 | .) (

.
)CursSope

BPELAct

BPELAct

CompHandler done compensate done compensate new done

BPELAct done CompHandler compensate CHandler

=

∈

A Compensationhandler (CompHandler) is available

for invocation only when its scope is completed
normally. It can be invoked either explicitly by
corresponding compensate activity or implicitly by the
behavior of the implicit fault handler created by BPEL
(which is the case of the above implementation).
Therefore, the formalization of compensation handler is:

 uuuuuuuuuuuur

The action done is generated by the activity in the
corresponding scope (in this case, it is the immediately
enclosed scope of Invoke and we named it CurScope)
and its reception in CompHandler indicates the normal
completion of the scope. The BPELAct in the process of
FaultHandling and CompHandler is the actual activity
that is specified in the corresponding fault handler or
compensation handler. The effective scope (in the next
section) is extremely important in implementing the
error handling feature of BPEL and must be correctly
modeled when composing the Throw, FaultHandling
and CompHandler by restricting free names (e.g. fault,
names in CHandler and FHandler) in these processes.

3.4.2 Formalizing Scope in BPEL

In BPEL, scope is used to define an effective range
of the usage of variables, compensation / fault handlers
and other activities. Considering all these BPEL
constructs can be related to an effective scope, we

collect their free names in a scope with a predefined
function, GetNames(s), where s is the scope. Hence the
restriction operator ‘new’ us used to restrict the access
to these elements according to their effective scope.

uuu r
Scope (res) =new GetNames(s) (P1 | P2 | …| Pn) tnames

uuuuuuu

restnames

where Pi (i=1,…,n) can be a Pi process for any
activity, structure, or scope constructs defined in this
paper, and

uuu
 is defined as a free name set of

uuuuuuur

(fn(P1)∪fn(P2)∪……∪fn(Pn))/GetNames(s)

4. Model Checking BPEL Processes

In this section, our above formalizations will be
validated first with model checking to ensure that they
do not violate the semantics of BPEL 1.1 specification,
and important algebraic laws are well-preserved. Based
on the validation, we can thus continue to use model
checking to verify a BPEL application against ad-hoc
user desired properties to ensure its reliability.

4.1 Correctness Validation of BPEL Formalization

It is critical to prove that the formalization in section
3 conform exactly to the semantics of BPEL in order to
raise the confidence in their correctness. To do that,
BPEL specifications can be hand coded as logical
formulae and model checking is applied with our OPAL
toolkit to check the previous formalizations against
BPEL specification. Although it is difficult (if not
impossible) to strictly prove the completeness of the
correctness checking, model checking with its tool
support does provide an effective way to verify any
correctness criterion that one has in his / her mind.

With the size limitation, an important entry in the
BPEL specification, "Synchronizing with links" in 3.3.2,
is chosen as the example. There are two important
aspects in validating the formalization of "links". One is
“synchronization”, which means the three conditions in
3.2.2 must be satisfied before an activity with incoming
links can start; the other is “propagation”, which is used
to model Death-Path-Elimination in BPEL. To apply
OPAL for the validation, the above semantics are
specified with temporal logics of LTL [4] or CTL [4].

First we check the reachability of the BPELAct: Note
neglink, evalJoin are names in the formalism of 3.2.2.
G ! neglink -> F evalJoin /* LTL Spec 1

It means that when negative links never happen, the
action for evaluating join conditions (evalJoin) will
eventually be executed in our formalization of link. In
turn, if the evaluated result (t is received after evalJoin)
is true, the corresponding BPELAct can be started.

Second, we check the “synchronization” semantics:
!E [(!donepreceding | !donein1 | ... | !doneinn) U evalJoin]
 /* CTL Spec 2

It ensures that there is no computation path in the
formalization in which before the possible execution of
evalJoin, a "done" action has never been executed.

Last, we check the “propagation” semantics:
AG (neglinkin -> AF neglinkout) /* CTL Spec 3

This shows that whenever a negative link NL is
evaluated, it will be propagated to all outgoing links of
the activity whose incoming links contain NL.

The validation procedure is simple and automatic.
OPAL takes both the BPEL script (which in this case is
a single link construct) and the above formulae in LTL
and CTL as inputs. With the result of 3.3.2, OPAL is
able to automatically transform the link construct into
Pi formalization. After this step is done, OPAL detects
that there are no deadlocks and redundant actions in the
formalization by itself. Meanwhile it also enables the
integration of different model checkers for model
checking LTL/CTL on the link construct. For example,
in our current implementation, a NuSMV2 adapter is
available in OPAL so that OPAL can automatically
transform the above two inputs to the language of
NuSMV2 [17] and invoke the validation on the engine.
With this capability, the validation result shows that our
formalization satisfies all of the above three formulae
(all verified to be true by NuSMV2). More detailed
application scenarios of OPAL can be found in the
following sections where OPAL will also be used for
the verification and structural analysis of BPEL models.

4.2 Property Preservation in BPEL Formalization

Aside from the validation, interesting laws are also
given in this section to show that common algebraic
properties are satisfied in our formalization. These laws
are deduced based on the weak bi-simulation (denoted
as '~'), which is a useful approach to show the
equivalence between different Pi calculus processes.
The identified laws (in 4 groups) are listed below.
Group 1: showing permutation laws are well-preserved
[Law 1] Sequence(fn(P),Sequence(fn(Q), fn(R))) ∼

Sequence(Sequence(fn(P), fn(Q)), fn(R))
[Law 2] Flow(fn(P), fn(Q)) ∼ Flow(fn(Q), fn(P))
[Law 3] Flow(fn(P), Flow(fn(Q), fn(R))) ∼

Flow(Flow(fn(P), fn(Q)), fn(R))
Group 2: showing associative laws are well-preserved
[Law 4] Sequence(fn(Switch(b, fn(P),¬b, fn(Q))),fn(R))

~ Switch(b, fn(Sequence(fn(P),fn(R))),
¬b, fn(Sequence(fn(Q),fn(R))))

[Law 5] Flow(fn(Switch(b, fn(P),¬b,fn(Q))), fn(R),done)
~ Switch(b, fn(Flow(fn(P), fn(R))),

¬b ,fn(Flow(fn(Q), fn(R),done)))
Group 3: branches in Switch are taken in the order in
which they appear, and only one branch is taken
[Law 6] Switch(b1 , fn(P), b2 , fn(Q)) ~

Switch(b2 ,fn(Q), b1 , fn(P)),
if b1 and b2 does not hold at the same time

[Law 7] Switch(b1 , fn(P), b2 , fn(Q)) ~ P
if b1 and b2 hold at the same time

[Law 8] Switch(b , fn(P), ¬b, fn(Q)) ~ P
Group 4: showing the property of Empty
[Law 9] Sequence(EmptyAct, fn(P)) ~ P
[Law 10] Flow(EmptyAct, fn(P)) ~ P

Here we only give the formal proof of Law 1 and 9
as examples. Other proofs are omitted here since they
have strong similarity with these example proofs.
Proof 1:
RHS = new s1 ({s1/done} new s ({s/done}P | s.Q) | s1.R)

= new s1 (new s ({s/done}P | { s1/done} s.Q)| s1.R))
= new s1 s ({s/done}P | { s1/done}start.Q) | s1.R)

/* structural congruence of Pi calculus
LHS = new s({s/done}P | s. new s1 ({s1/done}Q| s1.R))

 = new s1 s ({s'/done}P | s1.({s/done]Q | s.R))
 /* structural congruence of Pi calculus

RHS ~ LHS ⇒ Law 1 holds.
Proof 9:
LHS = new s ({s/done} Empty | P)

 = new s (start.s’.0 | P) /* Def. of EmptyAct
 ~ P /* the start name of P is ‘s’;

RHS ~ LHS ⇒ Law 9 holds.

4.3 Verification Scenario of BPEL Process

To truly ensure the reliability of e-business
applications, we further verify specific BPEL models
against ad-hoc business requirement from user. Recall
the banking example mentioned in the introduction, its
realistic BPEL implementation is illustrated in figure 2
(though in the current implementation of OPAL, BPEL
Designer [16] is the integrated BPEL modeler, figure 2
still illustrates our application in a general graphical
form to make it independent of specific BPEL model
designer). Though the size of the model is moderate, it
contains most BPEL constructs including: sequence
(dashed arcs), link (arcs), flow (rounded rectangle),
switch (dashed rectangle), basic activity (rectangle),
variable (column with mid-arrows) and compensation
(octagon). The Pi calculus semantics for this complete
banking BPEL process can be directly got by the
composition of corresponding formalization of the
model elements based on the results in section 3.

Accept
CustomerReq

Select
Service

RetrieveFull
CustomerDtl

RetainCusto
merInfo

Fillout
Feedback

PrepareOpen
AccProposal

CustomerInfo
VerifyCusto
merIdentity

Open
Account

Close
Account

ValidateAcc
ountInfo

Activate
AccountAccountInfo

Schedule
Proposal
Review

Proposal
Review

Notify
Customer

Fig. 2. BPEL Process Example – Account Opening.
The BPEL model represents the operation process of

opening an account for specific customers. However,
before actually implementing the application, it is
necessary to ensure that the design of the BPEL model
satisfies specific requirements of the process owner. Let
us recall the requirement mentioned in the introduction:
Strong Security Protocol: An account can only be
opened after detailed information of the customer is
retrieved and his / her identity is successfully verified.

To verify the application against this requirement,
first the BPEL model is automatically formalized by
OPAL based on section 3. OPAL then translates the Pi
formalizations into a state transition system based on its
early operational semantics during which no deadlocks
or unreachable activities in the process are found. The
translated transition system contains totally 4498
reachable state, based on which OPAL will further
symbolically merge the states that are associated with
undistinguishable processes in order to reduce the state
space. This step takes 3 seconds and the final transition
system contains 1912 states and 4758 transitions. On

the other hand, the requirement can be interpreted in the
following basic set of LTL/CTL formulae:
G (! faultselect) -> G (RetrieveFullCustomerDtl ->

F VerifyCustomerIdentity) /* LTL Spec 1
! E [(! RetrieveFullCustomerDtl |

 ! VerifyCustomerIdentity) U OpenAccount]
/* CTL Spec 2

With NuSMV2, the verification of the two formulae
by OPAL takes 28 seconds. Results show the model
successfully follows the first specification, indicating if
exceptions in activity SelectService is not considered (G
(! faultselect)), then whenever the customer detail is
retrieved, his identity will be verified. But the model
fails the second one. Counter example shows that there
is a possible execution path on which the customer
identity has not been verified when the account is
opened. Thus a pitfall in the BPEL design is found that
may lead to violation of the requirement. Some
snapshots for OPAL toolkit can also be found in [19].

However, the reality is that checking a customer’s
identity is time consuming and in many cases, people in
charge of the identity checking and the account opening
works in different department. Therefore, restricting the
account opening strictly after his identity checking may
result in an inefficient operational process. The above
strong security requirements should thus be relaxed.
Weak Security Protocol: An account can only be
opened after detailed information of the customer is
retrieved. In the case when his / her identity is not
successfully verified, the corresponding opened account
must be closed as compensation.

Similarly, the above requirement is interpreted into
the following set of LTL/CTL formulae:
G ! (faultselect | joinfailure) ->

G (RetrieveFullCustomerDtl ->
(F VerifyCustomerIdentity & F OpenAccount))

 /* LTL Spec 3
!E [(! RetrieveFullCustomerDtl) U OpenAccount]
 /* CTL Spec 4
!E [(!OpenAccount) U CloseAccount]
 /* CTL Spec 5
G (! joinfailure) -> G (verificationfailed ->

F CloseAccount) /* LTL Spec 6
Specification 4 is a relaxation of specification 2

(since now VerifyCustomerIdentity does not need to
execute strictly before OpenAccount). Specification 5
and 6 express the compensation requirement: if failures
in the evaluation of join conditions in links are not
considered (G (! joinfailure)), the identity verification
failure will lead to the closing of an opened account.
“verificationfailed” here is the name used to indicate a
branch in the Switch structure. It took OPAL up to 62
seconds to finish verifying the four formulae. The
results show that although the BPEL process model
fails to follow the strong security protocol, it does
satisfy the weak version of the security requirement.

5. BPEL Process Restructure

Now that a BPEL model is verified, this section
addresses the further issue of “how to equivalently and

correctly restructure a BPEL model to potentially
enhance its performance?”. In this section, equivalence
relation is defined with Pi calculus based on which
important laws for BPEL structures are discovered.
Restructure algorithm is then implemented in OPAL to
support the automatic restructure of BPEL models.

5.1 State Equivalence and Restructure Rules

Common strong/weak bisimulation in Pi calculus
orders strict (observable) behavior equivalence between
two systems. However, in business domain it is too
ideal to ask two processes to be exactly the same to
qualify their equivalence. E.g., in the above account
opening application, two BPEL models can be regarded
as equivalent if their execution results in both the
insertion of a correct customer record in the variable of
“CustomerInfo” and a correct account record in
“AccountInfo”. More specifically, two e-business
processes can often be regarded as equivalent if they
run the same business task and generate the same result.
Denote PUT(P) and GET(P) to be the set of name
parameters of put(v) and get(v) in Pi process P; denote
→* to be multiple transitions fired by any action.
Therefore, the following state equivalence relation of
two BPEL models is defined with Pi calculus:
Definition 1: A process P can terminate with
environment Env, if: (P | Env) →* done’ | Env'.
Definition 2: Suppose V is a set of variables defined in
BPEL, P1 and P2 are two processes. Then P1 and P2
are state equivalent on variable V in Env, denoted as P1
≈s,v,Env P2, if: (1) P1 | V | Env →* done’ | V* | Env* and
P2 | V | Env →*done’ | V** | Env** ; (2) V*= V**.

Definition 2 specifies that two BPEL models are
state equivalent, if they can terminate in the same
environment and result in the same set of variables. As
syntax sugar, denote P;Q and P||Q as abbreviation for
Seq(fn(P),fn(Q)) and Flow(fn(P),fn(Q),done) in section
3.3; The relaxation of state equivalence can lead to the
following interesting results.
Property 1: (P1;P2) | Env →* done’ | Env*, iff P1 |
Env →* done’| Env** and P2 | Env** →* done’ | Env*.
Law 5.1: P1;P2 ≈s,v,Env P2;P1 is satisfied if PUT(P1) ∩
GET(P2) = ∅ ∧ PUT(P2) ∩ GET(P1)= ∅ ∧ PUT(P1)
∩ PUT(P2)= ∅, where P1;P2 can terminate with (V |
Env) and PUT(Pj) / GET(Pj) are previously defined.
Proof: From the side condition, we know only P1 or P2
can exclusively change the values of V. As P1;P2 can
terminate with (V|Env), from Property 1 we have P1 | V
| Env →* done’ | V** | Env** and P2 | V** | Env**
→* done’ | V* | Env*. Besides from the side condition,
we have V=V** or V**=V*. Consequently, P2;P1 | V |
Env →* done’ | V* | Env**' as well. Therefore, based
on state equivalence, we have (P1;P2) ≈s,v,Env (P2;P1)

Law 5.1 actually means that for two basic BPEL
activities P1 and P2 in section 3.2.2, their sequential
execution in Seq and parallel execution in Flow is not
distinguished by state equivalence. In another word,
when comparing two BPEL models by whether they
run the same business tasks and generate the same
results, sequential execution of activities can be

equivalently replaced by a parallel execution. Therefore,
it is possible to dig out more concurrencies in a process
to more efficiently run those activities whose execution
may otherwise be unnecessarily guarded. This
important law makes us keep conducting the following
state equivalent rules for transforming BPEL models.
Rule 1: P1;P2 ≈s P1 || P_2 if PUT(P1) ∩GET(P2) = ∅
∧ PUT(P2) ∩GET(P1)= ∅ ∧ PUT(P1) ∩PUT(P2)= ∅.
Rule2.1: (P1||P2);P3≈s(P1;P3)||P2 if PUT(P3)∩
GET(P2)=∅ ∧ PUT(P2)∩GET(P3)= ∅ ∧
PUT(P3)∩PUT(P2)= ∅.
Rule2.2: (P1||P2);P3≈sP1||(P2;P3) if PUT(P3)∩
GET(P1) = ∅ ∧ PUT(P1)∩GET(P3)= ∅ ∧
PUT(P3)∩PUT(P1)= ∅.
Rule 3: (P1;(P2||P3) ≈s (P1;P2)||P3 if PUT(P3)∩
GET(P1) = ∅ ∧ PUT(P1) ∩GET(P3)= ∅ ∧ PUT(P3)
∩PUT(P1)= ∅.

These rules can be recursively applied to different
sequential structures in BPEL model for discovering
hidden concurrencies. Restructuring result of a BPEL
model based on these rules can be ensured to be state
equivalent to the original one. Besides by combining
model checking, we can also further impose property
preservation constraints on the resulted process.

5.2 Restructuring Algorithm and Its Application

A restructuring algorithm (as shown in figure 3) is
thus implemented in OPAL to (semi)automatically
apply the above rules to restructure BPEL models.
Input: P1;P2;P3; …;Pn;NULL which are stored in variable
str (NULL represents the terminator)
Initial: cp and np denotes the current pointer and new
element pointer initially to be 1 and 0, respectively (pointing
to the position where activity P2 and P1 is located); str is a
data structure to store the current sequential BPEL process
structure; c is an upper bound for retry times; props is a set
of pre-define
satisfy.
Procedure:
For (i=0; i < c;
 repeat
 case: np an
 if (satis
 apply
 np poi
 else
 case: np
 if (satis
 apply
 if (np
 else np
 case: np d
 if (satis
 apply
 call Tra

 if (np
 else if (s
 apply
 call Tra

 i

 else
 until (cp=
 if (Check(P1

/*M
 Report Succ
End For

d properties that the input BPEL process must

Transp(np, cp, str, c, props)
 i++)

d cp both point to basic activities
fyRule1)
Rule 1, update str;
nts the new element; cp = np + 1;

 np = cp; cp = cp + 1;
does not point to a basic activity AND cp < np
fyRule3)
Rule 3, update str; np points the new element;
!= 1) cp = np - 1; else cp = np + 1;
 = cp; cp = cp + 1;
oes not point to a basic activity AND cp > np

fyRule2.2)
Rule2.2, update str; np points the new element;

nsp(pointer right to np, pointer right to np+1,
 right structure of str, c, props);

!=1) cp = np - 1; else cp = np + 1;
atisfyRule2.1)

Rule2.1, update str; np points the new element;
nsp(pointer left to np, pointer left to np+1,

 left structure str, c, props);
f (np!=1) cp = np - 1; else cp = np + 1;

np = cp; cp = cp + 1;
NULL)

;P2;P3; …;Pn, props) = true)
odel checking if the model still satisfies props

ess; Terminate;

Fig. 3. Restructuring Algorithm in OPAL.

The idea of the algorithm is concluded as follows.
First the BPEL model is traversed by its basic activities.
Each activity and its predecessors are matched with the
previous rules for potential transformations. After the
traverse is over, model checking is then applied to
verify that the restructured model satisfies the pre-
defined set of property specifications (if there is any). If
the verification fails, the rule matching process is
retried until a retry upper bound is reached.

To illustrate the application of the algorithm, let us
revisit the BPEL model in 4.3. In this model, the core
business operations of account opening and customer
identity verification cannot start until the open account
proposal is prepared. Meanwhile, this preparation can
only start after the first flow structure is completed.
This makes the PrepareOpenAccProposal activity a
potential bottleneck in the process and lead to a low
utility of resources (people who prepares the proposal).

Accept
CustomerReq

Select
Service

RetrieveFull
CustomerDtl

Fillout
Feedback

CustomerInfo
VerifyCusto
merIdentity

Open
Account

Close
Account

ValidateAcc
ountInfo

Activate
AccountAccountInfo

Schedule
Proposal
Review

Proposal
Review

Notify
Customer

RetainCusto
merInfo

PrepareOpen
AccProposal

Fig. 4. Restructured Result with OPAL.

Figure 4 shows the restructure result of OPAL based
on the algorithm, in which PrepareOpenAccProposal is
now concurrently executed with RetainCustomerInfo.
The result is not only state equivalent to the model in
figure 2 (because PrepareOpenAccProposal has no
incoming links and does not share variable with other
activity), but also preserves the weak security protocol
in section 4.3. However, a problem here is that updating
a sequential process to a parallel one may not definitely
lead to performance improvement since the execution
logic of a business process is also determined by other
factors like data dependency, policies, etc. Therefore, it
must be clear that the result of the algorithm is only a
guide for possible restructuring. Business consultants
can manually adjust the restructured results based on
the synergy of multiple factors.

6. Conclusion

The contribution of this paper includes three parts.
First, the semantics of BPEL is fully formalized with Pi
calculus. It is proved that algebraic laws and important
properties abstracted from BPEL 1.1 specification are
also well preserved in the formalization. Second, it is
shown how model checking is applied for the automatic
validation and verification of BPEL models with our
OPAL toolkit. The verification result of a concrete
BPEL model explains that the formalization of BPEL
with Pi calculus has realistic values. Thirdly, based on
the definition of state equivalence for Pi calculus,
transformation rules are conducted to restructure a
BPEL process such that the resulted process satisfies
the same set of property specifications and fulfills the
same business goals as the original one. But meanwhile

it can potentially gain better performance. A restructure
algorithm is implemented based on these rules in OPAL
toolkit and tested on a concrete BPEL model. It
illustrates that the combination of equivalence analysis
of Pi calculus processes and the model checking is
valuable in solving real business problems.

References
[1] T. Andrews, F. Curbera, et al. “Business Process
Execution Language for Web Services 1.1”, http://www-106.
ibm.com/developerworks/webservices/library/ws-bpel/, 2003.
[2] W. L. Wang, Z. Hidvegi, et al. “E-process design and
assurance using model checking, Computer”, 33(10), 2000, pp.
48-53.
[3] B. Anderson, J. Hansen, et al. “Model checking for design
and assurance of e-Business processes”, Decision Support
Systems, 39(3), 2005, pp. 333-344.
[4] E. M. Clarke, O, Jr. Grumberg, D. A. Peled. Model
Checking. MIT Press, Cambridge, Mass, 1999.
[5] K. Xu, Y. Liu, et al. “BPSL Modeler - Visual notation
language for intuitive business property reasoning”. Proc the
5th International Workshop on Graph Transformation and
Visual Modeling Techniques, 2006, In Press.
[6] R. Milner. Communicating and Mobile Systems: the Pi
calculus. Cambridge University Press, Cambridge, 1999.
[7] W.M.P Aalst. “Pi calculus versus Petri nets: Let us eat
humble pie” rather than further inflate the Pi hype”, Technical
Report, Eindhoven University of Technology, 2004. URL
[8] F. Roozbeh, G. Uwe, et al. “Abstract Operational
Semantics of the Business Process Execution Language for
Web Services”. Technical Report CMPT2004-03, Simon
Fraser University, 2003.
[9] W. Andreas, F. Peter, et al. “Transforming BPEL into
annotated deterministic finite state automata for service
discovery”. Proc. IEEE International Conference on Web
Services, 2004, pp.316-323.
[10] R. Farahbod, U. Glässer et al. “Specification and
validation of the business process execution language for web
services”. Lecture Notes in Computer Science, 3052, 2004, pp.
78-94.
[11] S. Karsten, S. Christian. “A Petri net semantic for
BPEL4WS-validation and application”, Proc. 11th Workshop
on Algorithms and Tools for Petri Nets, 2004, pp. 1-6.
[12] M. Lumpe, F. Achermann, et al. “A formal language for
composition”. In Foundations of Component-based Systems,
Cambridge University press, 2000, pp. 69-90.
[13] B. Victor. “A verification tool for the polyadic Pi
calculus”. Ph.D. Thesis, Uppsala University, Sweden, 1994.
[14] G.L. Ferrari, S. Gnesi, et al. “A Model Checking
Verification Environment for Mobile Processes”. ACM Trans.
Software Engineering and Methodology, 12(4), 2003, pp.
440-473.
[15] M. Dam. “Model checking mobile processes”. Proc. 4th
International Conference on Concurrency Theory, 1993, pp.
22-36
[16] BPEL Designer,
[17] A. Cimatti, E. Clarke, et al. “NuSMV 2: an OpenSource
tool for symbolic model checking”. Lecture Notes in
Computer Science, 2404, 2002, pp. 359-364.

Comment:

Comment:

[18] K. Xu, L. C. Liu, C. Wu. “Well-timed Pi Calculus and Its
Approach to Equivalency and Schedulability Analysis”.
Computer Integrated Manufacturing System, 2006, In Press
[19] K. Xu, Y. Liu, et al. “BPSL Modeler - Visual notation
language for intuitive business property reasoning”. Technical
Report, IBM, RC23830(C0512-005), 2005.

http://www.tue.nl/

	Formalization, Verification and Restructuring of BPEL Models with Pi Calculus and Model Checking

