
RC23972 (W0606-034) June 7, 2006
Computer Science

IBM Research Report

Quantifying the Complexity of IT Service
Management Processes

Yixin Diao, Alexander Keller
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Quantifying the Complexity of
IT Service Management Processes

Yixin Diao and Alexander Keller

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

E-mail: {diao|alexk}@us.ibm.com

Abstract. Enterprises and service providers are increasingly looking to
process-based automation as a means of containing and even reducing the
labor costs of systems management. However, it is often hard to quantify
and predict the additional complexity introduced by IT service manage-
ment processes before they actually have been deployed. Our approach
consists in looking at this problem from a different, new perspective by
regarding complexity as a surrogate for potential labor cost and human-
error-induced problems: In order to effectively evaluate the benefits of IT
service management processes – and to target the types of processes that
contribute most to management complexity and cost – we need a set of
metrics for quantifying the complexity and human cost of carrying out
IT service management processes. This paper proposes such measures,
and demonstrates how they can be applied to a typical service delivery
process in order to assess its complexity hotspots as a basis for process
re-engineering.

1 Introduction

The complexity of managing computing systems and information technology
(IT) processes represents a major impediment to efficient, high-quality, error-
free, and cost-effective service delivery, ranging from small-business servers to
global-scale enterprise backbones. In order to accomplish these goals, enterprises
and service providers turn increasingly to the IT Infrastructure Library (ITIL)
[1]. ITIL comprises disciplines such as service management, support and delivery,
and has established itself as the most widely used standardized process-based
approach to IT service management. When implementing ITIL by means of IT
management processes, however, one needs to be able to quantitatively measure
the degree of IT management complexity exposed by particular processes, so
that process designers and architects can discover complexity hotspots early in
the design phase, and optimize the IT processes to reduce their complexity.

We regard complexity as a surrogate for potential labor cost and human-
error-induced problems: IT systems and processes with a high degree of com-
plexity demand humans and expertise to manage that complexity, increasing
the total cost of ownership. Likewise, complexity increases the amount of time
that must be spent interacting with a computing system or between adminis-
trators to perform the desired function, and therefore decreases efficiency and

Existing IT
Processes

Process
Complexity

Analysis

Quantified
complexity
savings

+

�
Simplified IT

Processes

Automation or
Process Re-engineering

Process
Complexity

Analysis

Fig. 1. Quantitative IT management process complexity evaluation

productivity. Furthermore, complexity results in human errors, as complexity
challenges human reasoning and results in erroneous decisions even by skilled
administrators. The goal is to reduce IT process complexity by designing, ar-
chitecting, implementing, and assembling systems and processes with minimal
complexity level.

There is little existing work in the area of process complexity analysis: Busi-
ness process modeling tools typically include a process simulator, which allows
the designer to run a set of simulated process executions (either through Monte
Carlo or discrete event simulation) in order to assess the performance of the
process, generate statistics about its execution, and pinpoint potential areas of
improvement and optimization. However, many parameters need to be specified
by the designer a priori: for example, for each task (or action), a duration is
assigned during the modeling phase; for decisions, the designer needs to indicate
up-front a percentage for each of the branches that indicates the probability
that it will be taken (the sum of all branch probabilities equals 100%). None of
the available business process model simulators focuses on process complexity as
described in this paper. There is no overlap between existing work in the process
simulation area and the work presented in this paper.

Related work in the system administration discipline has been carried out
with a focus on establishing cost models, which take into account the impact of
decisions. The most relevant work is [4], which generalizes an initial model for
estimating the cost of downtime [6], based on the previously established System
Administration Maturity Model [5].

Figure 1 illustrates our vision of quantitative IT management process com-
plexity evaluation: Once a set of IT processes has been designed and archi-
tected, a process complexity analysis is carried out to pinpoint possible com-
plexity hotspots and inefficiencies (depicted at the top of the Figure). In order
to mitigate or even eliminate complexity hotspots, techniques like IT process

2

re-engineering can be used to re-design the process(es); in addition, activities
within a process that exhibit a very high degree of complexity are identified as
candidates that should be delegated to automation. In a third step, the process
complexity analysis is applied to the simplified IT processes (depicted at the
bottom of the figure). Finally, the results of the ’before’ and ’after’ analyses
are evaluated side-by-side to obtain quantified complexity savings in order to
measure the improvements.

The focus of this paper is the process complexity analysis because the process
complexity model and its measures are the basis of both ‘before’ and ‘after’ analy-
ses of the overall quantitative process complexity evaluation. The paper is orga-
nized as follows: Section 2 overviews our model for IT management processes.
Section 3 details the complexity measures for quantifying processes and Section 4
describes the tooling we have implemented. In Section 5, we perform a process
complexity analysis by applying our model. Our conclusions are contained in
section 6.

2 IT Process Complexity Model

This section describes the proposed model of IT process complexity, which is
used for computing the operational complexity of IT processes. Configuration
management, change management, release management, and problem manage-
ment are all examples of IT service management processes.

In [2], we have introduced a model for assessing configuration complexity. The
intent of that model was to capture and quantify the complexity of a straight-
line flow through a configuration procedure. Three different complexity measures
have been identified, which are briefly summarized below in order to provide
some background for the following discussion: Execution Complexity refers to
the complexity involved in performing the configuration actions that make up
the configuration procedure, typically characterized by the number of actions
and the context switch distances between actions. Parameter Complexity is the
complexity involved in providing configuration data to the computer system
during a configuration procedure. Memory Complexity takes into account the
number of parameters that must be remembered, the length of time they must
be retained in memory, and how many intervening items were stored in memory
between uses of a remembered parameter.

While the above three complexity measures are sufficient to capture the in-
teractions of an administrator with a managed system at runtime, we need to
extend this model to provide a quantitative assessment of IT management com-
plexity that involves:

1. interaction between 2 or more roles in a process,
2. passing data in various formats (a.k.a., business items) between tasks, and
3. decision making among multiple roles.

Specifically, we model a process as a set of roles, each of which may par-
ticipate in a set of tasks that either consume or produce business items. As

3

Task n-1

Task n

Role 1

Role 2

Role 3

Task n+1 (Decision)

Business Item

Fig. 2. Complexity model extensions for IT management processes

depicted in Figure 2, IT management processes are modeled using the follow-
ing three components: Roles, Tasks, and Business Items. This is consistent with
how common-off-the-shelf business process modeling tools, such as IBM Web-
Sphere Business Modeler (WBM) or Tibco Business Studio structure business
processes. Consequently, the information needed for complexity calculation can
be extracted from typical process model data (see also section 4).

3 IT Process Complexity Measures

This section describes the per-task complexity metrics for each of the three
aspects of the process complexity. Note that these metrics are designed to capture
the first-order effects. However, our experience shows that even at this level they
have demonstrated the effectiveness in identifying key automation opportunities
and complexity bottlenecks, and in tracking process improvement.

3.1 Execution Complexity

Execution complexity covers the complexity involved in performing the tasks
that make up the IT process. We use two metrics for execution complexity: base
execution complexity and decision complexity.

Base Execution Complexity indicates complexity of the task according
to its execution type. Values for this score are assigned according to a weighting
scale of different task types. Each role involved in the task must be assigned an
execution type chosen from below with corresponding values shown in square
brackets next to the type name. The base execution complexity for that task is
then the sum of values from all the roles. That is, for a task involving R roles
(r = 1, 2, . . . , R), its base execution complexity is computed as

Ebase =
R∑

r=1

execType(r) (1)

where the execution type execType(r) is defined with regard to three types.
automatic [0] - if the task is fully automated. toolAssisted [1] - if the task

4

is manual but tool-assisted. For example, manual triggering of a provisioning
workflow or script involves providing workflow definitions. A service invocation
task is also classified here, as it transfers the work to an external role. manual
[2] - if the task is a fully manual procedure.

The above approach defines a normalized, unit-less score for base execution
complexity. However, there are two possible extensions: (1) If data on average
task times is available, they can be used to define the base execution complexity.
(2) If task level procedure complexity analysis has been conducted, the base
execution complexity can be defined with regard to procedure-wide execution,
parameter, and memory complexity.

Decision Complexity quantifies additional execution complexity due to
decision making. For non-decision making task, its value is zero. If a decision
needs to be made, its complexity is based on the following four sub-metrics.

– nBranches: the number of branches in the decision. The intuition is that
more choices result in higher decision complexity.

– gFactor: the degree of guidance. That is, how much information is provided
to the user to make the correct choice. This is quantified with a three-level
scale of increasing complexity: [1] for a specific (correct) recommendation of
the decision branch to follow, [2] if general information is provided relating
choices to goals so that a user could extract the correct decision with some
processing of the information, and [3] if no information is provided to help
the user select the correct choice.

– cFactor: the consequence of impact. That is, how significant is the impact
if a wrong decision has been made. This is also quantified with a three-level
scale of increasing complexity: [1] for negligible consequence, [2] for moderate
consequence, and [3] for severe consequence.

– vFactor: the visibility of impact. That is, how much information is provided
to the user to illustrate the consequences of their choice. This is also quanti-
fied with a three-level scale of increasing complexity: [1] for immediate con-
sequence, [2] for short-term consequence, and [3] for long-term consequence
in terms of end-state features.

With the above three sub-metrics, the decision complexity for that task is
then multiplied by the number of roles (R) involved in that task.

Edecision = R× (nBranches− 1)× gFactor × cFactor × vFactor (2)

The above formula reflects the following intuition: the decision complexity is
zero if the number of decision branches is one (no decision, straight flow); clear
guidance reduces decision-making tasks to non-decision making tasks, even if
it may involve multiple branches; immediate choice consequence may make the
task tedious, if there are multiple branches and the guidance is unclear, but the
level of complexity remains low since the decision uncertainty does not exist.

3.2 Coordination Complexity

The per-task metrics for coordination complexity are computed based on the
roles involved and whether or not business items are transferred.

5

Coordination Link Complexity is indicated by a unit-less value repre-
senting the complexity of coordinating between multiple roles. For each link
between the task under consideration and other tasks carried out by different
roles, score values are assigned according to a weighting scale of different coordi-
nation link complexities. The coordination link complexity for that task is then
the sum of values from all the links (l = 1, 2, . . . , L) multiplied by the number
of roles (R) involved in that task.

Clink = R×
L∑

l−1

linkType(l) (3)

where the link type linkType(l) is defined as follows. autoLink [0] - if it is linking
to an automated task. controlLink [1] - if it is a control flow link to a non-
automated task without any business item being transferred. dataTransferred
[2] - if business items are transferred. dataAdapted [3] - if the transferred business
items need to be adapted. For example, adaptation is needed if the consuming
role is automated and the source data format is not machine-readable.

We also define Shared Task Complexity for tasks that involve multiple
roles. For example, conducting a change review meeting requires the participa-
tion of multiple roles. The shared task complexity is computed from the assigned
score below multiplied by the number of roles (R) involved in that task.

Ctask = R× taskType× (meetingIndicator + 1) (4)

where taskType is defined as follows. notShared [0] - if it is not a shared task.
shared [1] - if it is a shared task. BIConsumed [2] - if business items are con-
sumed. The intuition is that coordination of data input requires extra cost.
BIProduced [3] - if business items are produced. The intuition is that coordi-
nation of data output is more expensive because it requires agreement among
multiple roles. The meeting indicator meetingIndicator takes a Boolean (0, 1)
value: it takes a value of 0 if there is no meeting involved. Otherwise, if a meet-
ing is required, it takes a value of 1. In addition, the shared task complexity
is further multiplied by 2 if a face-to-face meeting is involved (as opposed to
electronic coordination).

3.3 Business Item Complexity

The per-task business item (BI) complexity is computed based on the business
items produced by the task under consideration.

Base BI Complexity is indicated by a unit-less value representing the
complexity of involving business items. That is, for a task involving R roles
and I business items either consumed or produced by that task, its base BI
complexity is computed as

Bbase = R× I (5)

BI source complexity is indicated by a unit-less value representing the
complexity of supplying this field’s value. Values for this score are assigned ac-
cording to a weighting scale of different source complexities. Each field used in

6

the business item must be assigned a source type chosen from one of the values
given below. The field source complexity value for that field is then the value
shown in square brackets below next to the type name. For each produced busi-
ness item, a source complexity is assigned to each field based on the source that
provides the field’s data. Then, each source score is summed across the business
items to produce the final per-task metric. That is, for a task involving R roles
(r = 1, 2, . . . , R), producing IP business items (i = 1, 2, . . . , IP), and f fields
(f = 1, 2, . . . , Fi), its per-task business item complexity is computed as

Bsource = R×
IP∑

i=1

Fi∑

f=1

sourceScore(i, f) (6)

where sourceScore(i, f) is defined as follows: internal [0] - if the field value
was produced from automation. freeChoice [1] - if the field value can be cho-
sen freely, e.g., a new password. documentationDirect [2] - if the field value
was taken directly from the task documentation, an online source, or a process
description manual (e.g., a Redbook), without extrapolation or adaptation.
documentationAdapted [3] - if the field value was extrapolated from an ex-
ample in the task documentation, an online source, or a process description
manual. bestPractice [4] - if the field value would be obvious to a system
operator versed in the administrative best practices for the application do-
main. environmentF ixed [5] - if the field value is constrained by the environ-
ment to a specific value that is selected by the operator after further research.
environmentConstrained [6] - if the parameter value is constrained by the en-
vironment to a limited set of possible choices.

These seven sources are ranked in order of increasing complexity burden. For
example, a field sourced internally or pulled straight from the documentation
does not require the system administrator to figure out its value. On the other
hand, a parameter constrained by the environment, where that constraint is not
obvious, imposes significant complexity since the system administrator needs to
infer the possible legal value.

4 Process Complexity Model Tooling

We will now discuss the architecture, design and implementation of the tooling
that we have developed in order to support the process complexity model and
its measures that we have described in the previous sections. Our Integrated
Complexity Analyzer is in charge of computing the complexity scores, according
to the measures described in section 3.

As depicted in Figure 3, there are two possible scenarios that need to be
supported by the architecture of the Integrated Complexity Analyzer. The first
scenario, depicted at the top of the figure, addresses complexity analysis at
process design time and is the subject of this paper: An IT management process
designer models a process by means of a common-off-the-shelf business process
modeling tool, in our case IBM WebSphere Business Modeler version 6 [9]. In

7

Exported
Process
Model

Complexity
Scorer

Process Model Classifier-tagged
Process Model

Complexity Benchmarking Database

Manual Data Capture GUI Graphical Analyzer

Procedure
Capture

Data

Administrator

Integrated Complexity Analyzer

Data Access Objects

X
M

L P
arser P

lot G
enerator

P
rocess T

agging

IT Process Designer

Complexity
Data

Complexity
Scores

Consumability
Architect

re-designed Procedure

EMF EMF

Fig. 3. Architecture of the Integrated Complexity Analyzer

order to determine the complexity of the process and to pinpoint complexity
hotspots, the designer exports the process to a file in the XML metadata in-
terchange (XMI) format and executes our Integrated Complexity Analyzer. The
latter automatically captures complexity data directly from the XMI file, com-
putes the complexity scores and annotates the process model by tagging it with
classifiers. The process designer can then re-import the process model and iden-
tifies, by means of color-coded activities that correspond to the different degrees
of complexity, which activities and roles are considered complexity hotspots and
should be simplified, if possible. Note that the redesign of the process model
involves domain-specific knowledge and thus requires the involvement of the
process designer. Once the model has been redesigned, the analysis is repeated
until the complexity hotspots have been addressed.

The second scenario consists in having an administrator capture the configu-
ration actions and parameters while executing a setup, change or configuration
procedure for a product on a (distributed) system. This scenario, along with its
measures, is the subject of [2]. It is depicted at the bottom of Figure 3. The ma-
jor differences to the first scenario are as follows: First, the complexity analysis
is performed at runtime and therefore reflects a straight-line flow through the
procedure. In addition, all complexity data is gathered manually (by means of
a web based manual data capture GUI) as no tooling is available that would
log the actions automatically; furthermore, assigning complexity ratings to con-
figuration parameters requires the involvement of an administrator. Finally, the
consumers and producers of the complexity data are typically different people:
while the administrator is needed to perform the configuration procedure and

8

capture the procedure complexity data, the consumer of the complexity scores
is typically a so-called consumability architect, whose role consists in diagnosing
the configuration procedure for a specific product from a complexity perspective
in order to re-design the procedure. Once the administrator has completed the
procedure, the procedure capture data are input to the Integrated Complexity
Analyzer, which calculates the complexity scores from the input data and dis-
plays the complexity scores on a per-activity basis by means of the graphical
analyzer. This data can then be viewed and interpreted by the consumability
architect of the product/procedure so that he can identify complexity hotspots
and re-design the procedure, which is then again carried out by an administrator.
The differences in the complexity scores for subsequent runs of the procedure
reflect the quantitative improvements in terms of complexity.

In addition to addressing the requirements for two fairly different usage sce-
narios, the architecture of the Integrated Complexity Analyzer needs to be adapt-
able to changes in the model and the summary scores. This is needed because the
model is continuously being refined, based on the results we obtain by running a
variety of scenarios. Traditionally, this is a major challenge, because the model
and its measures are at the heart of the overall system, and any change to the
model ripples through the data structures that are evaluated by the Complex-
ity Scorer to compute the complexity scores. In order to mitigate the impact
of changes, we have decided to isolate the representation of the data (both in-
put and output data) as much as possible from the complexity scorer logic. A
thorough modularization of the architecture and a combination of several tech-
nologies turned out to be particularly useful in order to accomplish this. We will
describe each of the components of the Integrated Complexity Analyzer along
with the technologies that have been used in their implementation.

We use an ‘XML-centric’ approach (as changes to the complexity model are
introduced into the overall system by a change of the XML schema) and rely on
the Eclipse Modeling Framework (EMF) [3] to automatically generate the Java
objects that correspond to the elements in both XML schemas that represent
the incoming complexity data and the complexity scores, respectively (depicted
in the center of Figure 3). By doing so, every time a new element or attribute is
added to an XML schema, we simply re-generate the EMF objects for the XML
schema in which the change occurred. While a corresponding EMF object – a
Java class with accessor methods – representing the new XML element is gener-
ated (for which new code needs to be written in the complexity scorer), already
existing EMF objects remain unchanged. An additional advantage of EMF is
that we obtain the XML parser ‘for free’, as appropriate Java classes to seri-
alize/deserialize XML files into/from EMF objects are automatically generated
by EMF. Seamless transformation between XML, UML and database formats
based on Java is the core purpose of EMF.

The Complexity Scorer – the core component that summarizes and scores
the complexities of both processes and procedures according to the measures
described in the previous section – is implemented in Java and inputs the com-
plexity data that is represented as an EMF model. The complexity scorer needs

9

to distinguish between the two scenarios described above as their complexity
data is fairly different. The XML schema for input data specifies a flag indicat-
ing whether the data in an input file refers to either procedure capture data or
to an exported process model. The calculated complexity scores are represented
as EMF objects, too.

The remaining three components of the Integrated Complexity Analyzer
leverage various EMF extensions. The Plot Generator inputs an EMF model
containing the complexity scores and transforms them into a graphical represen-
tation (typically a bar chart whose various display options can be selected by
the user). Flexible support for graphic widgets is provided by the eclipse plugin
for Scalable Vector Graphics (SVG) [10], which can be directly displayed in the
Mozilla Firefox v1.5 web browser.

The Process Tagging component works off the EMF model containing the
complexity scores and serializes them by means of EMF into the XMI format
so that the classifier-tagged process model is output in a format that can be
directly consumed by the WebSphere Business Modeler tool.

Finally, for each analysis, both the raw complexity data that is input into
our system as well as the complexity scores computed by the Integrated Com-
plexity Analyzer are persistently stored in a hybrid relational/XML database.
We use an early adopter version of the IBM DB2 Universal Database Enterprise
Server Version 9.1 [8]. The Data Access Objects implement persistent storage for
EMF models in a relational database based on Service Data Objects (SDO) [7].
The advantage of storing structured EMF objects over storing a set of text
documents merely as character large objects (CLOBS) in an RDBMS improves
their retrieval significantly: as the data remains structured, one can easily issue
queries of the type ‘retrieve all the actions in a procedure/process whose memory
complexity is greater than X’ against the database.

5 Evaluation

In this section we consider a small sample subprocess of ITIL Change Man-
agement: the process accepts a change request and updates the corresponding
configuration items (CIs). A change request may result in the creation of new
CIs or the modification of existing CIs. As part of the process, it is necessary to
extract information referring to the CI from the change request, authorize and
validate the changes against policies, issue necessary queries to extract other
needed CIs to accommodate the request, request modification of the CM Au-
thoritative CI Repository design if needed (for new CI types), either create or
update the appropriate CIs, and finally report the results of the CI changes in
a history repository.

The sample subprocess consists of 27 tasks; a part of the flow is depicted
in Figure 4, which includes the tasks numbered from 9 to 12 that are carried
out by four different roles: Change Management (CM) System Agent, Config-
uration Record Administrator, Configuration Item (CI) Information Requester,
and Automation (with a set of data repositories and services).

10

Log CI RequestCM System
Agent

CM CI
Request

Automation

CM Activity
Data

CM CI
Request

Problem with
Associated RFC

ChgM Change
Information
Repository

CM Activity
Repository

CM Policy
Repository

Select CI
Request Type

Problem with
Change

Yes

No

CM CI
Request

9

10 11

Exception

CM Policy
Repository

CM Operational
Schedule
Repository

Yes

No
Configuration
Record
Administrator

CI Information
Requester

CM
Authoritative
CI Repository

CI Information
Repository

CM CI
Information

CM CI
Record

P6

P5

P10

CM
Operational
Schedules

CM
Policies

CM
Policies

ChgM
Change
Information

CM CI
Request

12

CM CI
Request

Exception

Fig. 4. Partial workflow for a change management subprocess.

The per-task complexity is computed based on the complexity metric models
given in Section 3. For example, task 11 is a decision point which checks if a
requested change is allowed by the policies and execution schedule. It generates
either an exception or proceeds to task 12 if the change can be carried out.
Task 11 involves one role, four business items, two decision branches, and one
coordination link with a different role (CI Information Requester).

Once the per-task metrics have been computed, they can be aggregated to
produce process-wide views to identify the complexity bottlenecks within this
process, or process-wide metrics to facilitate cross-process comparison. Per-task

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Task #

Execution Coordination Business Item

Fig. 5. Process complexity per-task view for a change management subprocess.

11

views are graphs showing all per-task metrics in bar charts. Figure 5 provides
a per-task view for all 27 tasks. The x axis indicates the tasks, and the y axis
indicates the metric values. All per-task metrics can be plotted separately, or
aggregated for three high-level views of execution complexity, coordination com-
plexity, and business item complexity. The per-task metrics should be analyzed
to pinpoint the complexity bottlenecks. For example, Figure 5 indicates that
task 10 and 11 are relatively more complex in comparison to the other tasks in
the process. On the other hand, this process does not have significant complexity
spikes. The overall process complexity metrics are summarized in Table 1.

Table 1. Process-wide complexity metrics.

Complexity Measure Metric Value

Execution Number of Tasks 27
Number of Decision Points 11

Coordination Number of Shared Tasks 0
Number of Meetings 0

Business Item Number of Business Items 10

6 Conclusions and Outlook

In this paper we have proposed an approach to quantifying complexity of IT
management processes. Specifically, we model a process as a set of roles, each of
which may participate in a set of tasks that either consume or produce business
items. Moreover, process complexity is quantified from three dimensions: exe-
cution complexity with regard to the level of automation and decision making,
coordination complexity with respect to the coordination links and the complex-
ity of shared tasks, and business item (BI) complexity representing the source
score for supplying values into the business item. Finally, we have described the
design and implementation of the tooling we implemented, and have evaluated
an IT management process to demonstrate the usage and applicability of the
approach.

The benefits of our approach are as follows: First, the results of the process
complexity analysis guide the IT process reingeneering effort and identify activ-
ities that should be delegated to automation. Second, the IT process complexity
model and its measures establish the basis for measuring improvements between
two versions of an IT service management process. Third, the approach is ap-
plicable to different stages in the lifecycle of a process: while its core focus is
on providing a quantitative framework for evaluating processes in the design
stage, it can be applied to an already deployed process as well, in which case the
measurements obtained during its execution apply to a specific flow through the
process.

12

While these initial results are encouraging, there are several areas of further
work: As an example, we are currently working on a mapping from the measures
in this paper to higher-level measures such as success probability, configuration
time, and required skill level to complete configuration tasks.

References

1. IT Infrastructure Library. ITIL Service Support, version 2.3. Office of Government
Commerce, June 2000.

2. A.B. Brown, A. Keller, and J.L. Hellerstein. A Model of Configuration Complexity
and its Application to a Change Management System. In A. Clemm, O. Festor,
and A. Pras, editors, Proc. of the 9th IFIP/IEEE International Symposium on
Integrated Management (IM 2005), pages 631–644, Nice, France, May 2005. IEEE.

3. F. Budinsky, E. Merck, and D. Steinberg. Eclipse Modeling Framework. Addison-
Wesley, 2nd edition, 2006.

4. A.L. Couch, N. Wu, and H. Susanto. Toward a Cost Model for System Admin-
istration. In D.N. Blank-Edelman, editor, Proc. 19th Large Installation System
Administration Conference (LISA ’05), pages 125–141, San Diego, CA, USA, De-
cember 2005. USENIX.

5. C. Kubicki. The System Administration Maturity Model – SAMM. In Proc. 7th
Large Installation System Administration Conference (LISA ’93), pages 213–225,
Monterey, CA, USA, November 1993. USENIX.

6. D. Patterson. A Simple Way to Estimate the Cost of Downtime. In A.L. Couch, ed-
itor, Proc. 16th Large Installation System Administration Conference (LISA ’05),
pages 185–188, Philadelphia, PA, USA, November 2002. USENIX.

7. Service Data Objects. http://www.eclipse.org/emf/sdo.php.
8. DB2 Viper Early Community. http://www-306.ibm.com/software/data/db2/udb

/viper.
9. IBM WebSphere Business Modeler. http://www-306.ibm.com/software/integra

tion/wbimodeler.
10. World Wide Web Consortium, W3C Recommendation. Scalable Vector Graphics

(SVG) 1.1 Specification, January 2003. http://www.w3.org/TR/SVG/.

13

