
RC23976 (W0607-010) July 7, 2006 (updated 11/14/2007)
Computer Science

IBM Research Report

A Formal System for Slot Grammar

Michael C. McCord
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

A Formal System for Slot Grammar

Michael C. McCord

IBM T. J. Watson Research Center

Abstract

The purpose of this document is to describe a formalism, SGF, for
Slot Grammar (SG). SGF consists of three subformalisms, corresponding
to different components of an SG: (1) The centerpiece is SSF, the SG
syntactic rule formalism – the core of an SG. (2) An auxiliary formalism
is SFF, the SG feature formalism – which allows the grammar writer to
specify features and relationships among them. (3) SLF is the SG lexical
formalism. SLF is described in another report, and we concentrate on
SSF and SFF in the current report. SSF follows the central theme of Slot
Grammar – that analysis (or parsing) consists of slot-filling. A typical rule
of SSF deals with filling a slot S, where the proposed filler (or modifier)
phrase M and the higher phrase H (the “owner” of the slot S) have been
tentatively chosen by the parsing algorithm. The main function of such
a slot-filling rule is simply to decide whether M can indeed fill S in H .
But the rule can do other things, such as setting features in H or M ,
“raising” slots from M into H , or affecting a numerical parse score for
H with its new modifier. The SSF formalism makes it easy to “explore”
the phrases M and H , examining features or other ingredients in any
subphrases within these phrases, or even querying alternative parses for
existing word spans. There is a rich and flexible set of operators for
examining the components of parse trees. The SSF rules are in a sense
object-oriented, because in any part of a rule there is always an implicit
phrase (node) in focus – the phrase being examined by that part of the
rule. Selection operators need not mention the current phrase in focus
because it is implicit, so they can be more succinct. There are convenient
operators for shifting the focus, like going down to a modifier, which
can proceed non-deterministically, depending on conditions placed on the
modifier.

1 Introduction

The purpose of this report is to describe a formalism, SGF, for Slot Grammar
(SG). SGF consists of three subformalisms, corresponding to different compo-
nents of an SG: (1) The centerpiece is SSF, the SG syntactic rule formalism –
the core of an SG. (2) An auxiliary formalism is SFF, the SG feature formalism
– which allows the grammar writer to specify features and relationships among
them. (3) SLF is the SG lexical formalism.

1

M. C. McCord: A Formal System for Slot Grammar 2

SLF is discussed in the companion report [9], “The Slot Grammar Lexical
Formalism”. This describes SG lexicons in enough detail that the reader should
be able to create such a lexicon for a new language.

In the current report, we concentrate on SSF and SFF. With access to the
SG “shell” (the general framework software for SG), which can interpret SGF,
the reader should be able use the information given here to write the syntactic
rule component for a SG for a specific natural language, and use it in parsing.

There is a second companion report, [10], “Using Slot Grammar”. This
contains a general description of SG and of an API for it, with an emphasis
on how to use SG parsers in applications. The two companion reports and the
current one form a sort of triad which should give a good picture of the current
state of Slot Grammar, especially the syntax rules and the lexicon. The three
reports complement one another, and one can get the full picture best by reading
all three. Nevertheless, each of the reports is written in a fairly self-contained
way.

Morphology is also an important language-specific component for a grammar.
Generally Slot Grammar has less to say about morphology than it does about
syntax and the lexicon. However, the features specified in the SFF formalism
are often morphological features which a morphological analyzer produces, so
SFF serves as a bridge between morphological analysis and syntactic analysis.
The SG shell does contain a framework for doing morphology, but we will save
a description of that till later. The report [11] contains a description of an
earlier version. In any case, it is often feasible to interface an independent
morphological analyzer to the rest of SG.

The syntax rule formalism SSF follows the central theme of Slot Grammar
– that analysis (or parsing) consists of slot-filling. A typical rule of SSF deals
with filling a slot S, where the proposed filler (or modifier) phrase M and the
higher phrase H (the “owner” of the slot) have been tentatively chosen by the
parsing algorithm. The main function of such a slot-filling rule is simply to
decide whether M can indeed fill S in H . But the rule can do other things,
such as setting features in H or M , “raising” slots from M into H , or affecting
a numerical parse score for H with its new modifier.

For doing these things, the SSF formalism makes it easy to “explore” the
phrases M and H (which will normally have modifier structure of their own),
examining features or other ingredients in any subphrases within these phrases,
or even querying alternative parses for existing word spans. There is a rich and
flexible set of operators for examining the components of phrases (parse trees).

The SSF rules are in a sense object-oriented, because in any part of a rule
there is always an implicit phrase (or node) in focus – the phrase being examined
by that part of the rule. Selection operators need not mention the current
phrase in focus because it is implicit, so they can be more succinct. There are
convenient operators for shifting the focus, like going up in the tree or down to
a modifier. Going down can act non-deterministically, depending on conditions

M. C. McCord: A Formal System for Slot Grammar 3

placed on the modifier, including the condition that it fill a certain slot. The
current focus can be named in a variable and returned to later by reference to
that variable.

SSF is designed so as to abstract away as much as possible from the im-
plementational details of the data structures used by the shell. For instance
the current implementation, in C, represents morphosyntactic features as bit
positions in fixed-length bit strings (for the sake of efficiency), and represents
semantic features in an open-ended way as lists of atomic symbols in a Lisp-like
data structure. But SSF makes no references to these matters of implementa-
tion, and all features are seen in the rules simply as atomic symbols in Lisp-like
expressions used for SSF rules. This more formal, abstract view of the rules
makes it easier to create different implementations of Slot Grammar.

The SG system expects the SSF rules for a language to be in a file named
X.gram, where X is the standard two-letter code for the language. So for ex-
ample the syntax rules for English should be in en.gram, and those for German
should be in de.gram. We will also use “X.gram” more abstractly to refer to
the set of syntax rules for language X . The SFF rules should be in a file named
Xfeas.lx – for instance enfeas.lx for English.

To get X.gram and Xfeas.lx used, one should have access to a Slot Grammar
system XSG for language X – normally in the form of an executable or a library
file, like XSG.exe or XSG.dll. XSG contains the SG shell plus a few minor
adaptations for language X . In naming these language-specific SG systems, we
usually take X to be the first letter of the language name, or more if neces-
sary for disambiguation, so that e.g. we have ESG for English and GSG for
German.

At run time, when XSG initializes, it finds the file X.gram and reads it in,
storing the rules in a partially preprocessed form. During parsing, the parsing
algorithm (contained in the module XSG) interprets the rules in X.gram (in
their preprocessed form). There is also a compiler that converts X.gram to C
code, which can then be compiled in with XSG, though that compiler is not
currently up to date with the latest form of SSF (I will return to it to update
it).

Also, when XSG initializes, it finds and reads in other language-specific files.
These include, above all, the lexicons for language X . As indicated above, the
format of SG lexicons is described in [9]. In addition, XSG reads in a general
ontology lexicon ont.lx.

The syntax rule component X.gram and the lexicons have a similar basic
syntax, based on Cambridge Polish (Lisp-like).

Although XSG uses language-specific rules and data like X.gram and the
lexicons, some amount of XSG is language-universal and resides in the (SG)
shell. Generally we try to share concepts and notations across languages as
much as possible.

In Section 2 of this report we describe on a conceptual, implementation-

M. C. McCord: A Formal System for Slot Grammar 4

independent level the form of SG parse trees. Section 3 contains a general
description of the SG parsing algorithm, and Section 4 discusses a specific aspect
of the parsing algorithm – the parse scoring system. Section 5 describes features
and the SFF formalism. In Section 6 we provide an overview of SSF and its basic
characteristics. Then in Section 7 we give a detailed specification of SSF rules,
going through the “built-in” operators and their meanings. Finally, in Section 8
we discuss tools available in the shell (in XSG) for grammar development –
tracing, debugging and testing.

2 Slot Grammar analysis structures

In this section we give a conceptual view of SG analysis structures (parse
trees) – the objects that are explored by SSF slot-filling rules.

Slot Grammar is dependency-oriented, and each parse tree (node) has a
headword together with information about the head or the phrase as a whole,
plus a list of left modifiers of the head and a list of right modifiers. The modifiers
are (recursively) trees of the same form. Let us call such SG trees phrases –
although this term might also be used to mean a text string that the phrase
analyzes.

The information in a phrase (node) includes the following ingredients:

1. The headword in its text form (which may include capitalization). Such
“words” can be multiwords, as determined by the lexicon or other parts
of the system.

2. The word number for the headword in the segment. We explain below
just what word numbers are.

3. The citation form (or lemma) for the headword.

4. The sense name for the headword. This is by default the citation form
followed by a number, but the SG lexicon can specify an arbitrary sense
name.

5. The list of features of the node. These are identifiers that include part
of speech, morphosyntactic features, and semantic features. Most of the
features come from the headword and its morpholexical analysis – from the
features attached to its chosen sense in the lexicon, and from its inflectional
features. These are just viewed as features shared by the head and the
phrase as a whole, in the spirit of dependency grammar. But some features
provide information about the phrase as a whole.

6. The predicate argument list for the word sense. This is a list of pairs
arising from the lexical slot frame of the word sense, each pair consisting
of a complement slot from the frame and its filler, or nil if there is no filler
in the parse tree. The slots are listed in the same order as in the lexical
slot frame. Slot-filler arguments should be viewed as deep or logical argu-
ments. Logical subjects and objects are shown for passive past participle

M. C. McCord: A Formal System for Slot Grammar 5

verbs, and remote fillers of slots are shown in the case of extraposition
and coordination.

7. The lists of left modifiers and right modifiers of the head, given in left-to-
right surface order. Each modifier is recursively a phrase itself.

8. The mother node of the current node – which is nil in case the current
node is the top node, and otherwise is a phrase.

9. The surface slot (name) filled by the current node, or top if the current
node is the top node.

10. The slot option for the slot-filling just named, or nop if the current node
is the top node. See [10, 9] for the description of slot options. They are
closely associated with the POS of the filler phrase.

11. The left and right boundary numbers of the current phrase. We explain
below what boundary numbers are exactly.

12. A parse score (a real number) for the current node, representing roughly
how likely it is that this phrase is a good analysis of the text string it
spans.

13. A list of tests to be done on the node – its phrase tests – when it is used as
a filler, or is taken as the top node. In most cases, this list will be empty.
We describe this in more detail below.

A parse node includes these fields, but there are actually other fields that
are relevant to the parsing algorithm or efficient implementation but are not
necessary for SSF to work with. So we will not discuss all of the parse node
fields.

Let us explain what word numbers and boundary numbers are. After doing
tokenization of a segment, the SG shell organizes the tokens into two disjoint
groups, with different data structures.

The first group is an array of the “word tokens” in the segment. These are
tokens, like normal words, numbers, entity tags (e.g. of the form &xxx;) and
other symbols that can be typical nodes of parse trees. If the headword of a
parse tree is one these word tokens, then its word number is just the index of
the word token in the array of segment word tokens, starting with 1 for the first
word token. The shell can also agglomerate word tokens into multiwords which
become headwords of parse tree nodes. This can happen because of multiword
lexical entries or because of other rules in the shell. When a multiword is the
headword of a phrase node, its word number is still based on the count in the
original word tokens of the segment – it is the word number of the index word
of the multiword. So if “data base” is a multiword, its word number will be that
of “base”, and for “attorney general” it will be the word number of “attorney”.

Normal punctuation symbols and tags that act like punctuation or that
bracket text (like font change tags) form the second group of tokens; we shall

M. C. McCord: A Formal System for Slot Grammar 6

just refer to these as “punctuation (tokens)” in this context. Punctuation to-
kens should be thought of as stored in the “interstices” between word tokens.
The interstices are indexed by integers that run from 0 to the word number
for the last word token of the segment. The interstice indexed by 0 holds the
punctuation, as a list of tokens, that occurs before the first word. For i ≥ 1,
the interstice indexed by i holds the list of punctuation tokens occurring right
after word token i.

Parse trees do not normally exhibit punctuation tokens, but SSF allows one
to access them, as we will see in Subsection 7.11 below. However, some punc-
tuation tokens, like commas, can serve as coordinating conjunctions, and then
they do show in parse trees (as well as in the interstices). We discuss this in
Subsection 7.8.

The left and right boundary numbers of phrases are always interstice num-
bers. The left boundary is one less than the word number of the leftmost word
token appearing in the phrase. The right boundary is the word number of the
rightmost word token appearing in the phrase.

SG parse trees show both deep (or logical) and surface information in the
same tree. Ingredients (4) and (6) in the preceding list provide deep structure
information and the others provide surface structure information. This is illus-
trated in Figure 1, for the sentence Mary gave a book to John, where we show
a standard SG parse tree display.

Surface Structure

Tree Lines Slots Features

Deep Structure

Word Senses Arguments

• subj(n) Mary1 (1) noun propn sg h
• top give1(2,1,4,5) verb vfin vpast sg vsubj

• ndet a(3) det sg indef
• obj(n) book1(4) noun cn sg
• iobj(p) to2(5,6) prep pprefv motionp

• objprep(n) John1(6) noun propn sg h

Figure 1: Ingredients of a Slot Grammar analysis structure

Note then that the surface structure of the sentence is shown in the tree lines
and the slots on the left, and the features on the right. And the deep (or logical)
structure is shown in the middle section through the word sense predicates and
their arguments. In this display of predicate arguments, the first argument is

M. C. McCord: A Formal System for Slot Grammar 7

always the word number of the node (ingredient (2) above); this can be viewed
like an event or entity argument for the predication. The remaining arguments
are the word numbers of the complement slot fillers, or u if there is no filler,
given in the order of the lexical slot frame.

The next example, in Figure 2, showing the parse for the passive sentence
The book was written by John, illustrates deep arguments better. We have also
applied a parse display control flag predargslots which causes the display to
show both slots and filler numbers in predicate argument lists.

ndet the1(1) det sg def the ingdet
• subj(n) book1(2) noun cn sg

• top be(3,subj:2,pred:4) verb vfin vpast sg vsubj
• pred(en) write1(4,subj:5,obj:2) verb ven vpass

• subj(agent) by1(5,objprep:6) prep pprefv
objprep(n) John1(6) noun propn sg h

Figure 2: Parse of a passive sentence

Note that the word sense predication write1(4,subj:5,obj:2) appropriately has
node 5, by John (and from this John), as its logical subject, and has node 2,
the book, as its logical object. (In this display we have omitted some unfilled
complement slots for book and write, for the sake of greater readability.)

3 Basic nature of the parser

The first step of parsing is morpholexical analysis. This is done in an initial
pass through the word tokens of the sentence. Each such token is given all its
possible morpholexical analyses, expressed as one-word starter phrases, using
the phrase data structure described in the preceding section. The “one-word”
heads of these phrases may be multiwords.

Then, for syntactic analysis proper, the parser makes a second pass, going
through the starter phrases left-to-right, and combining them in the manner of
a bottom-up chart parser. At each step, the parser builds up all possible phrasal
analyses of substrings of the words that it has looked at so far. The chart is the
collection of these built-up phrases. As a new starter phrase Q is encountered,
the parser attempts to combine Q with an existing phrase P in the chart such
that the right boundary of P is the left boundary of Q. This combination of
phrases is done either by letting P fill a slot in Q or vice versa. (Both are
tried, and both may be possible and be stored in the chart.) If a combination
of P and Q is possible, then we have a new phrase R in the chart whose left
boundary is that of P and whose right boundary is that of Q. Then the process
of combination continues with R recursively on to the left. We try to combine
R further with an existing phrase just to its left, and so on, recursively. When

M. C. McCord: A Formal System for Slot Grammar 8

all the starter phrases have been processed in this way, then a parse analysis of
the whole segment is a phrase in the chart that spans the whole segment, and
whose obligatory slots have been filled. There may be more than one analysis,
of course.

The slots used in slot-filling are determined as follows. When a new starter
phrase is formed, its complement slots, as determined from the morpholexical
analysis of the headword, are stored in an available slots list of the data structure
for the phrase. When it is time to try filling a slot of a phrase H with an adjacent
phrase M , one can choose a complement slot S of H from its available slots list
and try that slot. For testing whether this slot-filling can succeed, the parsing
algorithm consults X.gram for the complement slot rules associated with slot S.
There are typically several rules for S, each indexed by the name of S. These
rules are applied in the order they are listed in X.gram, but stopping when and
if one succeeds. Each rule has a body which is applied as a test – plus actions it
may have for setting new features and slots in the new version of H with M as a
modifier, and new features of M . If this slot-filling succeeds, then the available
slots list of the combined phrase is that of H , with S removed, plus possibly new
slots raised from M . (More on slot raising in Subsection 7.5.) Each complement
slot owned by a phrase can be filled at most once.

On the other hand, we may try filling an adjunct slot of H with M . In
this case, the parser keys off the POS (part of speech) of the filler phrase M

and consults X.gram for the adjunct slot rules associated with that POS. There
may be several rules associated with (and indexed by) that POS. The parser
tries them all, non-deterministically, using each successful rule to build a new
version of H with M as a modifier. It is up to each adjunct slot rule to specify
an adjunct slot name and slot option name that are suitable for the filling. The
rule can do this on the basis of not only the POS of M (the index of the rule),
but also other features of M and H , and in general other characteristics of M

and H obtained from exploring those phrases. Again, the rule acts as a test and
can have actions on H and M , as above for complement slots. Most adjunct
slots can be filled multiple times for a given headword.

Although the parser deals with the starter phrases left-to-right as they occur,
there is still a question of the order in which modifiers are attached to a higher
phrase. It is good to think of attachment as proceeding “middle-out” from the
headword. From this point of view, the parsing algorithm takes care to attach
the right modifiers of the headword before it attaches the left modifiers. We
will discuss this more in Subsection 7.6 below.

We mentioned in Section 2 that there are fields in a phrase data structure
besides the ones listed, which are not crucial for SSF to deal with explicitly.
Two such fields are for proclitics (clitics on the left of their mother words) and
enclitics (clitics on the right). We use clitic here only for the cases of words
that are attached to their mother words, making a single word (with no space
between). Clitics are not used for English, but are relevant for some other
languages.

M. C. McCord: A Formal System for Slot Grammar 9

Each of these clitic fields in a phrase is a list of one-word phrases. They are
installed as lists of starter phrases by morpholexical analysis, and are dealt with
by the parsing algorithm if they are present (non-null lists). If clitics are not
present, the parsing algorithm will combine only adjacent phrases M and H in
the chart. But the parsing algorithm can also combine a phrase with one of its
clitics (again by slot-filling). The parser non-deterministically removes a clitic
C from the corresponding clitic list of its mother phrase P and tries to combine
C with P by slot-filling. The SSF rules just see C as if it were a normal full-
fledged phrase. There are different possible treatments of the clitics, depending
on the language, according as they are allowed to modify their mother phrases
P or instead act as higher phrases with P as modifier of the clitic.

The parser also tries normal slot-filling combinations of adjacent phrases L

and R in the chart, with L on the left of R, even though there may be clitics
still present in the clitic lists of L or R. But there are constraints:

• Clitics that modify (L or R) must already be attached (not still in a clitic
list of L or R).

• L must have no enclitics in its enclitic list, and R must have no proclitics
in its proclitic list.

• If L modifies R, then proclitics of L that can act as higher phrases are
moved from the proclitic list of L to that of R.

• If R modifies L, then enclitics of R that can act as higher phrases are
moved from the enclitic list of R to that of L.

4 Parse scoring and parse space pruning

In the basic description of the SG chart parsing process in Section 3, we
ignored the idea of parse space pruning. The SG parser maintains parse scores
for each partial phrasal analysis, where the score represents roughly how likely
the phrase is to be a correct analysis. The general idea is that when a phrase
gets too bad a score compared with competing analyses, then that phrase is
discarded from the chart. This makes for much greater efficiency in parsing (in
both space and time). The parse scores are used also to rank the final analyses,
which are listed best-first. Most applications use only the first parse.

The parse score for a phrase is a real number and is one of the fields of a
phrase structure, as mentioned in Section 2. Let us call the score field of a
phrase eval. The SG shell does its bookkeeping on eval in the following way
as new phrases are built.

The most general, top-level ideas are these: Positive contributions to eval

are best thought of as penalties. Penalties are given when a construction seems
unlikely or complex. A higher score is a worse score. But the parsing algorithm
or X.gram can assign negative scores to reward constructions as being preferred.

M. C. McCord: A Formal System for Slot Grammar 10

If a partial analysis phrase gets too high a score during parsing, compared with
“similar” phrases (to be explained below), then it will be pruned away from the
chart. When parsing is completed, the parse analyses are ordered according to
parse scores, lowest (best) score first.

There are three main ways that the eval component of a phrase can change
in value:

1. When an initial one-word phrase is formed, its eval number is normally
0, but the lexical entry may explicitly assign a score through lexical com-
ponents of the form (ev ..), (sa ..).

2. The shell does some maintenance of scores based on general linguistic
heuristics. Two of these are:

(a) Complement slots are preferred over adjunct slots. This is accom-
plished by adding 1 to eval for each case of slot-filling by an adjunct.
(However, the results may be overridden in X.gram for particular ad-
junct slots.)

(b) There are scoring heuristics which mildly prefer close attachment of
modifiers. “Other things being equal”, close attachment is preferred.

3. Operations in X.gram can change eval. This is very common, and is an
important part of writing grammar rules.

Now let us look in more detail at the process of parse space pruning.

We said above that in pruning, phrases are compared with “similar” phrases.
Let us define this more precisely. Two phrases are called similar (with respect
to parse scoring) if they have the same left and right boundaries, and their
headwords have the same word number and the same “eval-features”. The eval-
features of a phrase are normally just the part of speech of the phrase, but the
bottom line is that they are returned by a function evalfeature in the shell.
For the current shell, this consists just of the part of speech, except that for
verbs it includes also the features vsubj (the verb has an overt subject) and
vpass (the verb is a passive past participle) if they are present.

So the process of pruning is this: The shell keeps track of the best (lowest)
parse score in each similarity class. When a new phrase H is formed, its score is
compared (by the shell) with the best score in its similarity class. If H ’s score
is higher than the best, then H is not added into the chart. If H ’s score is the
same as the best, then H is simply added into the chart. If H ’s score is less
(better) than the (existing) best, then all existing phrases in H ’s similarity class
are deleted from the chart, and H is added.

The description of parse space pruning above is somewhat simplified over
the actual algorithm in the shell. In actuality, the parse score is split into a
vector of three subscores, and this vector is manipulated by the shell. But the
description above provides the main ideas of the algorithm. The rules in SSF

M. C. McCord: A Formal System for Slot Grammar 11

(so far) deal with only one of the three components in the vector, but it is by
far the most important component for what the syntax rules can do.

Another ingredient in the actual algorithm is that when a new phrase H ’s
score is compared against the existing best score in its similarity class, there
is a “fuzz factor” in deciding whether to prune away something. There is a
system variable prunedelta, which by default is 0. (And it is 0 for the English
grammar.) In deciding to discard H , its score actually has to be higher (worse)
than prunedelta plus the score of the best in its similarity class. Similarly for
the case of discarding phrases whose scores are worse than that of H .

Parse pruning can be turned off totally by turning off the flag prune. When
prune is off, the only effect of parse scoring is to order the final parses. All
possible parses for a segment are obtained. This takes much more space and
time, and often the parser will crash for longer sentences (unless XSG is ini-
tialized with a lot of working memory). However, in debugging the grammar,
it is often useful to do -prune on smaller sentences, or on reduced versions of
larger sentences. This can be worthwhile when an expected parse is not being
obtained, and you suspect that it is being lost due to pruning.

5 Features and the SFF formalism

Features for a language X can be specified in a file named Xfeas.lx, written
in the formalism SFF. The purpose of Xfeas.lx is twofold:

1. To declare features so that they get an efficient internal representation.

2. To specify relationships among these features.

Such declared features get two kinds of internal representations – as “atoms”,
represented as integers, and as bit positions in bit strings. Feature sets on parse
nodes are represented internally as bit strings of a fixed length. (Lengths used
currently in existing SGs are 64 for English, 96 for the other European languages,
and 512 for Arabic.) In the feature bit string for a parse node, the bit positions
for features that are present are turned on (assigned 1 instead of 0). Internally
each individual feature f gets an associated bit string with exactly one bit on
via an array that uses f as an index.

This internal representation of features from Xfeas.lx is invisible to the
grammar writer. Instead, there are various operators in SSF that deal with
features in perspicuous way.

The features specified in Xfeas.lx could be of any kind – morphosyntactic or
semantic – but in practice they should be mainly be morphosyntactic, because
of limited space available in the internal representations just described. SG also
allows an open-ended set of features (with less efficient representation) – see [9]
and [10]. Most semantic features should be represented in this way.

M. C. McCord: A Formal System for Slot Grammar 12

Entries in Xfeas.lx always start in column 1 with a string representing a
feature – the index of the entry. More ingredients may follow, but if there are
additional lines for the entry, the lines must begin with at least one whitespace
character. When SG reads in Xfeas.lx, the index feature of each entry will be
given its internal representation (an atom assignment and associated bit code),
unless it has already been seen in a prior entry.

The simplest form of an entry is just an index feature by itself. For instance
the following entries could declare four case features:

nom

gen

dat

acc

If there is more to an entry than the index feature f , then f should be
followed by a < sign, perhaps with surrounding whitespace. More features may
follow after the <, separated by whitespace, and then each such feature g is taken
to be implied by f (or higher in the feature hierarchy than f). This means that
if f is present on a parse node, then an SSF test for presence of g will succeed.
For example the entry

month < time advnoun

would say that the month feature implies the features time and advnoun. Fea-
ture implication is handled in internal representation (invisibly to the grammar
writer) by bit string arrays.

Finally, an SFF entry may specify a superfeature relationship of the index
feature f to a set of other features {a1, . . . , an}. This happens when the entry
is of the form

f < h1, . . . , hm > a1, . . . , an

Here m could be 0 – there are no implied features listed. Such a relationship
means basically that f is an abbreviation for the set of features {a1, . . . , an},
which are normally viewed disjunctively. For instance an SSF test

(supf f)

will succeed iff at least one of the features in {a1, . . . , an} is present on the node
in focus. And an SSF action

(removef f)

will remove all the features a1, . . . , an from the node in focus.

Let us give an example for the German SG (Claudia Gdaniec) – for dealing
with NP features for case, number and gender. We first include in defeas.lx

the basic features for case, number and gender.

M. C. McCord: A Formal System for Slot Grammar 13

nom

gen

dat

acc

sg

pl

f

m

nt

A complexity of German NP feature markings is that words are often ambiguous
with respect to these features. For instance, ”Studenten” is masculine, but could
have any combination of case and number except nominative singular. To handle
this, the GSG morphology marks on ”Studenten” the following features:

mgen mdat macc plnom plgen pldat placc

Here a compound feature like mgen means the conjunction of m and gen. The
seven features marked are viewed as holding disjunctively, or ambiguously, on
the node. In actuality, the GSG NP features include a distinction between weak
and strong features, but we will ignore that in this discussion.

The total set of compound NP features (ignoring the weak/strong distinction)
is:

fnom fgen fdat facc

mnom mgen mdat macc

ntnom ntgen ntdat ntacc

plnom plgen pldat placc

The ones on the first three lines have sg number, and the ones on the last line
have pl number, where there is no distinction for gender. So in defeas.lx we
enter these 16 compound features, one feature per line, in order to declare them.
Although they are compound in intent, the SG system sees them as atoms.

Now we can enter superfeature rules in defeas.lx. Each of the simple NP
features f for case, number or gender will be a superfeature for the set of
compound features that imply f . So we do this as follows:

nom < > fnom mnom ntnom plnom

gen < > fgen mgen ntgen plgen

dat < > fdat mdat ntdat pldat

acc < > facc macc ntacc placc

sg < > fnom fgen fdat facc mnom mgen mdat macc

ntnom ntgen ntdat ntacc

pl < > plnom plgen pldat placc

f < > fnom fgen fdat facc plnom plgen pldat placc

m < > mnom mgen mdat macc plnom plgen pldat placc

nt < > ntnom ntgen ntdat ntacc plnom plgen pldat placc

M. C. McCord: A Formal System for Slot Grammar 14

In Section 7.3 we will describe an SSF operator agreef which can test feature
agreement between a modifier phrase M and a higher phrase H along some
“dimension” of features, such as case, number or gender. An example could be
agreement between a determiner and a head noun for German. For this, the
sequence of agreement tests could look like this:

(agreef nom gen dat acc)

(agreef sg pl)

(agreef f m nt)

We will describe the details in Section 7.3, but what happens basically is that
agreef uses the superfeature expansions of its argument features to check agree-
ment. So, for example, for nom it looks at the features fnom, mnom, ntnom, plnom,
as marked on M and H , to see if they both can be considered nominative (among
other cases). The first agreef test will succeed if M and H have at least one
case feature in common, in this sense.

To get Xfeas.lx used by XSG, one should compile it, using the command:

Xsg -compilex Xfeas.lx -enc 1 -nosort

6 Overall form of SSF and X.gram

The syntax rules for a language X should be put in the file X.gram, and
should use the formalism SSF. We describe the overall form of X.gram in this
section.

The rules in X.gram are slot (filler) rules, and these are of three types:

1. Complement slot rules

2. Adjunct slot rules

3. Special slot rules

Each rule is of the form:

Head < Body

For a complement slot rule, the Head is is the name of the complement slot
(e.g. subj). For an adjunct slot rule, the Head is a POS – the POS of of the
filler phrase M (e.g. noun). For complement and adjunct slot rules, the same
Head can occur in more than one rule, as described above in Section 3.

There are two kinds of special slot rules, and X.gram should have at most
one occurrence of each. One uses the special slot name arb as index, and (if
present) it is applied (and must succeed) every time there is a slot-filling. It is
applied after the normal slot rule is applied. The second special slot rule uses

M. C. McCord: A Formal System for Slot Grammar 15

the slot name top as index, and it is applied (after the other slot rules) for a
final top-level phrase analysis.

The Body components for the three types of slot rules all use the same syntax,
which is described in Section 7.

The three types of slot rules can come in any order in X.gram, and can be
intermingled. (This is possible because the SSF interpreter can recognize the
type of the rule by the type of its Head.)

The overall basic rule format is “free-form” (whitespace can go anywhere
except in the middle of tokens), except that each rule has to start (with its
Head) at the beginning of a line, and continuations of rules must not start at
the beginning of a line.

Comments with /* and */ are allowed, but with restrictions. The initial /*
string must occur first on the line, or after initial blank characters. And then
the comment extends only to the end of the line. Actually the closing */ is not
required, but it is good practice to use it.

The overall syntax of the Body of any rule is Cambridge Polish, or Lisp-
like, with one exception about the top level, which we will describe below. We
will call expressions in Cambridge Polish terms. The general form of a term
can be described quite simply. A term is either an atomic term or a list term.
Atomic terms are sequences of characters not including whitespace or (round)
parentheses, except that a backslash \ can be used as an escape character to
allow those symbols also. A list term consists of a left parenthesis followed by
possible whitespace, followed by any sequence of terms separated by whitespace,
followed by possible whitespace, followed by a right parenthesis. (In SSF we do
not use the dot notation sometimes used in Cambridge Polish.) The empty list
can be denoted by either () or nil.

So an example of a term is:

(if (opt bfin) (mf vsubj))

Typically in an SSF list term

(a b c d ...)

the initial atomic term a is either a primitive operator, like mf in the preceding
example, or a logical operator, like if. The subsequent members of the list term
are operands for the operator, and quite a few of the SSF operators can take
any number of operands.

The SG shell actually keeps track of runtime subdatatypes for atomic terms,
distinguishing for example between string terms, integer terms, and real (double)
terms. The SSF user does not need to be too aware of these distinctions, but
can just use reasonable atomic terms as expected by the operators.

There are two special types of atomic terms though that the user should be
aware of. These have to do with variables. Operators can set and evaluate vari-
ables (whose values are terms), and the SSF interpreter keeps track of variable

M. C. McCord: A Formal System for Slot Grammar 16

binding contexts – local to each rule application. Variables are recognized by
their special syntax. Variables are of the following two kinds, with the indicated
syntax:

Simple variable: v1, v2, v3, ...

Put variable: >v1, >v2, >v3, ...

So a variable begins with either v (specifically that letter) or >v, and is followed
by a sequence of digits. Put variables are always assigned a value by an operator,
and they can be reassigned. Simple variables are only evaluated. When a put
variable >vi is assigned a value, then the corresponding simple variable vi gets
that value. If a simple variable is evaluated but was not previously assigned a
value, then its value will be taken as nil.

Several of the SSF operators do (pattern) matching with their arguments. If
two terms are matched and they contain no variables, then the condition for
success is just that the two terms (can) look alike in external syntax. One can
give an obvious recursive definition of this, based on the recursive definition of
terms. If one or both of the two terms being matched contain variables, then
the idea is as follows:

• If a simple variable v is to be matched against a subterm y, then v is
evaluated, and its value x must match y. (The value x could itself contain
other variables, and so evaluation could be recursive, with a potential for
infinite loops. But normally one can easily avoid such usages of variables.)

• If a put variable v is to be matched against a subterm y, then v is just
assigned the value y, and this match always succeeds.

The simplest and most general operator that causes pattern matching is =.
This takes two arguments, which must match for the operation to succeed. Note
that because of the rules just listed for matching of variables, = can be used both
for assigning and for evaluating variables. For instance,

(= >v5 (John sees Mary))

will assign the list (John sees Mary) to the variable v5.

We stated above that there is an exception about using the term notation
on the top level of a rule body. It is that the body can be a sequence of one or
more terms:

b1 b2 · · · bn

But when X.gram is read in by the shell, this is in effect converted to the single
term:

(& b1 b2 · · · bn)

M. C. McCord: A Formal System for Slot Grammar 17

Here & is the conjunction operator of SSF, to be discussed in Section 7 below.
As an example, the following is a very simplified (and inadequate) complement
slot rule for the subject slot for English:

subj < le (agree sg pl)

The body here will be seen by the SSF interpreter as the term

(& le (agree sg pl))

The first condition tests that the (implicit) modifier phrase M (the subject) is
on the left of the (implicit) higher phrase H . The second condition tests that
M and H agree with respect to the features sg and pl (singular and plural).

The same convention about leaving off the outer parentheses on the top level
is used in the SG lexical formalism SLF.

Valid terms spanning several lines within the Body of a rule may be com-
mented out by surrounding them with:

(# ...)

7 Slot rules

In this section we cover the form of slot rules.

7.1 General form of the rules

As indicated above, the three types of rules have the same syntax and allow-
able operators, and differ only in the following two ways:

1. The Head of a complement slot rule is a complement slot (name); the Head
of an adjunct slot rule is a part of speech; and the Head of a special rule
is one of the symbols arb or top.

2. The slot and its option are given for a complement slot rule, but they are
assigned by an adjunct slot rule.

Currently the allowed parts of speech are as follows. We spell out the names
or give an explanation in the cases where the meaning may not be obvious. See
[9] for more details.

• verb.

• noun.

• adj. Adjective.

• adv. Adverb.

• qual. Qualifier.

M. C. McCord: A Formal System for Slot Grammar 18

• det. Determiner.

• prep. Preposition.

• conj. Coordinating conjunction.

• subconj. Subordinating conjunction.

• thatconj. Special subordinating conjunction like “that”.

• infto. Preinfinitive like “to”.

• subinf. Variants of infto.

• forto. The English “for” in for-to constructions.

• incomplete. The formal POS for an incomplete parse.

The allowed complement slot names are given as follows. In each item we
first list a POS and then the complement slots that it may have. See [9] for
conventional meanings (illustrated mainly for English).

• verb: subj, obj, iobj, comp, auxcomp, pred

• noun: nobj, nid

• adj: aobj

• adv: avobj

• prep: pobj, objprep

• conj: pconj, lconj, rconj, postconj

• subconj: sccomp

• thatconj: thatcomp

• infto: tocomp

• subinf: subinfcomp

• forto: forsubj, forcomp

The grammar writer can create new slot option names, but the following are
commonly used ones:

a, agent, aj, av, bfin, binf, dt, en, ena,

fin, fina, finq, finv, ft, ger, gn, inf, ing, io, it,

itinf, itthatc, itwh, lo, n, na, nen, nmeas, nop, nummeas,

p, padj, pinf, pinfd, prflx, prop, pt, pthatc, pwh,

qt, rflx, sc, so, thatc, v, wh

The grammar writer can also choose adjunct slot names, but the following
ones are commonly used names. Again, each item has a POS followed by adjunct
slots for that POS.

M. C. McCord: A Formal System for Slot Grammar 19

• verb: vpreinf, vadv, vprep, vsubconj, vnfvp, vfvp, vforto,

vcomment, vcompar, vsothat, vadjp, vnp, vinfp, vvoc,

vdat, vacc, vadj, vdet, vnoun, vrel, vextra, vnthatc,

proclitic, enclitic, whadv, whprep

• noun: nadv, ndet, nadj, nnoun, nposs, nadjp, nper, nprop,

nappos, nprep, ngen, nrel, nrela, nnfvp, nsubconj, ncompar

• adj: adjpre, anoun, adjpost, asothat, acompar, aprep, arel

• adv: advpre, advpost, advinf, avsothat, avcompar

• det: dadv

• prep: padv, pvapp

• subconj: scadv

• infto: toadv

When a slot rule is applied, several arguments are given implicitly to the
rule. In effect, this means that the SSF interpreter uses these arguments in
functions that recursively interpret the rules. The arguments (or implicit data)
for the rules are as follows. Of course the SSF implementation in the shell has
its own data structures for the arguments, but these details are hidden from
the external view of SSF, so as to make it more abstract and implementable in
different ways. Ultimately the rule writer can use SSF operators to access what
is necessary in the data structures.

• The modifier phrase M .

• The higher phrase H .

• The slot S of H that M fills. This is given for a complement slot rule,
and is assigned by an adjunct slot rule.

• The option of S used in the slot-filling. Again, this is given for a comple-
ment slot rule, and is assigned by an adjunct slot rile.

• The set of features of M . This can be tested or modified by the slot rule.
Of course such a modification does not change the features of M in the
occurrence of M as a chart element, but it changes the features of M as M

is viewed in the new version of H with M as a subnode (if the slot-filling
succeeds).

• The set of features of H . This can be tested or modified by the slot rule.
A modification occurs in the new version of H with M as a subnode.

• A boolean that indicates whether M is on the left or the right of H .

• An identifier that specifies any separator punctuation between M and H .
More on this below.

• An assignable list of slots that are raised by the slot filling. They are
added to the available slots in the new H . Primitive operators of SSF can
add to this list. More on this below.

M. C. McCord: A Formal System for Slot Grammar 20

• An assignable list of all the available slots of the new H . This item is
rarely used. More below.

• The current evaluation or parse score, a real number, for the new H . This
number can be tested of modified. The main SSF operator eval dealing
with it increments it by the amount of the argument of eval.

• The node in focus. At the top level of interpretation of the Body of the
rule, the node in focus starts out as M (the modifier). But SSF operators
can shift the node in focus, allowing this node to wander to any node in
M or H . Many operators of SSF use this node as an implicit argument.
The device greatly simplifies the use of SSF and creates more readable
and more compact expressions.

Now let us proceed to the specification of the Body of a slot rule. The Body

is an SSF test, and we define this recursively. Such a test should be thought of
on one level like a proposition – a term that has a truth value. For the slot-
filling to succeed, the top-level SSF test (the Body of the slot rule) must be true.
The slot rule interpreter evaluates SSF tests recursively, and truth values of
embedded SSF tests are of course crucial to determining truth values of higher
tests. But evaluation of SSF tests can also have side effects, like setting the
implicit arguments of the rule described above. Some SSF tests always succeed
and are of use only for their side effects.

An SSF test is a term that is either a basic (SSF) test or a compound (SSF)
test. A basic test is an atomic term which is among those listed in the following
subsections (with explanations of their truth conditions). A compound test is a
list term where the first element, the operator for the test, is one of the operators
listed in the subsections below, and the succeeding members of the list – the
arguments of the operator – are SSF tests.

Now we go through the basic tests and operators. These are grouped in the
following subsections, each of which deals with related tests. In this material,
we always use M to mean the (implicit) modifier phrase for the rule, and H to
mean the (implicit) higher phrase for the rule.

7.2 Logical operators

The logical operators are as follows. Each one except = can take any number
of arguments, and these arguments should be SSF tests. For each operator we
describe the conditions under which a test based on that operator will succeed.

• & (and). All argument tests must succeed. Evaluation of the arguments
stops, with failure, if any fails.

• | (or). At least one argument test must succeed. Evaluation of the argu-
ments stops, with success, if any succeeds.

• ^ (not). All argument tests must fail. Evaluation of the arguments stops,
with failure, if any succeeds.

M. C. McCord: A Formal System for Slot Grammar 21

• ^& (nand). It is not the case that all the argument tests succeed. Evalua-
tion of the arguments stops, with success, if any fails.

• if (conditional). This behaves like an if-then-else series. Suppose first
that there are an even number of arguments. The interpreter evaluates
in succession the odd-numbered arguments. If one of them succeeds, then
the interpreter evaluates the succeeding even-numbered argument, and
returns the truth value of that. If no odd-numbered argument is true, so
that the evaluation “runs off the end”, then the if test succeeds. If there
are totally an odd number of arguments, then evaluation behaves as if a
T test were inserted before the last argument. Thus in this case the last
argument is like an else.

The if test

(if t (& a b c)

u d

v (& e f)

)

would then be like the following boolean expression in C:

t ? (a && b && c) :

u ? (d) :

v ? (e && f) :

1

And the if test

(if t (& a b c)

u d

v (& e f)

(& w z)

)

would be like

t ? (a && b && c) :

u ? (d) :

v ? (e && f) :

(w && z)

• = (equality). This takes two arguments, and succeeds iff they match –
according to the rules for pattern matching described in Section 6.

There are two basic SSF tests T and F which act like true and false respec-
tively; T always succeeds and F always fails.

There is also a logical operator try, allowing any number of arguments, where

M. C. McCord: A Formal System for Slot Grammar 22

(try a b c ...)

is equivalent to:

(| (& a b c ...) T)

This of course always succeeds, but it can be useful for evaluating its arguments
(until one fails) because the arguments may have side effects.

7.3 Testing and changing features

The operators described in this section take features as arguments. Any
number of arguments are allowed, unless it is stated otherwise. Features can
be parts of speech, morphosyntactic features, or semantic features. In the im-
plementation, these different kinds of features could be represented in different
ways. For instance in the current C implementation of SG, morphosyntactic
features are implemented by bit positions in bit strings, and operations on them
are done with machine logical operations on bit strings. But conceptually in
SSF, one can view all of the features as being specified by identifier strings.

The operators are as follows. For several of the items, we list three operators,
testing respectively for the node in focus, for M , and for H .

• f, mf, hf. This tests that each of its arguments is a feature of the phrase
(where we include morphosyntactic features, parts of speech, and semantic
features). The first operator name is another overloaded symbol! When
it occurs as a feature, it conventionally means feminine gender.

• of, omf, ohf. This tests that at least one of its arguments is a feature of
the phrase.

• nf, nmf, nhf. This tests that none of its arguments is a feature of the
phrase.

• supf, supmf, suphf. This is like f, but its arguments can be superfeatures,
and their expansions through superfeature rules (see Section 5) get checked
for.

• osupf, osupmf, osuphf. This is like of, but for superfeatures.

• st. This tests that its argument is a semantic type of the phrase in focus.

• pos, mpos, hpos. This allows any number of arguments, which are matched
against the POS of the phrase. The testing is disjunctive. Evaluation
stops, with success, when an argument matches.

• setmpos, sethpos. This takes one argument, which is either a simple
variable or a constant, with value a POS, and sets the POS of M or H ,
respectively, to that POS.

M. C. McCord: A Formal System for Slot Grammar 23

• addf, addmf, addhf. This adds each of its arguments as a feature of the
phrase. (The first operator is not implemented yet, but the other two are.)

• delf, delmf, delhf. This deletes each of its arguments as a feature of
the phrase. (The first operator is not implemented yet, but the other two
are.)

• removef, removemf, removehf. This is similar to delf, but its arguments
can be superfeatures, and their expansions through superfeature rules (see
Section 5) get removed.

• agree. This succeeds iff at least one argument feature is a feature of both
M and H . If it does succeed, then every argument feature that is not a
feature of both M and H is removed from the features of M and H . Thus
for example (agree sg pl) would test that M and H agree in number.

• agreef. This is similar to agree, but allows the arguments to be super-
features, and it uses both the actual superfeatures and their expansions
through superfeature rules (see Section 5). The arguments can also be
pairs of features, where the first member of the pair is checked for M and
the second member is checked for H .

• raisef. This actually appears (currently) like a basic test, with no argu-
ments. It simply replaces the features from H with a copy of those of M .
It is useful in handling coordination. The right conjunct (slot rconj) of
a coordinating conjunction should be filled before the left conjunct (slot
lconj). In the process of filling rconj, it would be normal to call raisef,
so that the larger phrase inherits the features of the right conjunct.

• raisesf. This is also a basic test. It adds to the semantic features of H

those of the phrase in focus.

• coordf. This is also (currently) used only as a basic test, with no argu-
ments. Its purpose is to coordinate the features of M and H . It should be
called when the left conjunct (slot lconj) of a coordinating conjunction
C is being filled. So H would have head C, would have rconj filled by the
right conjunct R, and would have inherited the features of R via raisef.
So coordf is really coordinating the features of M (the left conjunct) with
those of R. Currently, coordf requires that M and H have the same POS,
and it gives H each of its existing features that are also features of M . It
also requires (to succeed) that if the POS is verb, then M and H have
at least one of the features vfin (finite verb), vinf (infinitive), ven (past
participle) or ving (present participle) in common. So these requirements
are now in the shell. A facility for expressing and specifying the details of
coordf should be put in the SSF formalism instead of being in the shell.
This will be done at a later point.

M. C. McCord: A Formal System for Slot Grammar 24

7.4 Testing headwords

The operators that test the head (multi-)word of a phrase can test the textual
form of the headword (with whatever mixed case is in the text), the lower case
form of the headword, the citation form (lemma), or the sense name. Each of the
operators can take any number of arguments, and succeeds iff the corresponding
headword-related field matches at least one of the arguments. The operators
are as follows. For the first four items we list three operators, testing the head
(multi-)word of respectively the node in focus, for M , and for H . The most
commonly used operators are mcite and hcite.

• cite, mcite, hcite. This tests that the citation form of the head matches
one of the arguments.

• word, mword, hword. This tests that the textual form of the head (with
possible mixed case) matches one of the arguments.

• lcword, mlcword, hlcword. This tests that the lowercase form of the head
matches one of the arguments.

• sense, msense, hsense. This tests that the sense name of the head
matches one of the arguments.

• mwcite. This is a basic test, which checks that the citation form of the
phrase in focus is a multiword.

Note that the uses of pattern matching can both test for specific strings and
set variables to strings. Thus in the following, the first test would test that
the citation form of H equals one of the eight words listed, but the second test
would always succeed and would set the variable v1 to the citation form of H ,
whatever it is.

(hcite be do have will can may shall must)

(hcite >v1)

7.5 Testing and manipulating slots and options

The most basic operators involving slots and options are the following.

• slot. This can have one or two arguments. It matches its first argument
against the current slot. The default current slot is the slot being filled
by M in H . For a complement slot rule, this slot is chosen by the shell.
For adjunct slot rules, it is set by the rule itself, using setslot. However,
operators in the mod family (see Section 7.9) create an environment with
a different current slot – the slot filled by the modifier. If there is a second
argument, it is matched against the current slot option.

• opt. This is similar, but deals only with the current option.

M. C. McCord: A Formal System for Slot Grammar 25

• setslot. This sets the slot (name) to the argument. This would normally
only be used for adjunct slot rules, but can also be used for complement
slot rules.

• setopt. Similar, for options.

• iscomp. This tests that its argument is a complement slot name.

• ob. When this occurs as a basic test, it says that the current (complement)
slot to be filled is obligatory.

• eslot, emslot, ehslot. This tests for “empty slots” – or the current
available complement slots – in the phrase. It can have from 0 to 4 ar-
guments. With no arguments, it tests that there are some available slots.
The allowable arguments are as follows, and they can come in any order.

1. A non-list argument (atomic or a variable) matches against the name
of the slot you’re looking for.

2. An argument of the form (opt OptionName) matches OptionName

against the option name of an available slot (which must be the slot
in (1) if given).

3. An argument of the form (ob N) matches N against 1 or 0 according
as the slot is obligatory or not (and this must be for the slot and/or
option in (1) or (2) if given).

4. An argument of the form (cite [C]) matches C, if given, against
a required filler citation form (and this must be for the slot and/or
option in (1) or (2) if given). If an argument C is not given, it means
that there are no required citation forms.

For example,

(ehslot obj (opt n) (ob 1))

would test for an available obligatory obj slot having n among its options.

There are several operators that concern what happens to the available slots
(unfilled complement slots) of M when M becomes a modifier of H . For in-
stance, obligatory unfilled slots of M should generally not be ignored (though
they can be in some cases). A phrase is called satisfied if it has no obligatory
available slots. One thing that can be done with available slots of M (whether
or not they are obligatory) is to raise them to become available slots of H . They
might get filled on the level of H , or they might get raised still higher when H

itself becomes a filler. Filling of raised slots happens with both extraposition
and coordination, as in:

Who did you say she tried to find?
He looked for and then read the book.

M. C. McCord: A Formal System for Slot Grammar 26

The following basic tests and operators deal with satisfied phrases and raising
of slots from M to H . Normally only one of them would be used at a given spot
in the grammar. Currently the definitions of these are all in the shell. Probably
later SSF will be expanded to allow more language-specific versions of them to
be written in X.gram.

• satisfied. This is a basic test (no parentheses, no arguments). The main
idea is that the node in focus has no obligatory available (unfilled) slots.
For English, it fails also if the node in focus has an extraposed subj slot.
(For cases like Who did you say he thought was there? the rules should
not call satisfied at the spot where the subj is raised.)

• raiseslots. Again a basic test. This copies typical raisable slots like obj
and objprep from the available slots of M to those of H and checks that
the non-raised slots are optional (non-obligatory). Thus satisfied need
not be called.

• satorfill. This is like satisfied, but it can exempt one obligatory
object-type slot.

• satisfill. This can be used either as a basic test or an operator (with
arguments). It is like satisfied, but it exempts an object-type slot S

in a passivized past participle phrase filler where one considers that S is
“filled” implicitly by the passivization. It can be used an operator also
with any number of slot arguments, and it tests that the exempted slot S

(if any) is not among those arguments.

• satfillraise. The idea of the “fill” part of the name is that a pas-
sivized object-type of slot is “filled” implicitly by the passivization. The
idea of the “raise” part is that other raisable slots of M are raised to H .
The idea of the “sat” part is that otherwise the unfilled slots of M are
not obligatory.

• raised. This is a basic test meaning that the slot of the current slot-filling
has been raised.

In addition to these operators and tests dealing with satisfied phrases and
slot raising, there is a basic test that deals with slots in coordination:

• coordslots. This is a basic test which, like coordf, should be called
when M is a left conjunct of a coordination and the lconj slot is being
filled. It matches up the slots of M with those of the right conjunct in H

(which must be present), factoring out basically the ones in common, and
adding these to the available slots of H .

M. C. McCord: A Formal System for Slot Grammar 27

7.6 Sides and order of slot-filling

The basic test le succeeds iff M is on the left of H . The basic test ri

succeeds iff M is on the right of H .

Recall from Section 3 that the parsing algorithm takes care that right mod-
ifiers are attached before left modifiers.

In controlling the order of modifiers among the left modifiers, it is common
to use in X.gram the features:

le1, le2, le3, le4, xtra

These represent increasing degrees to the left, away from the headword, and
xtra can be used when there is an extraposed left modifier. The feature lexicon
Xfeas.lx should show the hierarchy among the lei features like so.

le2 < le1

le3 < le1 le2

le4 < le1 le2 le3

The shell takes care of adding the feature le1 for any left modification. But
X.gram should take care of adding other lei features as desired. For instance
for the ndet slot (for determiners), en.gram does:

(addhf le3)

Similarly, for right modifiers, it is common to use the features:

ri1, ri2, ri3

And the shell takes care of adding the feature ri1 for any right modification.

7.7 Segment positions

The operators of this section test for segment positions – for instance left
and right boundaries of phrases – expressed as interstice numbers, as described
above in Section 2.

• lb, mlb, hlb. This takes a single argument which is matched to the left
boundary of the phrase (as an integer term). Thus for example (mlb >v1)

would assign to v1 the left boundary of M .

• rb, mrb, hrb. Similar, for right boundaries.

• wordno. This matches its argument to the word number of the (headword
of) the phrase in focus.

• wlb. This matches its argument to the left boundary of the headword of
the phrase in focus.

M. C. McCord: A Formal System for Slot Grammar 28

• wrb. Similar, for the right boundary. Note: The difference between these
two boundary numbers could be greater than 1 because the headword
could be a multiword.

• len. This matches its argument to the length of the phrase in focus (right
boundary minus left boundary).

• segrb. This matches its argument against the right boundary number of
the whole current segment. (The left boundary is always 0.)

7.8 Punctuation

Certain punctuation symbols, or tags acting as such, existing textually be-
tween M and H may be taken by the shell as a separator for the slot-filling.
These include the following:

, ; - ... -- --- / \

dash emdash mdash endash ndash

slash slr bslash bsl

For the backslash, one should write “\\” (without the quotes), because \ is an
escape character in the syntax of SSF. There is also a separator consisting of a
hyphen with a blank on either side, and this should be written as “\ -\ ”.

The operator sep tests that at least one of its arguments matches the existing
separator. Example:

(sep , \ -\)

This tests that the separator is either a comma or a hyphen with spaces around
it.

The symbol sep can also be used as a basic test, in which case it means that
there is some separator between M and H .

For convenience, there is a negative version nsep of sep. As a basic test, this
means there is no separator between M and H . As an operator, it means that
none of its arguments is the separator.

The separators listed above can also serve as coordinating conjunctions (ex-
cept that there are constraints on a hyphen when it is not preceded by a blank).
The parsing algorithm takes care of “promoting” these symbols to be conjunc-
tions, and giving them lconj and rconj slots. It also does this for the left
bracketing symbols

([{ lpar lbrk lbracket lbrc

The matching right brackets are required by the parser shell to be on the right
side of the rconj filler.

M. C. McCord: A Formal System for Slot Grammar 29

When a punctuation token is promoted in this way to be a regular phrase
node (as a coordinator), it gets a word number that is equal to its interstice
number plus a certain SG system constant sentlenmax, which is an upper bound
on the number of word tokens in a segmemt that the system will try to parse.
The constant sentlenmax is set by default to 100. Example:

The goat, the cow and the horse.

Here ESG will take the comma, at interstice 2, as a coordinator (and as the
top node of the parse tree). Its node number will be 102.

There are several operators for testing the existing punctuation at other
positions in the segment.

• punc. The first argument should be an interstice number, given as a
constant of a simple variable. The remaining arguments should be for
punctuation symbols, given as constants, simple variables, or put vari-
ables. The test is that at least one of those remaining arguments matches
a punctuation symbol at the given interstice, and evaluation stops when
there is a match. If there is no match (in particular if no punctuation
arguments are given), then the test fails. For example,

(punc 3 , -)

would test that there is a comma or a hyphen at position 3.

• spunc. This is similar to punc, but it tests a fuller version of the punc-
tuation symbols. Each token has a field spword that includes any space
characters before it in the segment, and this operator tests spword fields.

• nopunc. This takes one argument, which should be an interstice number,
and it checks that there are no punctuations there.

• lbpunc, mlbpunc, hlbpunc. This is like punc, but it does not take the
initial interstice argument. Instead, it checks its arguments against the
left boundary of the phrase. For example, (mlbpunc , -) checks that
there is a comma or a hyphen at the left boundary of M .

• rbpunc, mrbpunc, hrbpunc. Similar, but for the right boundary.

• lbrbpunc. The first two arguments should be constants or simple variables
whose values are interstice numbers m and n respectively, with m < n.
The remaining arguments should represent punctuation symbols – as con-
stants, simple variables, or put variables. The test checks whether one of
those punctuations occurs at some interstice i strictly between m and n,
i.e. m < i < n. This would be equivalent to calling punc at every such
i and with the same punctuation arguments – succeeding and stopping
when a match is found, otherwise failing. Thus e.g. (lbrbpunc 2 6 ,)

would check that there is a comma punctuation somewhere strictly be-
tween positions 2 and 6.

M. C. McCord: A Formal System for Slot Grammar 30

• phpunc. This is similar to lbrbpunc, but where the first two arguments
are replaced by the left and right boundaries of the phrase in focus. Thus
e.g. (phpunc ,) would check that there is a comma somewhere in the
interior of the phrase in focus.

• phspunc. This is similar to phpunc, but it checks the interior of the phrase
for the spword forms of punctuation tokens.

• phnopunc. This is a basic test that checks that the interior of the phrase
in focus is free of all punctuation.

• quoted. This is a basic test that checks that the phrase in focus is quoted
by any of several types of matching quotes.

• segend. This takes one argument, which is matched against the segment
terminator punctuation, if such is present. It fails if none is present. For
example, if the sentence is

John asked, “Where are you going?”

then (segend >v1) would bind v1 to a question mark (term).

7.9 Exploring parse trees

Exploration of parse trees is accomplished by using focus operators, which
can set the node in focus. Many SSF operators have an implicit node in focus,
so that they are then dealing with that phrase. A focus operator can have any
number of arguments, and these should be SSF tests. The new node in focus
is local to these arguments. Of course further (local) shifts of focus may occur
within an argument whose operator is itself a focus operator. Recall that for
the top level test of a slot rule (its Body), the node in focus is M (the modifier
phrase for the rule). The focus operators are as follows:

• A simple variable vi. The variable should be bound to a phrase (node) P ,
and then the node in focus becomes P for the arguments of this operator.
One can bind a variable vi to a phrase P , when this variable appears in put
form >vi as a basic test argument in another test. Such binding of variables
is more than local to the current test. It persists for the remainder of the
SSF interpretation of the rule, unless it is rebound.

• h. This sets the focus to H (the higher phrase for the slot-filling). The
symbol h is overloaded, because when it occurs as a feature, it convention-
ally means the feature “human”.

• m. This sets the focus to M . This symbol is also overloaded, because when
it occurs as a feature, it conventionally means the feature “male”.

M. C. McCord: A Formal System for Slot Grammar 31

• lmod. The interpreter goes through the left modifiers of the current node
in focus in left-to-right sentence order, and for each such modifier x tests
whether all the arguments of lmod are true with x as node in focus. When
the arguments of lmod are being tested, the operator slot will match its
argument against the slot being filled by the modifier, and the operator
opt will match its argument against the slot option for the modifier. The
slot operator can also be given two arguments, where the first is the slot
and the second is the option. If a slot test is used, a slight efficiency is
gained by making it the first argument of lmod. If all the arguments of
lmod are true for some modifier x, then the lmod test succeeds; otherwise
it fails.

• rmod. This is similar to lmod, but using right modifiers. And the right
modifiers are visited in right-to-left sentence order.

• mod. The test

(mod args)

is equivalent to

(| (rmod args) (lmod args))

• hlmod. This takes H as the node in focus and applies lmod. So

(hlmod a b c ...)

is equivalent to:

(h (lmod a b c ...))

• hrmod. Similarly, this takes H as the node in focus and applies rmod.

• firstlmod. This is like lmod but it checks only the first left modifier.
Similarly there are lastlmod, firstrmod, and lastrmod, where in all
cases, first and last refer to left-right sentence order.

• onlylmod. This is like lmod but it checks there is only one left modifier,
and then tests with that as the node in focus. Similarly there is onlyrmod.

• alllmod (to be read as “all lmod”). This does a universal quantification
over the left modifiers of the node in focus. (The operator lmod does an
existential quantification.) Namely, the test

(alllmod a b c ...)

succeeds iff, for each left modifier P of the node in focus,

(& a b c ...)

M. C. McCord: A Formal System for Slot Grammar 32

holds with P as the node in focus – assuming that a is not a slot test. If
the first argument is a slot test, like so:

(alllmod (slot S) b c ...)

then this succeeds iff, for each left modifier P filling slot S of the node in
focus,

(& b c ...)

holds with P as the node in focus. So the slot condition constrains the
modifiers being quantified over instead of being required as a condition
that has to hold for each modifier. It’s the same as if you had:

(alllmod (if (slot S) (& b c ...)))

Variants are allowed where the slot test specifies an option also.

• allrmod. Similar to alllmod but quantifies over right modifiers.

• allmod. Similar. Quantifies first over left modifiers, then over right.

7.10 Alternative analyses

For handling disambiguation during parsing, it is quite useful in grammar
rules to be able to examine alternative analyses of the current phrase or word
being dealt with. There are several SSF operators for doing this conveniently.
They examine the starter phrases that are built before parsing proper, as de-
scribed in Section 3 above. When a word has several morpholexical analyses,
it will give rise to corresponding starter phrases. The operators described here
can take any number of arguments, which should be tests – except in the case
of altf and its variants.

• alt, altm, alth. These operators look at the current phrase P (phrase
in focus, M or H , respectively) and go through the starter phrases Q

that have the same span as the headword of P . For each such Q, the
argument tests of the operator are applied with Q as the phrase in focus.
Any success of such an application results in success of the original test.

Here is an example. Suppose that we want to say that if a word can be
both an adjective and a noun, then only the adjective form can be used
to premodify another noun. We can implement this condition as follows:
In the rule that attaches noun premodifiers, we can add the constraint:

(^ (altm (pos adj)))

And then of course the rule that attaches adjectives has to be there.

M. C. McCord: A Formal System for Slot Grammar 33

• altf, altmf, althf. This is similar, but the arguments should be features,
and these are tested against the features of the alternative analyses. There
is the equivalence:

(altf a b a ...) = (alt (f a b c ...))

• altlbrb. This should have an initial two arguments that represent the left
and right boundaries of the starter phrases to be examined. The remaining
arguments are applied as tests to such starter phrases (as phrase in focus).

• lbalt, lbaltm, lbalth. These examine starter phrases whose left bound-
aries coincide with the left boundary of the current phrase, and apply the
argument tests to those phrases. So they are basically alternative analyses
of the first word of the current phrase.

• rbalt, rbaltm, rbalth. Similar, but the starter phrases have to have right
boundaries that coincide with the right boundary of the current phrase.

• prevalt, prevaltm, prevalth. Similar, but the starter phrases have to
have right boundaries that coincide with the left boundary of the current
phrase. So we are looking at alternative analyses of the word just before
the current phrase.

• nextalt, nextaltm, nextalth. Similar, but the starter phrases have to
have left boundaries that coincide with the right boundary of the current
phrase. So we are looking at alternative analyses of the word just after
the current phrase.

7.11 Arithmetic operations

Arithmetic expressions can be built up recursively using the usual SSF syn-
tax, and using the four operators:

+ - * /

Each arithmetic operator can take any number of arguments, which recursively
are arithmetic expressions. Base arithmetic expressions are integer constants,
double constants, and simple variables. Example:

(+ 3 v2 v5 v7 (* 0.15 v8 (- v3 6.0)))

is like

3 + v2 + v5 + v7 + 0.15 * v8 * (v3 - 6)

in normal infix notation.

All the arithmetic is done on the level of double. Integer constants are
converted to doubles, and variables with integer (term) values are converted to
doubles. The value returned is a term of type double.

M. C. McCord: A Formal System for Slot Grammar 34

If an arithmetic operator has no arguments, then the value of the expression
is 0.0 (in the intermediate computation).

If + or * has one argument, then its value is the value of that one argument. If
- has one argument, then its value is the negative of the value of that argument.
If / has one argument, then its value is the reciprocal of the value of that
argument.

For two or more arguments, the result is as if you inserted the operator as
an infix operator between the arguments (with the usual left associativity).

Variables whose values are not numeric (or without a value at all) are treated
as if the value were 0.0.

Division by 0.0 is generally ”safe” (shouldn’t cause a crash) and the result is
0.0. (The test for 0.0 is x == 0.0. There might be some overflow complications
if the thing is very close to 0.0 but not equal.)

There are four test operators for numerical comparisons (besides the general
equality operator = described above):

<= < >= >

Each takes two arguments, which can be any arithmetic expressions, as just de-
scribed. These expressions are evaluated to doubles, and the resulting numbers
are compared in the usual way.

Assignment of the value of an arithmetic expression can be done using the
operator calc. This takes two arguments, the first being a put variable and
the second an arithmetic expression. The second argument is evaluated, and its
value (as a term) is assigned to the variable of the first argument. The operation
always succeeds. Example: If the variable v1 has value 5 and we call

(calc >v2 (/ v1 2))

then v2 will be assigned 2.5.

7.12 Parse scoring operations

In Section 4 we described the parse scoring system. There are three SSF
operators that affect parse scoring.

• eval. This takes one argument, which should be an arithmetic expression.
That expression is evaluated, and its value is added to the current parse
score of H . (Thus a negative argument for eval creates a reward.) The
change is only for the original H of the slot-filling rule, even if eval is
called from a context with a different node in focus.

• prunediff. In Section 4 we mentioned the “fuzz factor” prunedelta

for loosening the effects of parse space pruning (and for English this has
the default value of 0). The operator prunediff allows for a “local” or

M. C. McCord: A Formal System for Slot Grammar 35

temporary effect like that of prunedelta. It takes one argument, which
should be an arithmetic expression, and the parser takes the maximum
of prunedelta and the value of that expression as the fuzz factor for the
current slot-filling. This operation should only be called from the bodies
of the special slot rules for arb and top. Here is an example from en.gram,
within the arb rule:

(if (^ (slot top))

(if (& (hf vfin)

(hcite be do have will can may shall must))

(prunediff 1.00000001)))

This loosens up pruning in cases where we are modifying a finite auxiliary
verb.

• ceval. This should be used in handling coordination, and called when
filling the left conjunct slot lconj. It causes certain general parse score
changes to be done to H (the conjoined phrase), having mainly to do with
parallelism in coordination. Currently it uses no arguments, and is then
just called like so: (ceval).

7.13 String operations

The operations described in this section deal witb manipulating strings. The
first one, steq, is quite general, and can be used for both analyzing and synthe-
sizing strings via pattern matching. We have described pattern matching above
on the level of lists (as terms), but this is on the level of the list of characters
in a string.

• steq. This is called like so:

(steq Arg Pattern)

For analysis of strings, Arg should be a simple variable or a string (or
atom) constant, and Pattern should be a list of terms of the following
form:

1. a string (or atom) constant

2. a simple variable whose value is a string or atom

3. a put variable, which matches and is assigned to a single character
of Arg

4. a “put sublist variable”, of the form >*vi, which matches and is
assigned to a substring of Arg

Example:

M. C. McCord: A Formal System for Slot Grammar 36

(&

(= >v1 constitution)

(steq v1 (>v2 >*v3 tut >*v4 >v5))

)

This assigns:

v2 = c, v3 = onsti, v4 = io, v5 = n

For synthesis of strings, Arg should be a put variable, and Pattern

should consist of ingredients of type (1) or (2) above (no put variables).
We can then expand the preceding example to:

(&

(= >v1 constitution)

(steq v1 (>v2 >*v3 tut >*v4 >v5))

(steq >v6 (v5 v4 v3 v2))

)

which assigns v6 = nioonstic.

Here is a sequence of tests from en.gram that handles possessive plurals
as in “managers’ offices”:

(lcword >v1) (steq v1 (>*v2 s))

(rb >v3) (punc v3 ’)

(lb >v4) (^ (punc v4 ’))

It tests that M (like managers’) ends in s, is followed by ’, and is not
preceded by ’.

• haschr. A call (haschr x y) tests that the string x contains at least one
of the characters in string y. The arguments can be constants or variables.
This operation can be expressed in terms of steq, but for the purpose, this
one is simpler and more efficient to use. One could test that the phrase
in focus has a multiword headword via these two tests:

(cite >v1) (haschr v1 \ -/)

• allcaps. This takes one argument, which should be a constant or simple
variable, and it tests that the value, as a string, consists of all capital
letters.

• capfirst. This is called similarly, and it checks that the string begins
with a capital letter and any remaining characters are lower case.

• lcseg. This is a basic test that checks that the current segment is an “lc
(lower case) segment”, which basically means that is not like a headline
or header phrase, where “content words” are capitalized. It checks that
at least one noun or verb in the segment is in lower case.

M. C. McCord: A Formal System for Slot Grammar 37

7.14 Flags

• flag. This takes one argument which should be an XSG system flag
name, and it checks that this flag is turned on.

• sa. This takes any number of arguments that should name subject areas
(like entertainment), and it checks that at least one of these is active.

Flags and subject areas can be controlled in the API to XSG – see [10],
“Using Slot Grammar”.

7.15 I/O

• prt. This takes any number of arguments, which are evaluated, and the
values are printed in succession on the standard SG output. The operation
always succeeds. This is useful for debugging rules by inserting such print
commands in the rule bodies.

• prtnl. This does the same as prt, and then prints a newline at the end.
(Note then that (prtnl) would simply print a newline.)

7.16 Postponed tests

As mentioned above, the right modifiers of a phrase are attached before the
left modifiers. And yet, in attaching a right modifier, occasionally one needs to
know what kinds of left modifiers are (eventually) present. For example, in the
phrase

as happy as John

the right modifier PP as John fills an adjunct slot (called acompar in en.gram)
for the adjective happy. And yet we would want to know that happy has a left
modifier of as or so. We can accomplish such a test on the current H with the
operator htest.

This operator can take any number of arguments, which should be tests. But
the tests are not applied for the current slot-filling. They are postponed until
the current H phrase itself (hence the name “htest”) becomes a filler, or is to be
taken as the top node, perhaps after receiving more modifiers than the current
one. This is accomplished in the system by storing the argument tests of htest
in the phrase tests field of the current H , mentioned above in Section 2. As
the current H is built up by receiving more modifiers, any calls to htest will
add more phrase tests to H . Then they get applied, and must succeed, when
H is finally used as a modifier (or top node) itself. A call to htest itself always
succeeds in the slot rule that calls it. But the new H created by that slot-filling
will never “live” unless the argument tests succeed when H is finally used.

When the argument tests of htest are finally applied, there is a context shift,
because what was a higher phrase (H) will now be a modifier (M). And there

M. C. McCord: A Formal System for Slot Grammar 38

will be a still higher H now (unless we are at a top node). So in the argument
tests of htest, operators that apply to current H should be written as if that
phrase is a modifier, etc.

Here is an example extracted from the acompar adjunct slot-filling rule in
en.gram.

prep <

(hpos adj)

ri

(mf asprep)

satisfied

(htest (lmod (cite as so)) (eval -1))

(setslot acompar p)

The first argument test of htest checks that H has a left modifier with citation
form as or so, and the second argument provides a reward for this.

8 Tracing, debugging and testing

In this section we discuss some tools for grammar development. To start off,
we look at flags that can be set to control various aspects of parsing.

To set a flag F on (or off) in interactive (Input sentence) mode, one can
type +F or -F respectively. Or one can type +F n to set the value to any
non-negative integer value n. (-F is equivalent to +F 0.) One can also set flags
on or off when invoking the XSG executable by giving it arguments like so:

-on Flag

-off Flag

Here is a list (in alphabetical order) of some relevant available flags and their
meanings. We will usually explain what the effect of having the flag on is.

all. Process all of the top-level parses. When all is off, only the first (best-
ranked) parse is processed. Processing a parse means displaying it, if
the flag syn is on, and calling any post-parse functions that one sets up
through the XSG API. But for developing a grammar it is usually best
to have all on.

aotrace. Trace the action of affix operations in morphology (for versions of
XSG that use the SG morphology system).

deptree. Controls the basic form of parse tree displays. We describe this
below.

M. C. McCord: A Formal System for Slot Grammar 39

derivmorph. This enables derivational morphology for versions of XSG that
use SG morphology. It is on by default. If it is off, and a word struc-
ture has a derivational (non-inflectional) affix, then morphology skips that
structure.

displinecut. If the current input is within a display tag (see dodisplays),
then newlines break segments, i.e., segments cannot span across lines. On
by default.

dodisplays. Certain tags are designated display tags in the shell (and which
ones they are depends on the formatting language). The flag dodisplays,
which is on by default, enables processing (parsing, etc.) of text within
display (begin and end) tags.

doshowstat. Show parsing statistics for a run of XSG on a document. Output
goes at the end of the output file. On by default.

echoseg. Echo (print out) the input segment for each parse. On by default.

echosegext. Echo segment-external material in output. Off by default.

fftrace. Activates strongest (most detailed) of parse tracing. Discussed
below.

ftrace. Activates next strongest of parse tracing (after fftrace). Discussed
below.

fullfeas. Activates display of additional phrase features in parse output,
namely the features:

le1, le2, le3, le4, ri1, ri2, ri3,

xtra, cord, comcord, unitph, lcase, glom

Among the len, which are customarily used to indicate presence of left
modifiers, it shows only the strongest one – the one with greatest n which
the phrase has as a feature. Similarly for the rin, for right modifiers.
This flag is off by default.

html. Enables processing of HTML documents. On by default. The flag sgml

should also be set on when html is on.

linemode. Causes newlines to break segments (so that segments cannot span
across lines). Useful for regression testing. A segment (on a line) need
not have a segment terminator (like a period, question mark, etc.). Off
by default.

linesyn. Causes the parse display to be written all on one line. Useful for
regression testing. Off by default.

longlineout. When the input segment is echoed, it is written all on one line.
Useful for regression testing. Off by default.

M. C. McCord: A Formal System for Slot Grammar 40

ltrace. Enables tracing of the results of morpholexical analysis. Often very
useful for debugging X.gram.

net. Enables building of the SG network representation of each parse tree.
On by default.

nettrace. Enables tracing output of the SG network.

noparse. If this flag is turned on, then only the morpholexical part of parsing
will be done; the chart parsing will be skipped.

otext. Enables processing of Otext documents. The flag sgml should also be
turned on when otext is on. Off by default.

ptrace. This enables the weakest form of parse tracing. Discussed below.

predargs. This is on by default, and in parse displays, it enables word senses
to be shown with their arguments, like:

believe2(2,1,3,4)

When it is off, you would see just believe2 in the head sense position.

predargslots. When this is turned on, it causes word sense predications to
be displayed with slot names attached to the arguments, like so:

believe2(2,subj:1,obj:3,comp:4)

prefnp. This is used in ESG. When it is on, short top-level segments that
have some NP analysis are preferred as NPs – the shorter, the more
preference. Off by default.

printinc. When this is turned on, and a file fn.ft is parsed, the segment
strings that produce an incomplete parse will be output to the file fn.inc.
This is quite useful for developing X.gram; it is a “free” way of finding
bad parses that should be taken care of.

printsentno. When this is on (and it is on by default), and a file is parsed,
the segment number of each segment will be printed before the segment
string in the output file.

prune. Enables parse space pruning. On by default.

semicolonsep. Causes semicolons to be treated as segment terminators. It is
on by default. When it is off, semicolons will be treated as punctuation
conjunctions.

sgml. Enables processing of SGML texts. It is on by default. Even when it is
on, plain text is handled because plain text is just viewed as SGML text
with no tags.

M. C. McCord: A Formal System for Slot Grammar 41

showaopts. When this is turned on, the chosen option O for each adjunct
slot S will be shown in parses in the form S(O). So for example for the
determiner the, one would see the slot ndet(dt) instead of just ndet.
Options are always shown for complement slots.

shownumparses. In parse output, shows the total number of parses obtained.
On by default.

shownumsent. When this is on and a file is parsed, the segment number of
each segment will be printed to the console. On by default.

showsense. In word sense predications in parse displays, this causes sense
names of the words to be used as the predicates. It is overridden by
showssense. If both showsense and showssense are off, citation forms
will be used for the predicates. On by default.

showsf. Show the semantic types for each phrase in the parse tree. Off by
default.

showslots. Show the available slots of each phrase in the parse tree. Off by
default.

showssense. For the predicate of each word sense predication in parse dis-
plays, this shows a deeper kind of sense expression for some word senses
(details not given here). Off by default.

spacelinecut. If this on, then each line of input text that consists only
whitespace will break the current segment. Off by default.

stortrace. Causes tracing of storage used for analyzing each sentence. Off
by default.

syn. Causes parse trees to be printed out. On by default.

timit. Causes tracing of time used for analyzing each sentence. On by default.

toktrace. Causes tracing of tokenization.

toktrace0. Causes tracing of tokenization at a stage prior to that for toktrace;
the state of tokenization is shown before the call to a function adjustsegment,
which is responsible for various adjustments to the token list, such as split-
ting of contractions.

wstrace. Causes tracing of affix stripping in SG morphology (the “ws” is for
“word structure”).

xout. When it is on, results go, in interactive mode, to the file sg.out. When
it is off, they go to the console. Off by default.

M. C. McCord: A Formal System for Slot Grammar 42

The flag deptree, which controls parse tree display, can have any of the
values 0, 1, 2, or 3. The default value is 1. Let us show what the displays look
like for ESG and the sentence John sees Mary. You can experiment with these
by typing

+deptree n.

in Input sentence mode, where n is the desired value. For value 0, the display
is:

top verb vfin vpres sg vsg vsubj thatcpref

subj(n) noun propn sg h

John1(1)

see1(2,1,3)

obj(n) noun propn sg h

Mary1(3)

For value 1 (the default), it is the standard SG display:

• subj(n) John1(1) noun propn sg h
• top see1(2,1,3) verb vfin vpres sg vsubj thatcpref

• obj(n) Mary1(3) noun propn sg h

For value 2, we get an XML-tagged form:

<seg start="0" end="15" text="John sees Mary.">

<ph id="2" slot="top" f="verb vfin vpres sg vsg vsubj thatcpref">

<ph id="1" slot="subj(n)" f="noun propn sg h">

<hd w="John" c="John" s="John1" a=""/>

</ph>

<hd w="sees" c="see" s="see1" a="1,3"/>

<ph id="3" slot="obj(n)" f="noun propn sg h">

<hd w="Mary" c="Mary" s="Mary1" a=""/>

</ph>

</ph>

</seg>

For value 3, we get the same tagged display without indentation:

<seg start="0" end="15" text="John sees Mary.">

<ph id="2" slot="top" f="verb vfin vpres sg vsg vsubj thatcpref">

M. C. McCord: A Formal System for Slot Grammar 43

<ph id="1" slot="subj(n)" f="noun propn sg h">

<hd w="John" c="John" s="John1" a=""/>

</ph>

<hd w="sees" c="see" s="see1" a="1,3"/>

<ph id="3" slot="obj(n)" f="noun propn sg h">

<hd w="Mary" c="Mary" s="Mary1" a=""/>

</ph>

</ph>

</seg>

This completes the inventory of flags relevant for grammar development. Let
us look now at ways of invoking the parser.

The most immediate method of invoking the parser is just to call the exe-
cutable XSG with no arguments, so that it enters interactive mode, in a loop
that asks for input with an Input sentence prompt. In this mode you can
type in sentences, perhaps across several lines, until the segmenter breaks the
segment. The output goes to the console if the flag xout is off; otherwise the
output goes to the file sg.out, and the current sgeditor is called on that file.

On Windows this editor is set by default to notepad or kedit (depending on
the compilation) and on AIX to emacs. You can set the name of the SG editor
in Input sentence mode if you type:

sgeditor NameOfEditor.

Or when you invoke the XSG executable, you can give it the parameters:

-sgeditor NameOfEditor

In interactive mode, when you are typing in various sentences and you want
to repeat the parsing of the most recent sentence (perhaps after setting some
flags or giving other commands), you can type:

redo.

In interactive mode you can make XSG process a whole file by typing:

do InF ile OutF ile.

If you omit the OutF ile, then output will go either to sg.out or to the console
according as xout is on or off. It will send results to sg.out a segment at a
time.

Another way to process a whole file is to invoke the XSG executable with
arguments as follows:

XSG -dofile InF ile OutF ile

M. C. McCord: A Formal System for Slot Grammar 44

The InF ile can actually be a file pattern, like \texts*.htm, and it will process
all the files matching that pattern, sending all the output to the same output
file. You can omit the OutF ile, in which case the output will all go to sg.out

(all the results in one step). Or you can specify OutF ile as the empty string "",
in which case the output will go to sg.out one segment at a time if xout is on,
or to the console otherwise. You can give XSG -dofile optional arguments of
the form:

-on Flag

-off Flag

-sa SubjectArea(s)

to turn a flag on or off or to set subject areas for the run. If there is more than
one subject area, you should use -sa just once, and let its “argument” contain
all the desired subject areas, enclosed in double quotes and separated by blanks,
like so:

fsg -dofile -sa "computers instructions"

Probably the most useful kind of interface in grammar development is ldo,
which works only with certain editors. In interactive mode with XSG you can
type:

ldo File.

This will open up File with the editor. Then you can place the cursor on
the first line of any sentence (the cursor need not be at the beginning of the
sentence) and press F6. Then XSG will parse that sentence and show the results
in sg.out. When you press F3 in the editor, you will return to editing File in
the same spot you were.

You can edit and change sentences in File, in order to experiment with
variations of them, and again press F6 to parse them. As long as you do not
save the file, when you return from sg.out, File will be in its original state
(before you made a variation of the test sentence). This convenient way of trying
variations of sentences is one thing that makes ldo so valuable in debugging the
grammar. When you have a problem sentence to work on, you can reduce it to
the simplest form where the problem still exists. For instance if the parse of a
sentence is incomplete, there may be some subclause that does not parse, and
the problem lies there.

When you are editing File in ldo mode, you can press F3 to return to the
XSG command line. This will leave the file in its original state, even if you have
made changes – as long as you do not save the file. Of course you may want
to save the file, because you have found some useful variations of sentences to
work on later.

Once you have used the above ldo command with a given file argument, you
can just type

M. C. McCord: A Formal System for Slot Grammar 45

ldo.

even after leaving XSG and reinvoking it, and it will return to the same file you
were working on, and on the same line where the cursor was when you left the
file with F3.

In preparing a test file for use with ldo, you should arrange it so that no two
sentences share any of the same line. Start each new sentence on a new line.

The ldo software exists partly in the C code of the SG shell and partly in
the macro language of the editor. Currently there are editor macro programs
in Kedit on Windows and Xedit on VM.

As you can see from the above inventory of flags, the main flags for enabling
parse tracing are these:

ptrace, ftrace, fftrace

They show increasing levels of information about slot-filling attempts.

With ptrace, you see basic information about which phrase analyses are
added into the chart during parsing, and which ones are not added or are deleted
because of parse space pruning. For instance with the sentence

I ate some good chocolate.

one of the outputs of +ptrace would be:

Phrase (2 to 5, chocolate1) added. Evaluation (0.000000, -0.800000).

• ndet some1(3) det sg indef prefdet
• nadj good1(4,u,u) adj adjnoun (aobj p):4 (aobj p inf thatc ft):4

• top chocolate1(5) noun cn sg

Note the “2 to 5”. These are the left and right boundaries of the added phrase.
In searching for the analyses for a given subphrase of the sentence, you can use
such boundary numbers and the form “m to n”. The pair of numbers after
“Evaluation” are the reward and eval fields of the added phrase. Looking at
the output from ptrace is a good way of learning the basic steps of the chart
parsing.

With ftrace, you see additional information – about attempts to fill specific
slots. Consider the situation for I ate some good chocolate where the noun
phrase some good chocolate has been formed and the parser tries to attach it to
I ate by filling the obj slot of the latter. Then ftrace causes the message:

slot = obj, mod = 2 5 chocolate1, matrix = 0 2 eat1 (complement)

We see here (a) the slot being tried, (b) the (possible) modifier’s boundaries and
headword sense, (c) similar things for the matrix phrase, and (d) the type of

M. C. McCord: A Formal System for Slot Grammar 46

slot. After such a slot message, we see the options of that slot being attempted,
in order. For ftrace, each option is displayed only by its name, an arrow, and
the part of speech of the filler. If an option rule succeeds, we see a message
“option matched”. Then if the slot rule succeeds, we see messages for that
also. In our example then we see:

n ==> noun

option matched

slot rule or ’satisfied’ succeeded

slot = obj, filled

And when a slot-filling succeeds, we see a message (as for ptrace) for adding
the resulting new phrase, in this case:

Phrase (0 to 5, eat1) added. Evaluation (0.000000, -0.780000).

• subj(n) I1(1) noun pron pl pers1 nom h perspron
• top eat1(2,u,u,u) verb vfin vpast pl vsubj (comp pt pt):2

• ndet some1(3) det sg indef prefdet
• nadj good1(4,u,u) adj adjnoun (aobj p):4 (aobj p inf thatc ft):4

• obj(n) chocolate1(5) noun cn sg

With fftrace, we get additional information about features. After a line
about a particular slot, we see also the features of the candidate modifier and
matrix, like so:

slot = obj, mod = 2 5 chocolate1, matrix = 0 2 eat1 (complement)

mf: noun cn sg

hf: verb vfin vpast pl vsubj

And for an attempted slot option, we see the whole representation of the slot
option rule, with all the features, like so:

n ==> noun (^ wh) < ri (^ vpass ri3) (+ ri2)

If no slot option succeeds, then ftrace and fftrace will just print all the
options for that slot, with no message about failure. For example, for the
subphrases I ate and some good chocolate of our sample sentence, ESG will also
try to fill the comp slot of the verb sense eat1, because the lexical entry for eat
begins as:

eat

< v obj (pt out up away)

...

For this, fftrace prints out:

M. C. McCord: A Formal System for Slot Grammar 47

slot = comp, mod = 2 5 chocolate1, matrix = 0 2 eat1 (complement)

mf: noun cn sg

hf: verb vfin vpast pl vsubj

pt ==> prep (^ ri1) ctest=out;up;away < ri (^ ri3) (+ ri2)

pt ==> adv partf (^ ri1) ctest=out;up;away < ri (^ ri3) (+ ri2)

No option succeeds because the filler is an NP .

For debugging a grammar, it is also useful to insert print statements in slot
rules using operators prt or prtnl (see Subsection 7.11).

Regression testing is an extremely important part of grammar development.
The SG shell provides convenient tools for doing this.

To make the regression comparisons convenient, the system needs to output
the results of parsing a test file in lines of the form

Segment1
Parse1

Segment2
Parse2 . . .

where of course Parsei is the parse tree of text Segmenti. Each text segment
and each parse tree need to be written on a single line.

To get this set up, it is best to get each test file in a form where there is
exactly one segment per line. There is a “built-in” SG utility for doing this. If
InF ile is your raw test file (where segments may span several lines and where
there may be lots of tags), you can type:

XSG -segfile -notags InF ile

The resulting one-per-line segments will be put in a file which has the same
name as InF ile but has extension .seg. The file will go in the same directory
as InF ile. The InF ile name can be a file pattern instead of the name of a
single file, and then -segfile processes all the files matching that pattern and
puts all the segments in a single file. In this case it is best to give a file name
to the output file, and this is done with an extra pair of arguments:

-outfname FName

So for example we might do:

ssg -segfile -notags \texts*.htm -outfname htmtest

Then all the segments from files of the form \texts*.htm will put (one per
line) in the output file \texts\htmtest.seg.

As with -dofile, the command -segfile allows arguments

M. C. McCord: A Formal System for Slot Grammar 48

-on Flag

-off Flag

for turning on or off flags.

The next step in regression testing is to run XSG on such segment files in
order to get output in the desired form of alternating lines of text segments
and parse trees, described above. You can do this with a command that is very
similar to -dofile in its form and options:

XSG -sgtest InF ile OutF ile

Again, the InF ile string can name a single string or a pattern of files. Again,
you can specify arguments that turn flags on or off, or set subject areas, in the
same forms as for -dofile. If the InF ile has been created by -segfile, then
you should give -sgtest the additional arguments -on linemode (see page 39
for the flag linemode).

The next step, after a running a regression test more than once on the same
input, is to compare the results with those of the previous run. For this, you
can use:

XSG -compare OldF ile NewFile -compfile CompFile

Here the OldF ile is the previous test result file, NewFile is the new one, and
CompFile is where the comparisons (differences) go. In the comparison file,
-compare will show only the test segments where there is a different parse. For
each of these, it prints out the segment itself, the old parse, and the new parse.
Even though the parses in the test result files are all on one line, here they will
be displayed in the usual form (according to the current setting for deptree).

Here is a more specific example for the whole process, illustrated for Win-
dows. Suppose you have a test file stest1.seg of Spanish segments in the
desired form – one segment per line. Since you do this testing regularly, you
make a .bat file stest1.bat with the three lines:

copy stest1.new stest1.old

erase stest1.new

ssg -sgtest stest1.seg stest1.new -on linemode

So we run stest1, make some improvements to SSG, and run stest1 again. For
the comparison, we have another .bat file scomp1.bat with the two following
lines in it:

ssg -compare stest1.old stest1.new -compfile stest1.cmp

kedit stest1.cmp

It is possible to run -compare on a whole collection of test result files. The
comparisons get put in a single comparison file. Here is how you do it. Suppose
we have several test files, as follows, maybe representing our whole regression
test suite:

M. C. McCord: A Formal System for Slot Grammar 49

test1.seg

test2.seg

. . .

Assume that we just run -sgtest separately on these files. To automate it, we
could have a .bat file regtest.bat with the contents:

copy test1.new test1.old

erase test1.new

XSG -sgtest test1.seg test1.new -on linemode

copy test2.new test2.old

erase test2.new

XSG -sgtest test2.seg test2.new -on linemode

. . .

We also create a file list file for -compare with contents:

test1.old test1.new

test2.old test2.new

. . .

Call this file regcomp.fl (the name is arbitrary). Finally, we make another
.bat file, regcomp.bat, with the two following lines in it:

XSG -compare -flist regcomp.fl -compfile reg.cmp

kedit reg.cmp

Then when we execute regcomp, we will be editing a single file reg.cmp that
shows all the parse differences for our whole regression test suite. So regression
testing becomes easy and automated, consisting just of calling regtest and
regcomp and looking at the comparisons in a single file. Each comparison will
be labeled with the name of the test file that it originated in.

The reader should be able to see the general rule about the -flist version
of -compare. Instead of giving -compare a single pair (OldF ile, NewFile), of
file names, we put all those pairs of names in a file Pairs, and then call

XSG -compare -flist Pairs -compfile CompFile

In the preceding examples, we have omitted directory paths, but any of the
file names can be qualified by such paths.

References

[1] Veronica Dahl and Michael C.McCord. Treating coordination in logic gram-
mars. Computational Linguistics, 9:69–91, 1983.

M. C. McCord: A Formal System for Slot Grammar 50

[2] Shalom Lappin and Michael C. McCord. Anaphora resolution in Slot
Grammar. Computational Linguistics, 16:197–212, 1990.

[3] Shalom Lappin and Michael C. McCord. A syntactic filter on pronominal
anaphora for Slot Grammar. In Proceedings of the 28th Annual Meeting of
the ACL, pages 135–142, 1990.

[4] Michael C. McCord. Slot Grammars. Computational Linguistics, 6:31–43,
1980.

[5] Michael C. McCord. Using slots and modifiers in logic grammars for natural
language. Artificial Intelligence, 18:327–367, 1982.

[6] Michael C. McCord. Modular logic grammars. In Proceedings of the 23rd
Annual Meeting of the ACL, pages 104–117, 1985.

[7] Michael C. McCord. Slot Grammar: A system for simpler construction
of practical natural language grammars. In R. Studer, editor, Natural
Language and Logic: International Scientific Symposium, Lecture Notes
in Computer Science, pages 118–145. Springer Verlag, Berlin, 1990.

[8] Michael C. McCord. Heuristics for broad-coverage natural language pars-
ing. In Proceedings of the ARPA Human Language Technology Workshop,
pages 127–132. Morgan-Kaufmann, 1993.

[9] Michael C. McCord. SLF: The Slot Grammar lexical formalism. Technical
report, IBM T. J. Watson Research Center, 2006. RC 23977.

[10] Michael C. McCord. Using Slot Grammar. Technical report, IBM T. J.
Watson Research Center, 2006. RC 23978.

[11] Michael C. McCord and Susanne Wolff. The lexicon and morphology for
LMT, a prolog-based MT system. Technical report, IBM T. J. Watson
Research Center, 1988. RC 13403.

[12] Adrian Walker, Michael C. McCord, John F. Sowa, and Walter G. Wilson.
Knowledge Systems and Prolog: A Logical Approach to Expert Systems and
Natural Language Processing. Addison-Wesley, Reading, MA, 1987.

