
RC23969 (W0606-028) June 6, 2006
Computer Science

IBM Research Report

Performance Study of Rollout for Multi Dimensional
Clustered Tables in DB2

Bishwaranjan Bhattacharjee
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Performance Study of Rollout for Multi Dimensional
Clustered Tables in DB2

 Bishwaranjan Bhattacharjee
IBM T.J.Watson Research Center

19 Skyline Drive
Hawthorne, NY, 10598

001-914-784-7605
bhatta@us.ibm.com

ABSTRACT

In data warehousing applications, the ability to efficiently delete
large chunks of data from a table is very important. This feature is
also known as Rollout. Rollout is generally carried out
periodically and is often done on more than one dimension or
attribute. DB2 UDB V8.1 introduced a new physical clustering
scheme called Multi Dimensional Clustering (MDC) which allows
users to cluster data in a table on multiple attributes or
dimensions. This is very useful for query processing and
maintenance activities including deletes. Subsequently, an
enhancement was incorporated which allowed for more efficient
rollout of data on dimensional boundaries. This paper details a
performance study of MDC rollout and delete and compares it
against the conventional delete mechanism of a regular DB2 table.
We discuss some of the key points noticed and the lessons learnt.

Categories and Subject Descriptors

H.2.4 [Systems]: Relational databases

General Terms

Algorithms, Measurement, Performance, Design.

Keywords

Rollout, Bulk Deletes, Mass Deletes, Multi Dimensional

1. INTRODUCTION
Data warehouse sizes have been growing in leaps and bounds. An
important concern is the storage costs associate with it. This is
addressed by the periodic archiving of old data which might be
accessed less often or by its summary removal from the database.
Both methods require the mass delete of data from the warehouse.
This is also known as Rollout or as Bulk Delete. The space thus
freed up is used to make way for new data that is available. For
example, a company might have a warehouse of 5 years of data.
At the end of every month they might delete the oldest month of

data and bring in data for the latest month.

In the past, such mass deletes were usually done in a maintenance
window when the system load was low. Like after midnight.
Recent trends indicate users are moving towards a shorter time
frame to perform this type of maintenance activities. Customers
want their systems to be available almost 24 X 7 - even for a
warehouse. Also, the amount of data being rolled out is becoming
smaller but it is being done more frequently. These factors make
an efficient online rollout mechanism very important for a
database engine. The efficiency can be measured by various
parameters, like, response time of a rollout, the amount of log
space used, the number of locks required, the response time of a
rollback of the rollout, how quickly the space freed can be reused
and what kind of concurrent access to the table is allowed when
the rollout is going on.

Rollouts might happen on more than one dimension. For example,
one might want to rollout data based on shipdate at one time and
orderdate on some other instance on the same table. One might
want to remove data pertaining to a particular product or region
etc. Also there might be further restrictions on these rollouts. For
example, a user might ask to “delete orders older than 6 months
provided they have been processed”. The multi dimensionality of
rollouts is thus an important characteristic.

In DB2 UDB V8.1, a new data layout scheme called Multi
Dimensional Clustering (MDC) [1], [2], [3], [4] was introduced.
This allows a table to be clustered on one or more orthogonal
clustering attributes (or expressions). MDC initially supported a
deletion capability based on logging every row that was deleted
and any indexes updated to reflect the delete. This delete works
for mass deletes as well as single row deletes. Subsequently in
DB2 UDB V8.2.2 Saturn [5], an enhancement was incorporated –
known as MDC Rollout - which allowed a user to more efficiently
purge data from a table on dimensional boundaries. This paper
discusses a performance study of MDC rollout and delete and
compares it against the conventional delete on a non MDC table
in DB2. We present performance figures from our study and
discuss some of the key points noticed and the lessons learnt.

The rest of the paper is structured as follows. Section 2 describes
the MDC feature introduced in DB2 UDB V8, Section 3 describes
the new MDC Rollout enhancement, Section 4 compares this
against other rollout mechanisms and related work, and Section 5
discusses the performance results of MDC Rollout and delete and
compares it against non MDC delete. In Section 6 we discuss the
lessons learnt and conclude.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the First International Workshop on Performance and

Evaluation of Data Management Systems (EXPDB 2006), June 30,
2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-463-4 … $5.00.

 2

2. MULTI DIMENSIONAL CLUSTERING

IN DB2
Multi Dimensional Clustering (MDC) in DB2 UDB V8.1, allows
a user to physically cluster records in a table on multiple
orthogonal attributes or dimensions. The dimensions are specified
in an ORGANIZE BY DIMENSIONS clause on a create table
statement. For example, the following DDL describes a Sales
table organized by region, year(orderDate) and itemId.

CREATE TABLE Sales(

date orderDate,

int region,

int itemId,

float price,

int yearOd generated always as year(orderDate))

ORGANIZE BY DIMENSIONS (region, yearOd, itemId)

Each of these dimensions may consist of one or more columns,
similar to index keys. In fact, a ‘dimension block index’ will be
automatically created for each of the dimensions specified and
will be used to quickly and efficiently access data. A composite
block index will also be created automatically if necessary,
containing all dimension key columns, and will be used to
maintain the clustering of data over insert and update activity. For
single dimensional tables since the dimension block index and
composite block index will turn out to be identical, only one
block index is automatically created and used for all purposes.

In our example, a dimension block index is created on each of the
region, year(orderDate) and itemId attributes. An additional
composite block index will be created on (region, yearOd,
itemId). Each block index is structured in the same manner as a
traditional B+ tree index except that at the leaf level the keys
point to a block identifier (BID) instead of a record identifier
(RID). Since each block contains potentially many records, these
block indexes are much smaller that a corresponding RID index
on a non MDC table. For some instances, block index could be
of 71 pages and 2 levels whereas a corresponding RID index for a
non MDC table would be of 222,054 pages and 4 levels [2].

Figure 1: Logical view within a MDC table

Figure 1 illustrates these concepts. It depicts an MDC table
clustered on the dimensions year(orderDate), region and itemID.
The figure shows a simple logical cube with only two values for
each dimension attribute. Logical cells are represented by sub-
cubes in the figure and blocks by shaded ovals. They are
numbered according to the logical order of allocated blocks in the
table. We show only a few blocks of data for a cell identified by
the dimension values <1997,Canada, 2>. Note that a cell without
any records will not have any physical representation in the table.

A slice, or the set of blocks containing pages with all records
having a particular key value as a dimension, will be represented
in the associated dimension block index by a BID list for that key
value. The following diagram illustrates slices of blocks for
specific values of region and itemId dimensions, respectively.

Figure 2: Logical view within a MDC table

In the example above, to find the slice containing all records with
‘Canada’ for the region dimension, we would look up this key
value in the region dimension block index and find a key as
shown in Figure 2(a). This key points to the exact set of BIDs for
the particular value.

The DB2 UDB implementation was chosen by its designers for its
ability to co-exist with other database features such as row-based
indexes, table constraints, materialized query tables, high-speed
load, mass delete, hash partitioned MPP as well as a SMP
environment.

A delete of a record, entailed logging of the entire record and
updating any record indexes defined on the table. The record
index updates were logged too. The freed up space is available
for reuse by the same unit of work even before the delete
commits. After the commit, all transactions are free to reuse the
space. If the delete ended up emptying the block in which the
record resided, then the dimension block indexes were updated
and logged. Thus a dimension block index is updated very few
times compared to a corresponding record index on a similar non
MDC table delete in DB2. This has a positive impact on response
time of the delete and amount of logging needed.

MDC also introduced the concept of a Block Lock. The Block
Lock is a locking mechanism which is between the Table Lock
and a Record Lock in granularity. It allows for a block to be
locked in various modes. Block Locks could escalate to Table
Locks just like Record Locks do. However escalation of Record
Locks to Block Locks is not currently supported.

Another data structure introduced in MDC was the Block Map.
This stores information on the state of the blocks in a table. The
information includes if the block is free, if it has been recently

 3

loaded, if it is a system block, requires Constraint enforcement
etc. This information is used, among other things, during inserts
and loads to select blocks to insert/load into. Figure 3 shows an
example blockmap for a table. Element 0 in the block map
represents block 0 in the MDC table. Its availability status is ‘U’,
indicating that it is in use. However, it is a special block and does
not contain any user records. Blocks 2, 3, 9,10,13,14 and 17 are
not being used in the table and are considered ‘F’ or free in the
block map. Blocks 7 and 18 have recently been loaded into the
table. Block 12 was previously loaded and requires constraint
checking to be performed on it.

Figure 3: Block Map entries

A MDC dimension block index can be ANDed and ORed with
other dimension block indexes as well as any record based index
defined on the table. A full description of how they can be
combined can be found in [1], [2].

3. MDC ROLLOUT
In DB2 UDB V8.2.2 Saturn, a new feature called MDC Rollout
was introduced. This allows for a more efficient delete of data
along cell boundaries for MDC tables and builds on the good
points of MDC delete. The rollout is submitted via a
conventional SQL Data Manipulation Language (DML) delete
statement. Thus users don’t have to change their applications to
tap this new feature. The compiler, under the covers, decides if the
delete statement can be executed using MDC Rollout. If it can be,
then it generates a plan for its execution using MDC Rollout else
it switches to conventional MDC delete for that statement.

Figure 4: Example of rollout in a MDC table

Using this feature, multiple, full cells can be deleted in any
combination as long as it can be described using delete DML
statements. There are some restrictions but their description is
beyond the scope of this paper. Figure 4 shows the result of 4
different Rollouts on the MDC table described in Figure 1. They
depict the result of purging the table of individual cells to entire
slices of data. While the rollout is executing, concurrent access to
the table is permitted provided lock escalation to the table level
has not occurred. The rollout itself acquires an intent exclusive
Table Lock, and exclusive Block Locks on blocks being rolled
out. It does not get any individual Record Locks on records being
deleted. Thus the chances of lock escalation due to a rollout are

much reduced compared to non MDC and this has a positive
impact on the concurrent access of the table when large rollouts
occur.

In MDC Rollout, no record level logging is done as in
conventional MDC delete. Instead, for all the records in the page,
a single small log record is written. This indicates to the system
that all records in the page have been deleted. Further Meta
information stored in the page as well as the first page of the
block is updated to indicate all records have been deleted and thus
the pages of the block are free. This change is also logged.

MDC Rollout tends to process a block at a time as described
above. When a block is rolled out, its corresponding entry in the
Block Map is marked rolled out and the inuse bit is reset. This
indicates that this block cannot be reused by the same transaction
until the rollout is committed. All the Dimension Block Indexes
are updated to reflect the fact that the block is no longer
associated with its cell. It is to be noted that the block is still
associated with the table after a commit and is reusable for any
cell. It can be delinked from the table and returned to the
tablespace by a table reorg.

Any record based indexes defined on the table are updated one
record at a time. For each record, its entry in all the rid indexes is
removed and this change is logged.

4. THE CURRENT STATE OF THE ART
The delete mechanism employed by database engines generally
works horizontally, on a tuple at a time. In this a record is deleted
and the defined indexes are updated one by one to reflect the
delete of that record. For mass or multiple record deletes, one
iterates over all records to be deleted in a similar fashion. The non
MDC delete in DB2 UDB V8.1 is an example of that.

Other technologies in this area include the Detach mechanism for
range partitioned tables. Range partitioning is available in some
commercial database systems like DB2 zOS [5] and Oracle [6]. In
this, a table is partitioned into ranges of values on a specified
attribute. Detaching a partition would be the equivalent of
delinking all the data of the partition from the table. Any local
indexes on that partition are also thrown out. If there are global
indexes defined, these will have to be updated. Detach tends to be
a Data Definition Language (DDL) level command and
application have to explicitly specify they want to detach. This
will, in most implementations, result in getting an exclusive lock
on the table for the duration of the Detach. Thus, during the
Detach, concurrent access to the table is generally disallowed.
Also, as explained in [7], partitioning for this purpose tends to be
single dimensional and one cannot rollout on a granularity lower
than a single partition or on an attribute not related to the
partitioning attribute. For example, if a table described in Figure 1
is partitioned on year (orderDate) or region, then none of the 4
cases mentioned in Figure2 would qualify for a Detach. Further, if
the table is partitioned on itemId, then except 2.4 none of the rest
would qualify.

Some database engines implement the base table in the form of a
B+ tree itself. The NonStop SQL [16], [17], [18] is an example of
this. Here additional secondary indexes are allowed and will have
to be updated on a delete. To speed this up, multiple indexes
could be updated in parallel.

2.4 : delete from <table> where itemId = 2

1

Canada

Mexico

1997

1998

2

2.2 : delete from <table> where itemId = 2
and year = 1997

2.1: delete from <table> where nation =
‘Mexico’ and itemId = 2 and year = 1997

2.3: delete from <table> where (nation = ‘Mexico’ and itemId =

2 and year = 1997) or (nation=‘Mexico’ and itemId=1 and year =

1998) or (nation=‘Canada’ and itemId=1 and year = 1997) or

(narion = ‘Canada’ and itemId=2 and year = 1998)

1

Canada

Mexico

1997

1998

2

1

Canada

Mexico

1997

1998

2 1

Canada

Mexico

1997

1998

2

 4

A mechanism for bulk deletes was explained in [7]. The aim of
this method was to improve the response time of the delete. This
is an important consideration for mass deletes. However, it did not
address the issues of resource consumption for logging or locking
or the response time of the rollback of the delete. It also assumed
the base table would be exclusively locked and the indices would
be offline for the duration of the delete. The method described, is
based on vertical deletes of the base table and any rid indexes
defined on it. This is to be contrasted with the conventional
method of deleting the table record and updating the rid indexes
iteratively for all qualifying records.

It is to be noted that while not directly related to rollouts, there
has been a lot of work on analysis and implementation of deletes
on indices and related issues [8],[9]. Bulk load (also know as
Rollin) is the opposite of Rollout. This has also been studied in a
number of papers [10],[11],[12]. Deleting records from tables
and the management of free space has been discussed in [13]

5. PERFORMANCE EVALUATION OF

ROLLOUT
There are various parameters on which a rollout could be
evaluated. Clearly the response time of the rollout is very
important. In addition, for any mass delete mechanism which
allows for concurrent access to the table, parameters like the
number and type of locks acquired and amount of logging is
important. Also equally important, is the impact of record level
indexes on all these parameters. These record level indexes could
be of different clustering. Further the response time of the
rollback of the rollout is also an interesting parameter. In this
study all these parameters have been covered.

A 10GB TPCH [14] LINEITEM table was used for the
experimental evaluations. The table consisted of approx. 60
million records with almost uniform distribution over a 7 years
span on column L_SHIPDATE. A basic non MDC version was
loaded with data physically clustered on L_SHIPDATE and with
a record index defined on the same. This record index had 100%
cluster ratio. A corresponding MDC table was created with
L_SHIPDATE as a single dimension. This resulted in the
automatic creation of a Dimension Block Index on that column.
Subsequently 3 different record indexes were created on the MDC
table at different times for the experiments. Table 1 provides
details on the columns on which the indexes were created and
some of their important statistics. Both tables resided in the same
tablespace. Table 2 provides details about the experimental setup
used.

Table 1. Details of indexes used in the evaluation

RID INDEX
NAME

NLEAFS NLEVELS CLUSTER
RATIO

L_COMMITDATE 98640 4 13

L_RECEIPTDATE 98640 4 38

L_PARTKEY 102594 4 4

To study the impact of multi dimensions, a MDC table was
created with dimensions on L_SHIPDATE, L_LINESTATUS and

L_SHIPINSTRUCT and this was compared against a non MDC
table with 3 record indexes on those individual columns.

Table 2. Experimental setup details

Operating System 64 bit AIX 5.2.0.0

DB2 Instance Single node DB2 V82 FP9
(DB2 V8.2.2 Saturn) with
MPP and SMP turned off

File System JFS2 with CIO enabled

Disk Subsystem Shark array with 4 disks

DB2 Tablespace Details DMS FILE with “NO FILE
SYSTEM CACHING”; Page
size of 4KB; Extent size of 16
pages; Bufferpool of 30000
pages

Hardware System IBM 7026-6M1 with 16GB of
main memory

Processors 8 x 64 bit PowerPC_RS64_IV
@ 752 MHz

DB2 Registry Variables DB2_MDC_ROLLOUT=Y/N

TPCH Scale Factor 10

The experimental evaluation consisted of a study of how well the
basic MDC delete performs in comparison to a delete on a non
MDC table. This was followed by a comparison of the Rollout
enhancement in DB2 V.8.2.2 with the basic MDC deletes.

To this end 2 delete statements, SR and LR, described in table 3
were used. SR represented a small rollout with 1 month of data
being deleted. This corresponded to 1.3% of the total table. LR
represented a large rollout with 3 years of data being deleted. This
corresponded to 43.1% of the total table.

Table 3. Details of the delete statements used in the evaluation

SR 1 month out of 84 months

= 1.3% of the table

delete from lineitem where l_shipdate

between '01/02/1995' and

'02/02/1995'

LR 36 months out of 84 months

= 43.1% of the table

delete from lineitem where l_shipdate

between '01/02/1992' and

'01/02/1995'

The deletes were run from the DB2 command line with the –c
option and were timed using the AIX time command. The DB2
Monitor snapshots with the BUFFERPOOL, UOW and LOCK
options were used to determine the locking, logging, physical and
logical read statistics for the deletes. All deletes were preceded by
a db2stop and db2start to clear the bufferpool of its contents.

5.1 Comparison of MDC and non MDC

deletes
For this purpose we executed LR and SR on the MDC and non
MDC tables. The non MDC table had a rid index on
L_SHIPDATE and the MDC table had just the automatically
created dimension block index on L_SHIPDATE defined on it.
Figure 5 show the response time of LR and SR on both the tables.

 5

As Figure 5 indicates, MDC delete performed 2 to 3 times better
than a non MDC delete. The cause of this difference can be traced
to the use of dimension block indexes by MDC in comparison to
the record index by non MDC. While the amount of base table
record processing (delete, logging etc) was identical in both cases,
for MDC, the dimension block index had to be updated and
logged only when a block became free and thus had to be
removed from the index. In comparison, for non MDC, the
corresponding record index had to be updated and logged for
every record. With 16 pages to a block and approx. 25 records per
page, the MDC block index had to be updated approx. 400 times
less frequently compared to the non MDC table.

30

976

15

331

SR LR

0

200

400

600

800

1000

1200

R
e
s
p
o
n
s
e
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

MDC Delete non MDC Delete

Figure 5. Response Time of LR and SR on MDC and non

MDC

 The impact of this on the amount of logging that is needed is
visible in Figure 6. The non MDC deletes took about 30% more
log space than the corresponding MDC delete. Occupying less log
space increases the likelihood of a large rollout successfully
finishing for a given log size. It also has an impact on the amount
of concurrency possible in a system apart from resulting in the
obvious disk space savings. It also helps a rollback run faster.

410818872

13331010476

311330410

10064191262

SR LR

0

5

10

15

B
ill

io
n
s

L
o
g
 s

p
a
c
e
 c

o
n
s
u
m

e
d

(i

n
 B

y
te

s
)

MDC Delete non MDC Delete

Figure 6. Log space consumption for LR and SR on MDC and

non MDC

Figure 7 shows the number and type of locks acquired by both
delete methods for deletes LR and SR. Both methods acquired an
Intent Exclusive Table Lock. However the MDC delete acquired
Exclusive Block Locks whereas the non MDC delete acquired
Exclusive Record Locks. Numerically the number of locks
acquired by MDC was about 450 times lower. This drastic
reduction in the number of locks acquired has a positive impact
on delete performance as well as on concurrency. The non MDC
delete has a much higher chance of escalating into an Exclusive
Table Lock with a similar lock list space.

These figures indicate the inherent advantage the MDC
architecture provides for deletes. With n MDC dimensions, one
can do away with n record indexes that would have otherwise

been defined on the attributes. This would result in significant
savings in response time of a delete, logging space consumed as
well as locking resources. Figure 8 shows the response time of the
delete and rollback of SR on the 3 dimensional MDC table with
dimensions (L_SHIPDATE, L_LINESTATUS,
L_SHIPINSTRUCT) and the non MDC table with rid indexes on
L_SHIPDATE, L_LINESTATUS and L_SHIPINSTRUCT. The
MDC delete was 3 times faster than the non MDC delete. Also the
MDC delete with 3 dimensions performed as well as the delete
with 1 dimension from Figure 5. Where as the corresponding non
MDC delete with 3 rid indexes took almost twice as long as with
1 rid index.

799663

25849532

1751

56643

MDC SR non MDC SR MDC LR non MDC LR

1

10

100

1000

10000

100000

1000000

10000000

100000000

N
u
m

b
e
r

o
f
lo

c
k
s

Record locks Block Locks

Figure 7. Locking for LR and SR on MDC and non MDC

An example where the value of MDC deletes can be seen is in the
benchmark outlined in the Winter Corporation’s Whitepaper [15].
This benchmark required very high delete rates to be maintained
while high volume record ingests were happening in parallel.
Here, 3 dimensional MDC tables were used with no additional rid
index defined on them. This had a very positive impact on the
deletes that had to be done as part of the benchmark and helped
DB2 meet the benchmark requirements for deletes.

52

56

15

28

Delete Rollback

0

10

20

30

40

50

60

R
e
s
p
o
n
s
e
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

MDC Delete non MDC Delete

Figure 8. Response time for deletes and rollbacks for SR on

3D MDC and non MDC

Note that any additional rid index created on a non dimension
column for MDC and non MDC would add a similar overhead on
these parameters for both cases. Studying the impact of these
additional indexes is important and will be described in a later
section.

The performance gain of MDC delete over a non MDC table
would depend on the number of records that would fit in a
block/extent. This will dictate the number of record locks which
will be replaced by a block lock. It will also dictate the amount of
index logging that is saved for the record indexes which are
replaced by the Dimension Block Indexes. Other important factors
which will also come into play are the number of MDC
dimensions and their data types.

 6

The next section discusses the performance evaluation of the
MDC Rollout enhancement which went into DB2 V8.2.2 Saturn
over the base MDC delete. In a comparison of MDC Rollout over
the non MDC delete, all that was discussed in this section would
hold and would generally be additive.

5.2 Comparison of MDC delete and MDC

Rollout
The vanilla MDC delete is useful for all delete scenarios including
delete of a subset of a cell or even a single record. MDC Rollout
is useful when one wants to delete entire cells. It builds on the
benefits of MDC delete and incorporates certain optimizations
which are possible for the subset of deletes it handles. For the
comparison of MDC delete and rollout, delete statements LR and
SR were used on the single dimensional MDC LINEITEM table.
These statements tend to delete entire cells.

15
22

826

2

14

810

No Rid Index Receiptdate Partkey

1

10

100

1000

10000

R
e

s
p

o
n

s
e

 T
im

e
 (

in
 s

e
c
o

n
d

s
)

MDC Rollout MDC Delete

 Figure 9. Response Time of SR with different Rid Index

Clustering for MDC rollout and delete

Figure 9 shows the response time of SR with indexes of different
clustering defined on the MDC table. Details on these indexes can
be found in Table 1. When we don’t have any additional rid
indexes defined on the table, rollout performs more than 7 times
better than delete. The cumulative impact of these figures and
those in Figure 3 means that MDC rollout is about 15 times faster
than a non MDC delete in such scenarios. Figure 10 shows the
impact when multi dimensions come into play and dimension
block indexes replace corresponding rid indexes. We see that the
gains are consistent and significant.

15

28

4

14

Delete Rollback

0

5

10

15

20

25

30

R
e
s
p
o
n
s
e
 T

im
e
 (

in
 s

e
c
o
n
d
s
)

MDC Rollout MDC Delete

Figure 10. Response time for deletes and rollbacks for SR on

3D MDC table using MDC delete and rollout

If the situation requires additional rid indexes over and above the
dimensional block indexes, then the response time of rollout
would be a function of the cluster factor of these indexes and the
number of rid indexes defined. In Figure 9, when the receiptdate
rid index of 38% clustering was added to the table, the response
time gains dropped to about 33% for rollout over delete. When

the receiptdate rid index was replaced by a partkey rid index of
4% clustering, the gains dropped to 2% for rollout over delete.

The reasons for this are visible in Figure 11. This shows the
logical and physical index page reads that needs to be done as part
of the index updates for rollout and delete. With the receiptdate
index of 38% clustering, one ended up getting good bufferpool hit
ratio for the index pages that were needed. This explains the
substantial difference between the logical and physical index page
reads for receiptdate. However, for the partkey index of 4%
clustering, the amount of physical reads that needed to be done for
almost the same number of logical reads was substantial. This
accounted for the drop in response time for the partkey index.

332

3203083 3198995

42

2225

568494

No Rid Index Receiptdate Partkey

1

10

100

1000

10000

100000

1000000

10000000

In
d

e
x
 P

a
g

e
 R

e
a

d
s

Physical

Logical

Figure 11. Index Page Reads For SR with various indexes

A current way to tackle the impact of very badly clustered rid
indexes like partkey on delete would be by selectively dropping
and recreating those indexes. For large deletes, this will actually
improve the overall response time of the delete. A recreate of the
partkey index on the MDC table would take about 384 seconds
and a subsequent runstats on the table and index about 514
seconds. So while for SR it would not result in a response time
gain, for a large rollout like LR it certainly will.

Besides response time of the rollout, other parameters to consider
are the logging, locking and rollback of the rollout. There is no
improvement from the locking point of view for MDC rollout
over MDC delete. However it does retain the same good
characteristics of getting exclusive block locks instead of record
locks. The advantages of this have been discussed in Section 5.1.

311330410

517672741

723990862

6723484

213058583

419368767

0 2 4

Number of Record Indexes

0

100

200

300

400

500

600

700

800

M
ill

io
n
s

L
o
g
 s

p
a
c
e
 c

o
n
s
u
m

e
d

(i
n
 B

y
te

s
)

Rollout Delete

Figure 12. Log spaced consumed for SR on MDC delete and

rollout

Figure 12 shows the log space consumption for MDC delete and
rollout for SR. Since MDC rollout writes 1 log record for a page
of data being deleted rather than 1 log record for a record, the
total number of log records being written is significantly lower.
With about 25 records for a page, it will be 25 times lower. Also
the amount of data being logged will also be small. Every log

 7

record for a MDC delete will contain the entire record. Whereas
the MDC rollout log record will contain page level meta data
only. Thus the performance gains of MDC rollout over delete
would be a function of the number of record in a page as well as
the record size. The logging savings of MDC rollout over a non
MDC delete is a cumulative savings of Figures 6 and 10.

Figure 13 shows the response time of a rollback of delete LR for
MDC rollout and MDC delete. With a much lower number of log
records to undo and a much smaller log file to read, the rollback
of a MDC rollout runs much faster. Like for logging, the gains for
MDC rollout over a non MDC delete would be the cumulative.
Note that one would get similar gains for a rollforward operation.

25

60

84

9

23

37

No Rid Index
Commitdate

Commitdate, Receiptdate

0

10

20

30

40

50

60

70

80

90

R
e
s
p
o
n
s
e
 T

im
e
 (

in
 m

in
u
te

s
)

MDC Rollout MDC Delete

Figure 13. Rollback time of MDC Rollout and Delete on LR

6. CONCLUSION
The MDC rollout and delete mechanism consume significantly
lower amount of system resources compared to a conventional
non MDC delete in DB2. This includes locking and logging
resources.

In situations where all record indexes are replaced by dimension
block indexes, the response time of MDC rollout is an order of
magnitude better than a non MDC delete. When multi dimensions
are used in an MDC table, it results in multiple dimension block
indexes being created. These would be a replacement for
equivalent record indexes in non MDC. And in situations like
this MDC rollout performs significantly better.

When additional rid indexes are created on a MDC table, it results
in the response time gains being comparatively lower. This is
especially true when there are very badly clustered rid indexes
defined. Nevertheless one still continues to see significantly lower
logging and locking resources being consumed.

Clearly, an important area to look into is ways and means of
reducing the cost of updating these badly clustered rid indexes
which might be defined on a MDC table. This has to be done
without taking the table or the indexes off line.

7. ACKNOWLEDGMENTS
The author would like to acknowledge the help of Raj Kumar
Rana of IBM T.J. Watson Research in generating some of the
performance numbers.

8. REFERENCES
[1] Padmanabhan, S., Bhattacharjee, B., Malkemus, T., Cranston

L., Huras, M., “Multi-Dimensional Clustering: A New Data
Layout Scheme in DB2”, Proceedings of SIGMOD 2003.

[2] Bhattacharjee, B., Padmanabhan, S., Malkemus, T., Lai, T.,
Cranston, L., Huras, M., “Efficient Query Processing for
Multi-Dimensionally Clustering Tables in DB2”,
Proceedings of VLDB 2003

[3] Lightstone, S., Bhattacharjee, B., “Automating the design of
multi-dimensional clustering tables in relational databases”,
Proceedings of VLDB 2004

[4] Malkemus, M., Padmanabhan, S., Bhattacharjee, B.,
Cranston, L., Lai, T., Koo, F., “Predicate derivation and
Monotonicity detection in DB2 UDB”, Proceedings of ICDE
2005

[5] http://www-306.ibm.com/software/data/db2

[6] http://www.oracle.com

[7] Gartner, A., Kemper, A., Kossman, D., Zeller, B., “Efficient
Bulk Deletes in Relational Databases”, Proceedings of the
ICDE 2001

[8] Jannink, J., “Implementing deletion in B+trees”, SIGMOD
Record, Mar. 1995.

[9] Johnson, T., Shasha, D., “B-trees with inserts and deletes:
Why free-at-empty is better than merge-at-half”, Journal of
Computer and Systems Sciences, 1993

[10] Van den Bercken, J., Seeger, B., Widmayer, P., “ A generic
approach to bulk loading multidimensional index
structures.”, Proceedings of the VLDB 1997

[11] Wiener, J., Naughton. J., “Bulk loading into an OODB: A
performance study”, Proceedings of the VLDB 1994

[12] Wiener, J., Naughton. J., “OODB bulk loading revisited: The
partitioned-list approach”, Proceedings of the VLDB 1995

[13] McAuliffe, M., Carey, M., Solomon, M., “Towards effective
and efficient free space management”, Proceedings of the
SIGMOD, 1988

[14] http://www.tpc.org/tpch

[15] Dorin, R., Winter, R., “Benchmarking an Extremely Large
Decision Support requirement: Proof Point of Scalability
with IBM and DB2”, Winter Corporation White Paper 2005

[16] http://www.hp.com/go/nonstop

[17] Leslie, H., Jain, R., Birdsall., D., Yaghmai, H., “Efficient
Search of Multi-Dimensional B-Trees”, Proceedings of the
VLDB 1995

[18] Englert, S., Gray, J., Kocher, T., Shah, P., “A Benchmark of
NonStop SQL Release 2 Demonstrating Near-Linear
Speedup and Scaleup on Large Databases”, Technical Report
89.4, Tandem Part No 27469, May 1989

