RC23977 (W0607-020) July 10, 2006
Computer Science

IBM Research Report

The Slot Grammar Lexical Formalism

Michael C. McCord
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

= = Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

The Slot Grammar Lexical Formalism

Michael C. McCord
IBM T. J. Watson Research Center

Abstract

The purpose of this report is to describe a formalism, SLF, used for
building Slot Grammar (SG) lexicons. SLF provides a rich descriptive
language for lexical entries, with a system of defaults that also allows
very simple entries in the cases where less detail is called for. Word sense
specifications in entries can include any of the following ingredients, where
only the first one is obligatory: (a) Part of speech, (b) (complement) slot
frame, (c) features (both morphosyntactic and semantic), (d) subject area
tests, (e) sense rewards or penalties (feeding into parse scoring), and (f)
sense name. Lexical entries can also specify support verb constructions
(or analogs for other parts of speech), and can provide idiosyncratic inflec-
tional information. Index words of entries can be single words or multi-
words. The slot frames of SLF lexical entries are the most distinctive and
most powerful ingredients. Slots have a dual role — indicating logical ar-
guments of word sense predicates, and acting as grammatical relations. A
great deal of SG analysis is under the control of lexical slot frames. A slot
specification in SLF includes the slot’s name plus optionally a list of op-
tions offering a disjunctive choice of ways the slot can be filled. Each slot
option specifies tests on the filler, and there is an expressive sublanguage
of SLF for describing these tests.

1 Introduction

In this report we describe the formalism used for Slot Grammar lexicons,
which we call SLF (Slot Grammar Lexical Formalism). Slot Grammar (SG)
is dependency-oriented, and a great deal of the analysis is under the control
of complement slot frames associated in the lexicon with senses of the head
words of phrases. Slots (the members of slot frames) have a dual role. They
indicate logical arguments of word sense predicates, and they act as grammatical
relations. Examples of slots are subj (subject), obj (direct object) and iobj
(indirect object). Parsing consists of filling slots. The main rules in the syntactic
component of a Slot Grammar are slot-filling rules — where the slots are either
complement slots coming from the lexicon, or adjunct slots decided upon by the
syntactic component itself.

This report has two companion reports, [12] and [13]. The first of these, “A
Formal System for Slot Grammar”, describes a formalism (SGF) for writing the

M. C. McCord: The Slot Grammar Lexical Formalism 2

syntax rules for a Slot Grammar. The second report, “Using Slot Grammar”,
contains a general description of SG and of an API for it, with an emphasis on
how to use SG parsers in applications. Those two reports and the current one
form a kind of triad which should give a good picture of the current state of
Slot Grammar, especially the syntax rules and the lexicon. The three reports
complement one another, and one can get the full picture best by reading all
three. Nevertheless, each of the reports is written in a fairly self-contained way.

SLF provides a rich descriptive language for lexical entries, which can be quite
detailed or quite simple, depending on the sophistication and the mix of syntax
and semantics that one wants. The notion of word sense can vary, depending on
how much detail one puts into semantic constraints. In typical SG lexicons, the
word “senses” are differentiated on the top level by parts of speech, and within
each POS (part of speech) one may see several sense frames with differentiating
slot frames. Sometimes the different slot frames for a given word and a given
POS are enough to differentiate real semantic word senses, but quite often they
do only a partial job of this. If one wants to make a deeper differentiation, one
can accomplish this through use of semantic types in lexical entries, and SLF
allows this. Semantic types (features) and grammatical features can be marked
on word sense frames (asserted of them), and tests for such features on slot fillers
can be specified in a flexible way (with boolean combinations of elementary
tests) within slots. However, typical existing SGs take the “middle route” of
sense differentiation only on the level of predicate argument structure and do
not use too many semantic type tests. Then real word sense disambiguation
might be done in a postprocessing way (after parsing), as in [11].

SLF lexical entries can be created for either single words or multiwords.
Multiwords can be inflected by inflecting head word components indicated for
them.

Most lexical entries deal with the specification of sense frames, but idiosyn-
cratic inflectional information may also be given.

Lexical entries can test for active document-level subject areas in deciding
on which sense frames to allow.

Slot Grammar uses numerical parse scoring to arrive at most likely parses.
Lexical entries can have components that feed into this scoring — indicating for
example that some sense frames should be rewarded or penalized. These rewards
or penalties may appear within semantic type tests or subject area tests, making
these tests “soft” and not absolute requirements.

There is a system for specifying support verb constructions (and analogs for
any other part of speech).

The examples in this report will be given mainly for English, but the general
description of SLF is applicable to the SG for any language.

SLF can be used both for building base lexicons for SG parsers and for
building user (addendum) lexicons for SG applications.

M. C. McCord: The Slot Grammar Lexical Formalism 3

The remainder of this report is organized as follows:

e Section 2, page 3: “Overall format”

e Section 3, page 4: “Index words”

e Section 4, page 5: “Sense frames”

e Section 5, page 6: “Parts of speech”

e Section 6, page 7: “Slots”

e Section 7, page 10: “Inventory of slots”

e Section 8, page 15: “Inventory of slot options”
e Section 9, page 20: “Option tests”

e Section 10, page 23: “Features”

e Section 11, page 32: “Subject area tests”

e Section 12, page 35: “Sense names”

e Section 13, page 36: “Inflectional elements”
e Section 14, page 37: “Support word frames”

2 Overall format

A lexical entry in SLF consists of an index word followed by one or more
elements. Example:

access
< v obj
<n (p to)

Here the index word is access. There are two elements, v obj and n (p to).
The first one says that access can be a verb taking an (optional) direct object
(obj). (The verb will also have a subject slot (subj) by default.) The second
element says that access can be a noun taking an (optional) to-prepositional
phrase complement.

With some exceptions, index words should be citation forms (lemmas) for
words (single words or multiwords). The index word for an entry must start
in column 1. The remainder of the entry can use whitespace (blanks, tabs,
newlines) anywhere (except in the middle of atomic symbols), but must use a
blank or tab in the first column of any continuation line. The elements of a
lexical entry are each preceded by the symbol <.

A lexicon file can contain blank lines or comment lines anywhere. A comment
line begins with /*, preceded possibly by whitespace. The comment extends
only to the end of the line. The ending */ is not actually required, but it is
good practice to use it. It is also good practice to precede comments within an
entry by some blanks. It is not possible to start a comment on a line after some
non-comment material.

M. C. McCord: The Slot Grammar Lexical Formalism 4

The syntax of elements is Cambridge Polish (Lisp-like) except for the very
top level of the element. We will call expressions in Cambridge Polish terms.
The general form of a term can be described quite simply. A term is either
an atomic term or a list term. Atomic terms are sequences of characters not
including whitespace or (round) parentheses, except that a backslash \ can be
used as an escape character to allow those symbols also. A list term consists of
a left parenthesis followed by possible whitespace, followed by any sequence of
terms separated by whitespace, followed by possible whitespace, followed by a
right parenthesis. (In SLF we do not use the dot notation sometimes used in
Cambridge Polish.) The empty list can be denoted by either () or nil.

The very top level of an element is a sequence of terms, separated by white-
space. The SG interpreter for SLF actually makes this sequence into a single
list term before working with it, by (in effect) surrounding it with parentheses.
In the external syntax for SLF, there is no need for these because the symbols
< in entries delimit their elements.

3 Index words

An index word can be a single word or a multiword. Multiwords are groups
of two or more words, separated by blanks. As an example, the entry

data base < n

has a multiword index word data base (and there is one element that says it
is a noun).

The head (word) of a multiword is the component that gets inflected. For
instance, base is the head of data base, because the plural data bases is
formed by pluralizing base. In specifying a multiword, you need to indicate its
head word. The head can be indicated by putting an = sign right before it; but
there is a convention that if no = sign appears in the multiword, its head will
be taken to be the last word. This is the case with our example for data base
above, but you could also write:

data =base < n
An example where the = sign is needed is:
=editor in chief < n

Here the plural would be editors in chief. In some cases, a multiword has a
part of speech, like preposition, that doesn’t get inflected. In such cases you can
basically take the head word to be any component you want; but it is better
to choose one of the rarer components. For example, it would be good with
ahead of to take ahead as the head, like so:

=ahead of < prep

M. C. McCord: The Slot Grammar Lexical Formalism 5

because of is a much more common word than ahead. The reason for taking
a rarer word as head is that when the lexicon is stored internally for SG, each
multiword is actually indexed under its head word. If ahead of were indexed
under of, then there would be an attempted look-up every time the word of
occurs in the sentence.

A multiword can contain the special symbol num, which stands for an arbi-
trary number. Example:

=less than num < adj

This allows formation of multiword adjectives like less than three, less than 3,
and less than two hundred and five.

4 Sense frames

There are three kinds of possible elements in a lexical entry — sense frames,
inflectional elements, and support word frames. We describe sense frames in this
section. A sense frame basically specifies a sense of the index word — “sense”
so far as is important for SG. All of the examples of elements so far have been
sense frames.

A sense frame can have the following six kinds of members:
Part of speech (POS)
e Slot

Feature

Subject area test
e Sense score

e Sense name

We will describe these in the following sections. The only obligatory member
is the POS, and it must come first. The others can be intermixed and can come
in any order, except that the relative order of the slots makes a slight difference.
In makes little difference for basic parsing, but the parse display shows word
senses with “arguments” that correspond to the slots in the sense frame used.
It is generally good practice to use the following overall order for the members
of a sense frame:

IndexWord < POS Slots Features SubjectAreaTest Score SenseName
An example that has all of the first four kinds of members is:
=Attorney General < propn (p of) h (sa gov)

In this sense frame for Attorney General, the POS is propn (proper noun);
(p of) is a slot that is filled by an of prepositional phrase; h is a feature that
stands for “human”; and (sa gov) is a subject area test that checks whether
the subject area is gov(ernment).

M. C. McCord: The Slot Grammar Lexical Formalism 6

5 Parts of speech

There are actually seventeen different “parts of speech” that can be specified
as the first member of a sense frame, as follows:

n, propn, pron, num, v, modal, adj, adv, qual, det, prep,
subconj, conj, infto, subinf, forto, thatconj

Some of these are actually subcategories of normal parts of speech; e.g. propn
(proper noun) is a kind of noun. Some of them are very special, with only one
or two words of that category. Let us now explain each of the kinds of part of
speech.

n (common noun). This is used only for common nouns — nouns that name a
class of objects.

propn (proper noun). Proper nouns usually name a specific object — at least
in a given context. The most typical proper noun is a human name, like
Mary. Proper nouns are normally capitalized, though not always.

pron (pronoun). These are words like she and somebody that act like “vari-
ables” in naming entities.

num (number). This POS is used for literal number words like three.
v (verb). This is used for all verbs except modal verbs (see next).

modal (modal verb). For SG the English modal verbs are will, shall, can,
may, must, dare, and need. And they have past forms would, should,
etc., which are specified by inflectional elements.

adj (adjective). Examples: good, happy, clever.
adv (adverb). Examples: happily, probably, fast.

qual (qualifier). Qualifiers are adverb-like words that can modify adverbs.
Examples are very, how, more, less, quite.

det (determiner). Determiners are words like the, a, this, that, and each
that introduce noun phrases.

prep (preposition). Examples: in, on, with.
subconj (subordinate conjunction). Examples: if, since, after.
conj (coordinating conjunction). Examples: and, or, but.

infto (infinitive to). There is only one example: to, when used to introduce
infinitive verbs, as in to go and to be or not to be.

subinf. This includes multiwords like in order to and so as to that behave
syntactically like infto.

M. C. McCord: The Slot Grammar Lexical Formalism 7

forto. This is the POS for the sense of for in examples like for the chairperson
to be there would be impossible.

thatconj. This is the POS for the sense of that in examples like He said that
she was there.

Particles are certain prepositions and adverbs. The preposition particles are:

aboard, about, above, across, along, around,
behind, below, beneath, beside, between,
by, down, from behind, in, inside, near,
off, on, on board, out, outside, over,
past, round, through, under, underneath, up

The adverb particles are:

abreast, ahead, apart, aside, away, back,
backward, backwards, clockwise, counterclockwise,
downstairs, downward, downwards,

forth, forward, forwards, home,

inward, inwards, outward, outwards,

over backward, over backwards,

together, upstairs, upward, upwards

6 Slots

In the example
give < v obj iobj

the verb give is shown as having two slots, obj (direct object) and iobj (indirect
object). There is also a subject slot (subj) for give, but we usually don’t need
to specify that in a verb sense frame, because the SG lexical preprocessor adds
it to the slot frame by default. Example sentences using this sense frame for
give are:

Alice gave the book to Bob.
—— —
obj iobj
Alice gave Bob the book.
— —
iobj obj
We say that in the first sentence the slot obj is filled by the NP (noun phrase)
the book, and the slot iobj is filled by the PP (prepositional phrase) to Bob. But
in the second sentence, iobj is filled by the NP Bob, in a different position, and

obj is filled by the book (also in a different position). Even though the category
of the filler of iobj may vary (to-PP or NP), we view the filler phrase as filling

M. C. McCord: The Slot Grammar Lexical Formalism 8

the same slot, because the logical role of the filler is the same; Bob is the one to
whom the book is given in both of the examples.

In general, slots correspond to logical arguments of the word senses with
which they are associated. But they have a syntactic nature as well as a semantic
one, because they can be filled only by phrases of certain categories (like NP or
to-PP in the case of iobj), and these filler phrases may have certain constraints
on their positions in the sentence. The constraints on position are handled in
the grammar, on the basis of the particular slots involved.

A slot for a word sense w can be filled only once in a given sentence (for
that occurrence of w.) For example, an occurrence of give can have only one
direct object and only one indirect object. However, the same slot (name) might
appear more than once in a complement slot frame. This happens e.g. with the
slot comp for verbs. In such cases, each occurrence of the slot can be filled only
once.

A slot always has certain options associated with it, either overtly or implic-
itly. In the following example:

buy < v obj (iobj n for)

the iobj slot is shown with options n and for. The n option means that the
iobj can be filled by an NP (as in buy me a book), and the for option means
that the iobj can be filled alternatively by a for-PP (as in buy a book for me).
The obj slot in this example shows no option overtly, but the default is that obj
has an n option if no option is specified. In other words, the preceding example
could have been written as follows:

buy < v (obj n) (iobj n for)

In a similar way, the iobj slot has default options n and to. So we might
spell out

give < v obj iobj
more fully as:

give < v (obj n) (iobj n to)

Below, we will describe the various available options for slots. But let us
continue with more general facts about slots.

Strictly speaking, in a slot specification like (obj n), obj is the slot name, n
is an option, and the whole expression (obj n) specifies the slot. If the slot is
specified only as obj, then we really consider it as shorthand for the complete
expression (obj n).

Generally, then, we may specify a slot by showing only its name (and then
taking the default options), or we may write:

M. C. McCord: The Slot Grammar Lexical Formalism 9

(SlotName Optiony Options --- Optiony,)

The options are viewed as alternatives — as if they are connected by or’s.

A slot may be obligatory (must receive a filler in a grammatical sentence) or
optional (may or may not get a filler). The default is that the slot is optional,
and obligatoriness is indicated by suffixing the digit 1 to the slot name. For
example, obj is the optional form of the direct object slot (name) and obj1 is
the obligatory form. In some treatments of word senses, there is a distinction
between transitive and intransitive verbs. For ESG, the single sense frame

eat < v obj

for the verb eat allows both the transitive and intransitive uses of eat, since
obj is optional.

Slot options may have tests within them, using the syntax:

(OptionName Test; Testy --- Testy)

The tests are interpreted disjunctively. We will describe the range of possible
option tests in more detail in Section 8, but let us mention here the most im-
portant kind of test. This occurs when the test is specified by an atomic symbol
w — which will normally be a word — and then the interpretation of the test is
that the head word of the filler of the slot-option is that specific word w.

For example, the following verb sense frame for do
do < ... < v (iobjl n) (objl (n favor))

would require that the direct object has explicitly the head word favor. This
would then allow constructions like do somebody a favor. It also includes do
somebody a big favor, etc., because the option test just says that the head word
of the obj is favor.

The most common case of option tests that name specific words are for slot
options that require PP fillers and name specific prepositions. For example, the
sense frame:

absorb < v objl (comp (p in into))

would allow constructions like absord X in Y and absorb X into Y. The comp
slot has the option (p in into). The p option for comp is one that allows the
comp to be filled by a PP. And the option tests in and into allow the head of
the PP to be in or into.

The slots that appear in sense frames are, strictly speaking, called comple-
ment slots. Slot Grammar also uses adjunct slots. But adjunct slots are not
specified in lexical entries; they are known to the grammar. Each word sense
will have certain adjunct slots associated with it, depending only on its POS.
For example, the verb POS has an adjunct slot called vadv which is typically
filled by adverb phrases or time NPs. Here is an example sentence with both
complement and adjunct slot fillers in it:

M. C. McCord: The Slot Grammar Lexical Formalism 10

Probably Alice gave Bob the book yesterday
vadv Subj iobj obj vadv
So five slots for gave are shown. Note that an adjunct slot (like vadv) can be

filled more than once. In the following, we will just use slot to mean complement
slot, unless otherwise specified.

7 Inventory of slots

The set of (complement) slots available for a word sense is dependent on
the POS of the word sense. Let us go through the parts of speech and list the
available slots for each, with some explanation.

The possible slots for verbs are:

subj subject

obj direct object

iobj indirect object

pred predicate complement
auxcomp auziliary complement
comp complement

We assume the reader is familiar with subj, obj, and iobj — especially consid-
ering the preceding examples. As mentioned, the subj slot need not be specified
in verb sense frames. If no subj slot is given, the system automatically adds one
as if (subj n) had been specified. But if there is something special about the
subject of a given verb sense, one can specify a subj slot with special options
or option tests. For example, the entry

amaze < ... < v (subj v) objl

allows the subject of (this sense of) amaze to be filled by various verbal phrases
like that-clauses. We will specify more fully below what categories of filler
phrases are sanctioned by the various slot options.

What is the comp slot? The following ideas are closely related to the ideas of
thematic roles, as developed especially by Jeffrey Gruber and Ray Jackendoff —
see e.g. [2] and [3]. We first describe the situation in the SG framework, and
then discuss the relationship with thematic roles.

When a verb describes a motion or change of state, the comp slot is often
used to specify the new location or new state. Examples:

Alice drove Betty to the store.
—_—
obj(n) comp(lo)

Alice drove Betty to distraction.
—_—
obj(n) comp(lo)

M. C. McCord: The Slot Grammar Lexical Formalism 11

Alice drove Betty crazy
—— ——
obj(n) comp(a)

In the first example, the change of state is a physical motion. The subj is
the agent of the motion; the obj is the thing moved; and the comp is the
destination (where the obj moves to). In the second and third examples, the
“motion” is more abstract; it is still a change of state though, and the comp is the
destination state. Many abstract word senses in human language derive from
more primitive, physical word senses by metaphorical extension. We often use
the same word (like drive) for the original physical sense and the more abstract
sense. The three examples above are sanctioned (in part) by the sense frame

drive < v obj (comp lo a)

for drive. The option lo (short for “location”) is used for the comp PP’s in the
first two examples. The option a (short for “adjective phrase”) is used for the
adjective crazy in the last example. We will explain these options in the next
section.

When a verb describes a change of state, and the verb has an overt obj, the
obj will typically be the thing that changes. Otherwise the subj is typically
the thing that changes, as in:

John drove to Chicago.
John went to Chicago.
John went crazy.

When a verb describes simply a state (and not a change of state), the comp
slot is often used to specify that state. Examples:

Alice found Bob in the kitchen.

~— < —

subj obj comp

Alice found Bob in need of help.
—~ . ,
subj obj comp

In the first case, the sense of found is physical and the comp is a physical loca-
tion. In the second, the sense of found is abstract and the comp is an abstract
“location” (a location in a state space). These two examples are sanctioned by
the sense frame:

found < v obj (comp lo)

When a verb describes a state, and the verb has an overt obj, the obj will
typically be the thing that is predicated to be in that state; otherwise it is
typically the subj.

M. C. McCord: The Slot Grammar Lexical Formalism 12

In the theory of thematic roles [2, 3], one assigns certain semantic cases (the
thematic roles) to complements. The THEME is the central one. For verbs of
change, the THEME is what changes, and the GOAL is the destination state
(or destination location in the case of physical motion verbs). There can also be
a SOURCE state or location. And there can be an AGENT, which causes the
change. A given participant might have more than one role, e.g. both AGENT
and THEME. For verbs describing states, the THEME is what is predicated to
be in that state, and the LOCATION is the state (or physical location in the
case of physical location verbs).

One can easily see how these roles map into SG complement slots for the
examples given above, with THEME as obj or subj, AGENT as subj, and
GOAL and LOCATION as comp. Also we use comp for SOURCE, as in the slot
frame:

drive < v obj (comp (p from)) (comp lo)

Thinking about thematic roles can often be a useful guide in creating SG
lexical slot frames, but it can be hard to find a fit for some verbs, and one gets
into inventing new roles. For that reason, we just take these ideas as an informal
background that is useful some of the time. In general, the author’s approach to
semantic representation has been to use versions of predicate logic where word
senses become predicates that have arguments using positional notation — see

g. [15]. When a word sense predicate comes from an SG lexicon, its arguments
correspond, in order, to the complement slots listed for the word sense in the
lexicon (and there might also be an event or entity argument). Note that, as
indicated above, lexical slots should be thought of as logical arguments — so that
e.g. the subj is the logical subject. The parser takes care of unwinding passives,
(often) showing implicit subjects, remote fillers, etc. The ultimate semantics of
such word senses comes from lexical meaning axioms and real world knowledge
axioms involving word senses and other predicates and constants.

The pred slot is used in ESG only by the verb be, whose entry is:
be < v (subj n v) pred
The slot pred is filled by a wide range of phrase types. Examples:

Bob is a teacher.

Bob is happy.

Bob is in love.

Bob is to leave tomorrow.
Bob is leaving tomorrow.
Bob was taken to the station.

The auxcomp slot is used in English mainly for the modal verbs, where
auxcomp is filled by a bare infinitive, for the auxiliary do, which also takes
a bare infinitive, and for the perfect sense of have, where the filler is an active

M. C. McCord: The Slot Grammar Lexical Formalism 13

past participle. Two of these cases are illustrated in the parse in Figure 1,
which also contains the use of pred for the progressive and the passive. In Slot
Grammar, auxiliary verbs are viewed as higher verbs, as one can see in this
parse.

In a verb sense frame there may sometimes be more than one occurrence of
a comp slot; but for all the other verb (complement) slots there should be at
most one occurrence of the slot in a given sense frame.

For the noun POS, the situation for available slots is as follows. Although
there are four different symbols for noun parts of speech used in the lexicon (n,
propn, pron, and num), they all actually have the same POS in the grammar,
noun; and they share the same set of slots. The distinction in the grammar
between the four types of noun is shown by features: cn is used for common
nouns, and the three other types use the same features (propn, pron, and num)
as in the lexicon. Thus the correspondence is:

| Lexicon | Grammar (POS, feature) |

n noun, cn
propn noun, propn
pron noun, pron
num noun, num

There are just two noun slots (or rather slot names): obj and nid. The obj
slot can have many different options, as we will see in the next section. When
it is written without any explicit option, the default option is taken as n. This
is filled by of-PPs. Examples are:

brother < n obj
department < n obj
construction < n obj

The reason for using the name obj in this way for nouns is that it often cor-
responds to the direct object of a verb, when the noun is related semantically

(. subj(n) Bobl(1) noun propn sg h)
I— top may1(2,1,3) verb vfin vpres sg vsubj
Lo—amxcomp(binf) have_perf(3,1,4) verb vinf

Lo—auxcomp(ena) be(4,1,5) verb ven

pred(mg be(5,1,6) verb ving
LO—pred (en) takel(6,u,1,u,7) verb ven vpass
comp(lo) t02(7,9) prep pprefv motionp
ndet thel(8) det sg def the ingdet
_ objprep(n) station1(9,u) noun cn sg Y,

Figure 1: Bob may have been being taken to the station.

M. C. McCord: The Slot Grammar Lexical Formalism 14

to a verb. For example, construct X and construction of X are closely related.
Actually, the grammar shows the noun obj slot as nobj. And one can in fact
use that symbol also in the lexicon. But it is normal and convenient to write it
as obj in the lexicon because then related nouns and verbs sometimes have the
same slot frame (or one that looks the same in the lexicon). Although a verb
sense frame should have only one occurrence of an obj slot, a noun sense frame
may have more than one occurrence (with different options). Example:

assignment < n obj (obj (p to) inf)

This allows for example for the NP the assignment of Bob to those duties and
the assignment of Bob to write the report. The second kind of use of obj for
nouns corresponds to comp for verbs.

The noun slot nid (“noun identifier”) occurs in examples like page 3 and
Appendiz B. It is filled by proper nouns and numbers.

For adjectives, there is only one (complement) slot available. It is called aobj
in the grammar (and shows that way in parse trees), but is usually called obj in
the lexicon. The reason is that this makes it easier to see correspondences with
sense frames of nouns that are related to adjective sense frames. As with nobj,
the slot aobj has many different allowable options. We will describe these in
the next section.

For adverbs, the situation is much the same as for adjectives: There is one
slot named avobj, which may also be called obj in the lexicon. Again, it has
several allowable options, which we will describe in the next section.

Determiners and qualifiers have no complement slots.

Prepositions have just one (complement) slot, objprep (“object of the prepo-
sition”). This slot is obligatory, but no suffix 1 is needed. It is not normally
specified in the lexicon, unless there is an unusual condition on it. Examples:

in the house
in writing this program

Subordinate conjunctions (subconj) have one slot, sccomp (subconj comple-
ment). As with objprep, this obligatory and is not normally specified in the
lexicon. Example:

if you write this program

Coordinating conjunctions (conj) have two complement slots, lconj (left
conjunct) and rconj (right conjunct). Examples:

The cat sat on the mat and the dog lay on the floor.

lconj rconj

M. C. McCord: The Slot Grammar Lexical Formalism 15

The cat sat on the mat and watched the birds.

lconj rconj
The cat watched and then chased the squirrel.
—— —_————

lconj rconj

These slots are dealt with in the grammar and are not normally mentioned in
the lexicon.

The infinitive to, infto, has the complement slot tocomp, as in to eat the chocolate.
This is sanctioned by the sense frame:

to < ... < infto (tocomp binf)

The option binf stands for “bare infinitive verb phrase”.

The POS subinf (analogous to infto) has the complement slot subinf comp,
as given in the entry:

in =order to < subinf (subinfcomp binf)

The POS forto has the two complement slots forsubj and forcomp, as
given in the entry:

for < ... < forto (forsubj n) (forcomp inf)
Example:

This would allow for your sister to be there earlier.

forsubj forcomp

Finally, the POS thatconj has the slot thatcomp, as given in the entry:
that < ... < thatconj (thatcomp bfin)
Example:

He said that the chocolate was delicious.

8 Inventory of slot options

The slot options are:

a, agent, aj, av, bfin, binf, dt, en, ena,

fin, fina, finq, finv, ft, ger, gn, inf, ing, io, it,
itinf, itthatc, itwh, lo, n, na, nen, nmeas, nop, nummeas,
p, padj, pinf, pinfd, prflx, prop, pt, pthatc, pwh,

qt, rflx, sc, so, thatc, v, wh

M. C. McCord: The Slot Grammar Lexical Formalism 16

Very roughly, each option for a slot corresponds to a category of phrases that can
be a filler of the slot. For example, n corresponds (roughly) to noun phrases, a
to adjective phrases, p to prepositional phrases, ing to present participial (-ing)
verb phrases, etc. Many of the options are shared across several slots. That’s
why we are describing them here in a separate section. In some cases, a given
option means something slightly different for different slots. We will now go
through some of the most important options, and for each one say which slots
it applies to and what it means for each slot.

Most options apply to the verb slots obj and comp and to the obj slot for
nouns, adjectives, and adverbs (= nobj, aobj, avobj, respectively). This will
be the case in all the following examples, unless we say otherwise.

n: For the verb POS, n can be used with the slots subj, obj, iobj, and
comp. For all of these slots, it can be filled by noun phrases. For subj and
obj, it can be filled by two NP-like kinds of adjective phrases. The first is
illustrated by the very rich and has an adjective head word marked with
the feature adjnoun. The second type is illustrated by the happiest, with
a superlative head adjective. For the slots subj, obj, and comp, n can be
filled also by wh-verb phrases like what he tried to find and whatever they
want, which are introduced by a wh-word marked with the feature whnom
in the lexicon. An example that uses the n option in all of subj, obj, and
comp is:

They elected her president of the association.
—— ~~~

(subj n) (obj n) (comp n)

The pred slot implicitly has an n option, since it can be filled by NPs.
But we do not show it explicitly in the lexicon.

For the noun POS, n can be an option for the obj (= nobj) slot, where
it is filled by of-PPs, as in president of the association.

For the adj POS, n can be filled by a noun phrase. This is a rare
construction. An example is:

It s due me.

io: This is an option only for the verb comp slot. The slot+option (comp io)
is filled by an NP and it is essentially the same as (iobj n). It is provided
for the comp slot because sometimes it is convenient to include io along
with other comp options, for example as in:

throw < v obj (comp io lo)

Here the 1o (“location”) option (which we will come to soon) is filled by
various PPs like to the dog and into the yard. So this includes examples
like:

M. C. McCord: The Slot Grammar Lexical Formalism 17

He threw the dog a ball .
\), ——
(comp io) (obj mn)
He threw a ball to the dog .
M~ ——
(obj 1) (comp 1o)
He threw a ball into the yard.
M~ —— —
(obj n) (comp 1o)

There is little difference between iobj (= (iobj n to))and (comp io (p to)).
But the comp version of the indirect object can include other options as
well.

p: This option, shown in several examples already in this report, is used for
PP fillers and normally has option tests that name specific prepositions,
as in:

admonish < v obj (comp (p about against for))

The p option can actually be used without any tests (without naming
specific prepositions), in which case it will be fillable by any PP; but this
usage is rare. The slot-option combination

(comp (p Prep; Preps ... Prep,))
can be written simply as:
(p Prepy Preps ... Prep,)

and this is quite common. So the above example for admonish could be
written as:

admonish < v obj (p about against for)

For nouns, adjectives, and adverbs, we can use an abbreviation similar to
the one for comp above. For example, we could write either

admonition < n obj (obj (p about against for))
or simply
admonition < n obj (p about against for)

pt: This option can be filled by particles (definition given above). The
situation is quite similar to that with p. We also allow abbreviations like
those for p. Example:

cluster < ... < v obj (pt up together) (p around round)

M. C. McCord: The Slot Grammar Lexical Formalism 18

lo: As mentioned, this option stands for “location”. It is filled by three
types of phrases: (1) Particles. These are listed above. (2) PPs based
on certain prepositions. These are roughly supposed to be prepositions
that indicate a location (or direction). Precisely, they are the single-word
prepositions that are not marked with the feature nonlocp in the lexicon
and the multiword prepositions that are marked with the feature locmp
in the lexicon. (3) NPs that have the feature locnoun. These can be, for
example, nouns of linear measure like mile. So for example if we have the
entry

drive < obj (comp lo)
we are allowed examples like:

She drove her car out
<~ =~
obj (comp lo)

She drove her car onto the interstate.
~—~

obj (comp 1lo)
She drove her car fifty miles .

obj (comp 1o)

As with p and pt, we have abbreviations: Simply 1o can be used in place
of (comp lo) for verbs and in place of (obj lo) for the other open-class
POSs (nouns, adjectives, adverbs).

inf: This option is filled by infto phrases, like to eat chocolate. Examples:

admonish < v obj (comp inf (p about against for))
admonition < n obj (obj inf (p about against for))
able < adj (obj inf)

binf: This is filled by infinitive VPs (without to), like wash the dishes. It
is used for example with slots comp and auxcomp. Example: Alice made
Billy wash the dishes.

ing: This is filled by present-participial (-ing) VPs, like eating the chocolate.
Example: Bob likes eating chocolate.

ger: This is filled by ing-VPs that have the feature gerund — they are modified
by a determiner the or a possessive pronoun determiner. This option is
used only for the verb obj slot.

en: This is filled by passive past-participial VPs. Example: They wanted the
food taken away.

ena: This is filled by active past-participial VPs, as in He has eaten the
chocolate. It is relevant only for the auxcomp slot for verbs.

M. C. McCord: The Slot Grammar Lexical Formalism 19

fin: For verbs, this is used for the obj and comp slots, and is filled by
finite VPs, as in He said she was smart and that-clauses, as in He said
that she was smart. Also, for the verb obj slot, it can be filled by so, as
in Alice said so. For the other open-class POSs, fin is used for obj, but
then it is filled only by that-clauses.

bfin: For ESG this is used only with the thatcomp slot, and is filled by a
finite VP, as in that she was smart.

finv: This option is used mainly for the obj slot for nouns, adjectives and
adverbs, where it is filled by both finite VPs and that-clauses. For the
verb obj slot, it is filled only by finite VPs.

finq: This is filled, for verb slots obj and comp, by quoted finite VPs.
thatc: This is filled by that-clauses.

wh: This is filled by wh-VPs, wh-nouns, wh-adverbs, and if and whether
clauses. Examples: He knows what they want. He knows whether they will go.

ft: This is filled by forto phrases, as in: This allows for them to take it.

prop: This is filled by infto phrases, forto phrases, or that-phrases.

v: This is used only for the (verb) subj slot. It allows subj to be filled by
a wide range of “verbal” phrases — ing VPs, infto phrases, that-clauses,
wh-clauses, forto phrases — plus wh-adverbs.

a: This is filled by adjective phrases, as in

He drove her crazy
——

(comp a)
av: This is filled by adverb phrases, as in
She will do wvery well .
—
(comp av)
qt: This is filled by quoted NPs, for the verb obj and the noun obj slots.

it: This is filled by the pronoun it. It is used only for the verb obj and
subj slots, as in [like it that he’s there.

so: This is filled by the adverb so, as in He did so.

sc: This is similar to the p option, but it is for subordinate conjunctions
(subconj) instead of prepositions. Example entry:

feel < v (comp a en (p like (up to) for)
(sc as\ if as\ though like)

M. C. McCord: The Slot Grammar Lexical Formalism 20

The escape character '\’ is used here before the blanks in the subconjs
as if and as though. So the sc option here allows examples like:

I feel as if I could eat a pound of chocolate.

(comp sc)

We will explain the nature of the construction (up to) in the next section.
It allows They didn’t feel up to it.

nummeas: This is filled by a number — a pure number (in either digital or
literal form), or a percentage in the form of digits followed by %, or a
dollar amount in the form of $ followed by digits.

nop: This option (“no option”) is a kind of catch-all for unusual slots, and a
default in case the option does not get set. For example, the top node of
a parse tree is marked as filling the “slot” top with option nop.

9 Option tests

We have already mentioned that a slot option can have tests associated with
it, like so:

(OptionName Test; Testy --- Testy)

where the tests are interpreted disjunctively, and one of them must succeed in
order for the slot-filling with that option to succeed. We have mentioned that
the most common kind of option test is an atomic symbol which is taken to be
the (required) head word of the filler, and we have given several examples of
this for the p option. Let us now describe the other possible option tests. All
the other option tests will be specified by lists (z y ---). In most cases, the
first member = of the list is a special operator, and the other members y - --
are arguments. The arguments may recursively be other tests. Several of the
operators can take an arbitrary number of arguments. The allowable operators
are:

st, fe, f, of, nf, hd, sn, ph, wds, sa, ev, &, |, ~
Let us go through these one by one:

st: This can take any number of arguments. The default case is that it
checks that the filler phrase has each argument as a semantic type, where
the check uses the hierarchy of the ontology, which we will explain in
Section 10 below on features. In addition there is a special way that st
can numerically reward or penalize the presence or absence of a semantic
type for the filler. If the test is of the form

(st £ m)

M. C. McCord: The Slot Grammar Lexical Formalism 21

fe:

of:

nf:

hd:

sn:

ph:

where m is a number, then the test always succeeds, and a reward of m is
added if x is a feature of the filler. (If m is negative, it acts as a penalty.)
If the test is of the form

(st ¢ m n)

where m and n are numbers, then the test always succeeds; a reward
of m is added if x is a feature of the filler, else a reward of n is added.
These special forms of st allow semantic type tests to be “soft” — not being
absolute requirements, but just preferred or not preferred. Examples: The
sense frame

eat < v (obj (n (st food)))

would allow a direct object for eat exactly when that object satisfies the
conditions for the n option (most typically an NP) and has the feature
food. But the sense frame

eat < v (obj (n (st food 1)))

would not require the obj to be a food, but simply give it a reward of 1
if it has that type.

Takes any number of arguments, which should be morphosyntactic fea-
tures. It tests that all of these are features of the filler phrase.

This is like a combination of st and fe. It takes any number of arguments,
which could be morphosyntactic features, parts of speech, or semantic
types, and it checks that all of them are features of the filler.

Like £, but checks that at least one of the arguments is a feature of the
filler.

Like £, but checks that no argument is a feature of the filler.

Takes any number of arguments, which should be citation forms of words.

It tests that at least one of them is the citation form of the head word of
the filler. This is the same test as would be made with a top-level option
test that is atomic, but in a complex test, we need to use hd.

Takes any number of arguments, and tests that at least one is the sense
name of head word of the filler.

The general form of a ph expression is:
(ph HeadWord LeftWords RightWords)
Example:

(ph bull (a) (in a china shop))

M. C. McCord: The Slot Grammar Lexical Formalism 22

wds:

sa:

ev:

Generally, ph puts a requirement on the words of the filler phrase. The
HeadW ord must be (the citation form of) the head word; the Le ftWords
are the words to the left of the head in the filler phrase (but they are
specified in reverse order); the RightWords are the words to the right of
the head in the filler (specified in normal order). So the previous example
would require the filler to match the (idiomatic) phrase a bull in a china
shop (china = “fine dishes”, etc.). The ph expression may have the simpler
form

(ph HeadWord LeftWords)

in which case there is no requirement on the RightW ords.

The general form of a wds expression is:
(wds Wordy Wordy --- Word,)
Example:

(wds a bull in a china shop)

Like ph, wds puts a requirement on all the words of the filler phrase. The
argument words must match exactly the (lower case forms of) the words
of the whole filler phrase, from left to right. Obviously, wds is easier to
use than ph, but it is slightly less efficient.

This tests the current subject areas in effect, and the tests can be absolute
requirements, or create penalties or rewards. This is exactly the same kind
of subject area test that can appear on the top level in a sense frame; it
will be described in Section 11, page 32, below.

Same as sa. Both ev and sa can set parse scores or test subject areas,
or do a mixture. See Section 11.

This can take any number of arguments, and succeeds iff all of the argu-
ments succeed.

This can take any number of arguments, and succeeds iff at least one
argument succeeds.

This can take any number of arguments, and succeeds iff all of the argu-
ments fail.

We have now looked at the option tests based on special operators. A further

kind

of option test is also specified as a list:

(wy wy -+ wy)

M. C. McCord: The Slot Grammar Lexical Formalism 23

but the w;’s are all words. This kind of test is satisfied when the w;’s match
the initial words of the filler up through the head word. This appeared in an
example above:

feel < v (comp a en (p like (up to) for)
(sc as\ if as\ though like)

One of the option tests for the p option is (up to). So this will be satisfied
when the PP has the initial words up and to. The particle up can premodify
the preposition to via an adjunct slot called padv.

10 Features

In a sense frame, the atomic symbols that are not the POS or slot names are
understood to be features, which are being asserted to be features of that word
sense. So features can have two complementary roles in the lexicon: They can
be used as tests, as in the option tests discussed in Section 9. Or they can be
used as assertions, as we are discussing in the current section. They can also
be tested and asserted in the syntactic component of the grammar — see [12].

As indicated in Section 9, features can be divided roughly into grammatical
(or morphosyntactic) features and semantic features. Grammatical features may
represent morphological characteristics of words, or may have more to do with
the syntactic usage of the words. Semantic features (also called semantic types
or concepts) are names for sets of things in the world. For instance the semantic
feature st_anim stands for the set of animate things — including humans, cats,
birds, etc. These “things in the world” can include events, states, etc., and so
for example an event referred to by a verb sense could have a semantic type. It
is most typical (and useful) to mark semantic types on noun senses, but they
could be marked on any part of speech.

When a semantic type is asserted of a proper noun, then it is understood
that the referent of the proper noun is a member of the semantic type (as a set).
But otherwise, the word sense is understood as a subset of the semantic type.

Let us look now at the inventory of the main grammatical features possible
in an SG lexicon. After that, we will discuss semantic features in more detail.

We try to use as uniform a set of grammatical features across the different
languages as possible. Of course some features are not applicable to all the
languages. The SG system basically works with the union of all the possible
features, and some of them just do not get used in all the XSGs. The main
grammatical features are as follows, and we organize them largely by part of
speech.

Shared features. There are some features that are shared across several parts
of speech. These include: sg (singular), pl (plural), dual, cord (coordinated),
wh, and whnom. The last is used on determiners, nouns, and verbs; its ultimate

M. C. McCord: The Slot Grammar Lexical Formalism 24

purpose is to mark clauses, like what you see, that can be used essentially
anywhere an NP can.

Verb features. We list these in alphabetical order.

badvenadj. A past participle of such a verb does not easily fill the nadj slot.
Example: said.

ingprep. A verb whose ing form behaves like a preposition. Example: con-
cern.

invertv. A verb (like arise or come) that allows its subject on the right, with
a comp PP or there left modifier of the verb.

npref. Prefers to modify nouns over verbs, as head of non-finite VP.
objpref. Verb preferring NP object over finite clause or that-complement.

postcomp. Means that the verb cannot have a comp slot filler preceding a filler
of (obj n).

sayv. Verb of saying.
sta. Stative verb.

thatcpref. Verb allowing both finite VP or that-complement but preferring
the latter.

transalt. Verb (like increase) allowing transitivity alternation. The theme
(the entity undergoing change) can be either the direct object or the sub-
ject (when no direct object is given).

vcond. Conditional mood.

ven. Past participle.

vfin. Finite verb.

vfut. Future tense (for Latin languages).
vimperf. Imperfect (for Latin languages).
vimpr. Imperative VP.

vind. Indicative mood.

vinf. Infinitive.

ving. Present participle.

vpass. Passive ven verb, as in he was taken.

vpast. Past tense.

M. C. McCord: The Slot Grammar Lexical Formalism 25

vpersl. First person.

vpers2. Second person.

vpers3. Third person.

vpluperf. Pluperfect (for Latin languages).

vpref. Prefers to modify verbs over nouns, as head of non-finite VP.
vpres. Present tense.

vrelv. Verb that easily allows a relative clause modifier of its subject to be
right-extraposed.

vsbjnc. Subjunctive.

whever. A clause like whatever you see or whichever road you take that is
modified by an extraposed wh-ever NP.

Noun features.

acc. Accusative.

advnoun. A noun that can behave adverbially. Main examples: time nouns
and locative nouns.

cn. Common noun.

dat. Dative.

def. Definite pronoun.

detr. Noun requiring a determiner when it (the noun) is singular.
dy. Day.

encprn. Can be an enclitic (for the Latin languages).

f. Feminine.

gen. Genitive.

goodap. Can easily be a right conjunct in comma coordination even though
it itself is not coordinated.

h. Human.

hplmod. Noun that allows a plural nnoun modifier (adjunct slot most com-
monly filled by common nouns).

indef. Indefinite pronoun.

M. C. McCord: The Slot Grammar Lexical Formalism 26

iobjprn. Can be non-clitic iobj (Latin languages).
lmeas. Linear measure.
loc. Indicates a location.

locnoun. Nouns that can be used adverbially because they specify a location,
measure, etc.

m. Masculine.

meas. Measure.

mf . Masculine or feminine.
mo. Month.

nadjpn. Pronoun that can fill nadj and must agree with head noun (Latin
languages).

nadvn. Noun that can fill nadv and must agree with head noun (Latin lan-
guages).

nom. Nominative.
nonn. A noun that cannot have an nnoun modifier.
notnnoun. A noun that cannot be an nnoun modifier.

npremod. Can be a noun premodifier of a noun even though it is also an
adjective.

nt. Neuter.

num. A number noun.

objpprn. Can be object of preposition (Latin languages).
objprn. Can be non-clitic obj (Latin languages).
oreflprn. Can be use only as a reflexive (Latin languages).
percent. A percent number noun.

perspron. Personal pronoun.

persl. First person.

pers2. Second person.

pers3. Third person.

plmod. Noun that can be an nnoun even when it is plural.

posit. Position (like middle or end).

M. C. McCord: The Slot Grammar Lexical Formalism 27

poss. Possessive pronoun.

procprn. Can be proclitic (Latin languages).

pron. Pronoun.

propcn. A common noun, like society, that has certain proper noun qualities.
propn. Proper noun.

quantn. Denotes a quantity (like all or half).

reflprn. Reflexive pronoun.

relnp. An NP that can be the relativizer of a relative clause.
title. A title for a human name, like Doctor or Dr..

tm. Time noun.

tma. Time noun that is more pronoun-like, like yesterday.

tmdetr. Time noun requiring a determiner.

tmrel. Time noun allowing certain finite clauses as nrel modifiers.

tonoun. A noun, like school, that can by itself (without premodifiers) be the
objprep of to, even though it is also a verb.

uif. Uninflected.
way. Manner/way.

whevern. An NP like whatever or whichever road.

Adjective features.

adjnoun. Adjectives like poor that can have a the premodifier and act like the
head of an NP.

adjpass. An adjective like delighted that is also a past participle, but the past
participle is not allowed to fill pred(en).

aqual. (For German) an adjective, like denkbar, that can premodify an adverb
(filling advpre).

compar. Comparative.
detadj. Adjectives like nexzt and last that have an implicit definite article.

erest. Can use -er and -est for comparative and superlative. Applies to
adverbs too.

M. C. McCord: The Slot Grammar Lexical Formalism 28

lmeasadj. Adjective like high allowing constructions like three feet high.
noadv. (For German) an adjective that cannot be used as an adverb.
noattrib. Not allowed as filler of nadj.

nocompa. Not allowed as filler of comp(a).

nocompare. Not allowing comparison (for Latin languages).

nopred. Not allowed as filler of pred.

nqual. Adjectives like medium that allow constructions like a medium quality
car.

post. Adjective like available that can easily postmodify a noun, as in the
first car available.

soadjp. Gets put by the grammar on an adjective phrase like so good to allow
that phrase to fill nadv in an NP like so good a person. This is done when
the adjective (like good) is premodified by a qualifier marked soqual.

superl. Superlative.
tmadj. A time adjective like early.

toadj. Similar to tonoun.

Adverb features.

badadjmod. Preferred not to modify adjective.

compar. Comparative.

detadv. Can modify a determiner.

initialmod. Modifies on left only as first modifier.

introadv. Adverb like hello that easily left-coordinates by comma-coordination.
invertadv. Adverb that allows certain constructions Adv Verb Subj.
loadv. Easily modifies a locational prep or adverb (particle).
locadv. Locative adverb like above.

notadjmod. Cannot modify an adjective.

noadvpre. Cannot have (qualifier) premodifier.

nopadv. Cannot modify preposition.

notinitialmod. Cannot appear clause-initially.

M. C. McCord: The Slot Grammar Lexical Formalism 29

notleftmod. Cannot modify verb on left.

notnadv. Cannot premodify a noun.

notrightmod. Cannot modify verb on right.

nounadv. Can modify noun.

nperadv. Can fill nper slot for nouns, like apiece and each.
npost. Can postmodify a noun in slot nadjp.

partf. Adverb that can be a particle (also applies to prepositions that can be
particles).

post. Can postmodify (like enough).

ppadv. Can modify preposition (with no penalty).

prefadv. Adverb analysis as vadv is preferred over noun analysis as obj.
reladv. For Spanish, an adverb like cuando that can create a relative clause.
superl. Superlative.

thereprep. Adverb like thereafter, thereof,

tmadv. Time adverb like before, early,

vpost. Cannot modify a finite verb on the left.

interj. An interjection.

Determiner features.

all. Only for the determiner all.

ingdet. Marked on possdets and the. Can premodify present participle verbs.
possdet. Possessive pronoun as determiner.

prefdet. Preferred as determiner (over other parts of speech).

reldet. For Spanish, a determiner like cuyo that can create an NP serving as
relativizer.

the. Marked only on the.

Qualifier features.

badattrib. If it modifies an adjective, then that adjective cannot fill nadj
slot.

M. C. McCord: The Slot Grammar Lexical Formalism 30

c. Modifies only comparative adverbs.
post. Can postmodify.
pre. Can premodify (the default).

soqual. See soadjp for adjectives above.

Subordinate conjunction (subconj) features.

assc. For as (or analogs in other languages).
comparsc. For assc or thansc.
finsc. Allows only finite clause complements (filling sccomp).

notleftsc. A clause with this as head cannot left-modify a clause (as vsubconj).
Example: for.

okadjsc. Allows adjective complement.
oknounsc. Allows noun complement.
oknsubconj. Can fill nsubconj.
poorsubconj. Preferred not as subconj.

sbjncsc. For the Latin languages: Suppose a subjconj S has a finite clause
complement C' (C is filler of sccomp). Then S must be marked sbjncsc
if C'is marked vsbjnc (subjunctive) but not vind (indicative). And if S
is marked sbjncsc and C' is marked vsbjc, then remove vind from C' if
it is present.

thansc. For than (or analogs in other languages).
tosc. Allows infto complement.

whsc. A wh-subconj (like whether).

Preposition features.

accobj. (For German) allows the objprep to be accusative.

adjobj. (For German) allows the objprep to be an adjective or past participle
phrase.

asprep. For as and analogs in other languages.

badobjping. Cannot have a ving objprep (under certain conditions).

M. C. McCord: The Slot Grammar Lexical Formalism 31

daprep. For German. For PPs like dabei and darauf. A word da+Prep is
unfolded to a PP with head Prep marked daprep and objprep filled by
es.

datobj. (For German) allows the objprep to be dative.
genobj. (For German) allows the objprep to be genitive.

hasadjobj. (For German) the objprep is an adjective or past participle
phrase.

infobj. (For Latin languages) has an objprep that is an infinitive VP.
locmp. Used for multiword prepositions that fill comp(1o).

motionp. Prefers not to fill comp if the matrix verb is marked sta.
nonlocp. Cannot be a filler of comp(lo).

notwhpp. Cannot have wh objprep (under certain conditions).

pobjp. The objprep can be a PP itself. Example: from.

ppost. The preposition can follow the objprep. If the preposition is marked
ppost but not ppre, then the preposition must be on the right.

ppre. The preposition can precede the objprep. There is no need to mark
this feature on the preposition, in order to allow the preposition to be on
the left, unless the preposition is marked ppost.

pprefn. Prefers to modify nouns.
pprefv. Prefers to modify verbs.

preflprn. Marked by the grammar on a PP when the objprep is a reflexive
pronoun.

relpp. A PP that can serve as a relativizer for a relative clause.

staticp. Preposition like in or on that is used normally to represent static
location vs. goal of motion (as with into and onto).

timep. Common modifier of time nouns, as in two days after the meeting.
timepp. For certain PPs where the objprep is a time noun.

woprep. Like daprep, but with wo instead of da.

Normally semantic types should be taken from the ontology lexicon ont.1x.
This lexicon is the same for all the languages. The ontology includes not only a
set of semantic types (or concepts), but also a specification of the subset relation
between the types:

M. C. McCord: The Slot Grammar Lexical Formalism 32

Type1 C Types

For instance the set h of humans is a subset of the set of animate beings:
h C st_anim. The SG ontology is basically open-ended. Currently it contains
about 450 concepts, but it may be expanded considerably.

Generally, semantic types stand for sets (or classes) of things in world that are
important in determining word senses, producing better parses, choosing target
words in machine translation, etc. For example for better parsing we might put
semantic constraints on fillers of slots, as described in Section 9, page 21, or even
make them “soft” constraints as described there. For MT, we can use semantic
type tests for lexical transfer. For example, the English verb eat translates into
German essen or fressen depending roughly on whether the (logical) subject
is human or not. If nouns are marked with semantic features that show whether
they are human or not, then the MT system can look at the logical subject of
eat (if present) in a parse tree to make this deciding test.

The subset relation C for semantic types, mentioned above, is represented in
ont.1lx as follows. For each semantic type f, ont.1x has an entry of the form:

f<fi<fao<...<fa

where the f;’s are all the features g satisfying f C g, i.e. all the features g of
which f is a subset. The f;’s need not be in increasing order, or even related
among one another; we are merely listing all features which are supersets of f.
For example, we might have:

man < male < human < animate

And here the set of males is not a subset of the set of humans.

When the SG parser checks an option test (st g), it looks at each feature f
of (the head word of) the filler phrase, looks up f in the ontology lexicon, and
checks whether ¢ is either f or among the features listed with f (as supersets

of f).

It is good to use the features in ont.1lx as semantic types in the lexicon, so
that the processing can take advantage of the hierarchy in ont.1x. However, it
is not really necessary to use only these as semantic types. You can make them
up ad libitum as long as you do not need to depend on a hierarchy of types.

11 Subject area tests

Consider the sentence:
The bat flew out of his hands.

If the subject area is sports, or even more explicitly baseball, then bat is likely to
mean baseball bat. If instead the subject area is something like nature studies,
then bat is more likely to mean a certain kind of flying mammal.

M. C. McCord: The Slot Grammar Lexical Formalism 33

Generally, subject areas, or domains, are general topics that we may talk
about, write about, work in, deal with, be interested in, etc. Typical examples
are entertainment, arts, finance, clothing, eating, cooking, sports, politics, world
news, travel, economics, computers, mathematics, biology, etc. The topics of
courses in schools and universities are subject areas. The major categories on
the home page of a web service like Yahoo! are subject areas.

Typical subject areas are not like typical semantic types in an ontology. The
most typical semantic types are common noun senses, but subject areas seem
to behave more like proper nouns. For instance, mathematics can be considered
a unique thing in the world. Some languages indicate that distinction by using
a definite article before a subject area, like die Mathematik in German. One
possible way though of viewing a subject area as a semantic type is to think
of the subject area as standing for the set of all activities in that subject area.
For instance we could view the subject area mathematics as being the set of all
mental activities, writings, discussions, etc., in the mathematical domain.

When SG is used, subject area settings can be made for some duration of
the processing — e.g. for a whole document, or a certain portion of a document.
If a web page has meta tags that show the subject area(s), then those might be
set for processing of that web page. More than one subject area may be set or
“in effect” at one time.

A sense frame can specify one or more subject area tests, in the form
(sa Test)

where Test is either the name of a subject area, or a flag test (explained be-
low), or a Boolean combination of such tests using & (and), | (or), or ~ (not).
Examples:

(sa computers)

Tests that the subject area is (includes) computers.
(sa (| computers finance))

Tests that the subject area is computers or finance.

If (sa Test) fails, then the sense frame containing it will not be used in parsing
the current sentence.

A flag test (within an (sa ...) expression) is of the form
(f1 Flag)

where Flag is an SG flag name (for example html, meaning that HTML text
is assumed as input). Two special flags are also allowed: (a) ucseg is on when
in the current segment all the words are in uppercase. (b) lcseg is on when
in the current segment there is at least one noun or verb in lowercase. So we
might have an entry like the following for “US” in the sense of an abbreviation
for “United States”:

M. C. McCord: The Slot Grammar Lexical Formalism 34

US < propn st_country (sa (~ (f1 ucseg)))

This prevents “US” from being taken as a proper noun (and ESG will get only
the pronoun “us”) when the segment is all uppercase.

There is actually a more general form of an sa test which can result in
penalizing (or rewarding) a sense frame instead of ruling it out totally. A penalty
or reward can be given to the sense frame which enters into the numerical scoring
system that SG uses during parsing. A penalty can say that the current sense
frame is less likely to be a valid sense frame. Penalties are positive numbers,
and rewards are negative numbers. Zero is equivalent to no penalty or reward.
An example of an sa test with penalty is this:

(sa computers 0 2)

This says: “If the subject area is computers, then give a penalty of 0 (okay);
else impose a penalty of 2 (and succeed)”. Another example is:

(sa computers 2 finance)

This says: “If the subject area is computers, then give a penalty of 2 (and
succeed); else test whether the subject area is finance and succeed or fail
accordingly”.

In general if we have:
(sa SubjAreaTest; Penalty; SubjAreaTesty Penaltys ...)
then it behaves like so:

if (SubjAreaTesty)
Penalty;, Succeed;

else if (SubjAreaTesty)
Penaltys, Succeed;

If the last thing is a subject area test, then it has to succeed in order for the sa
to succeed. If you have

(sa Test; Penalty; Penaltys)
then this always succeeds, and it is like

if (Test)
Penalty ;

else
Penaltys;

More generally, the algorithm works like so: sa can be given any number of
arguments:

M. C. McCord: The Slot Grammar Lexical Formalism 35

(sa x1 29 x3 --+)

Each argument z; can be either a number or a subject area test. The “inter-
preter” goes through the arguments from left to right and behaves as follows:

(1) If you are at the end of the argument list, then sa succeeds.
(2) Else let = be the next argument and advance the argument list by one.
(A) If x is a subject area test, then evaluate x.
(a) If x is true, then go to (1).
(b) If x is false, then
(i) If there are no remaining arguments, then sa fails
(and the lexical analysis is not used).
(ii) Else skip over the next argument and go to (1).
(B) Else if x is a number, then it takes that number as a penalty
(or reward if the number is negative) and succeeds.

Note that this algorithm actually allows the special case:
(sa n)

where n is a number, and it then just succeeds, taking n as the penalty. Because
of this, there is another name, ev (evaluation), for sa. In any of the uses of sa
described above, the symbol ev can be used instead of sa.

12 Sense names

A sense frame may (but need not) contain a sense name specification, of the
form:

(sn SenseName)

which assigns that sense name to the word, as it is used with the given sense
frame in parsing. Example:

have < v (auxcomp ena) (sn have_perf) < ...

This sense frame is used for the perfect auxiliary sense of have, and this sense
then gets the sense name have_perf.

If no sense name specification is given for a sense frame, then the lexical
processor assigns one automatically, by taking the index word and appending a
number. The number is just the ordinal number of the given sense frame in the
list of the sense frames given for that word. For example if we have the entry:

man < n h m < v objl

then the first (noun) sense would get the sense name man1, and the second (verb)
sense would get the sense name man?2.

Sense names show up in parse output as predicates in word sense predications.

M. C. McCord: The Slot Grammar Lexical Formalism 36

13 Inflectional elements

The index word for a sense frame is always viewed as a citation form of a word.
It is the uninflected form of the word. For English verbs, this form can always be
used as the infinitive of the verb, and for all verbs except be it can be used in the
present tense for all person-number combinations except third person singular.
For English nouns, the citation form is the singular form of the noun — unless
the noun exists only in a plural form. SG has a morphological analyzer, so that
regular inflections of words do not need to be given in the lexicon. However, for
some languages, including English, irregular forms of words are listed as index
words in the lexicon and there are corresponding inflectional elements that show
the nature of the inflection and the corresponding citation form.

Examples:

ate < (ved eat)

eaten < (ven eat)
made < (veden make)
rating < (ving rate)
am < (vpersl be)

is < (vsg be)

are < (vpl be)

men < (npl man)
better < (compar good)
best < (superl good)

These show, respectively, that

ate is the past tense of eat,

eaten is the past participle of eat,

made is both the past tense and past participle of make,
rating is the present participle of rate,

am is the first person singular present of be,

is is the third person singular present of be,

are is the plural present of be,

men is the (noun) plural of man,

better is the comparative form of the adjective good,
best is the superlative form of the adjective good.

These examples illustrate all of the inflectional operators, and their meanings
should be clear.

Sometimes the same word form may be a citation form for one word sense
and an inflected form for another word sense. In this case we show both a sense
frame and an inflectional element in the same entry. Example:

saw
< (ved see)

M. C. McCord: The Slot Grammar Lexical Formalism 37

<n
< v obj (pt down off up)

There are many cases in the ESG lexicons where the past participial form or
the present participial form of a verb can also be used clearly as an adjective.
In such cases we show both an adj sense frame and an inflectional element.
Examples:

surprised
< adj (obj fin inf (p at about by))
< (veden surprise)
surprising
< adj (obj prop)
< (ving surprise)

We decide that e.g. surprised has an adjective use because we can say He was
very surprised or He was so surprised. If we give these words adj sense frames,
then we also have to show the inflectional elements for them, because the ESG
morphological analyzer does not analyze a word any further if it finds it in the
lexicon.

14 Support word frames

Many nouns have support verbs that go with them. Examples are:

make use of

make reference to

take advantage of

take or have a bath
have an argument with
have access to

take account of

make an addition to
make an adjustment to
have admiration for
give advice to

make or have an alliance with
make an amendment to

Most of the semantic content of such a construction resides in the noun. The
corresponding support verbs are typically very common verbs like have, make,
take, give. Which verb goes with the noun in this way is rather idiosyncratic.
Often the verb cannot be translated independently into another language. For
example, why do we take a bath? It is not a standard meaning for take. Often
the combination of support verb plus noun can also be expressed by a single
verb, for example:

M. C. McCord: The Slot Grammar Lexical Formalism 38

make use of = use
take a bath = bathe
make an amendment to = amend

When we have a support verb construction, it would be possible to store it
under the verb; but this would be unwise because there are very few support
verbs, and the entries for each would become tremendous. It is better to store
the information under the noun in question. We do this like so for make use of.

use < ... < sup make v (objl (n use)) (pl of)
In general, a support word frame is of the form:
sup SupportWord SenseFrameF orSupportWord

In other words, we show the special symbol sup, followed by the support word
w, and then give a sense frame for w. The system will automatically construct
a special sense name, like make_use, that shows both the support word and the
index word.

We could accomplish some of the same results by writing multiwords like
this:

=make use of < v obj

But there are two problems with this. (1) We do have to make make the head
word of the multiword, because it is the head word is what gets inflected. But
then the multiword will be stored internally under this head word (and will
therefore overload make). (2) The support word construction allows many vari-
ants that the multiword doesn’t, like:

He made very good use of it.
This is the use that he made of it.
How much use did you say he made of it?

For all of these, the ESG parser will show the make_use sense.

References

[1] Veronica Dahl and Michael C.McCord. Treating coordination in logic gram-
mars. Computational Linguistics, 9:69-91, 1983.

[2] Jeffrey S. Gruber. Studies in Lexical Relations. PhD thesis, MIT, 1965.

[3] Ray S. Jackendoff. Semantics and Cognition. MIT Press, Cambridge, MA,
1983.

[4] Shalom Lappin and Michael C. McCord. Anaphora resolution in Slot
Grammar. Computational Linguistics, 16:197-212, 1990.

M. C. McCord: The Slot Grammar Lexical Formalism 39

[5]

[10]

[11]

[12]

[13]

[14]

[15]

Shalom Lappin and Michael C. McCord. A syntactic filter on pronominal
anaphora for Slot Grammar. In Proceedings of the 28th Annual Meeting of
the ACL, pages 135-142, 1990.

Michael C. McCord. Slot Grammars. Computational Linguistics, 6:31-43,
1980.

Michael C. McCord. Using slots and modifiers in logic grammars for natural
language. Artificial Intelligence, 18:327-367, 1982.

Michael C. McCord. Modular logic grammars. In Proceedings of the 23rd
Annual Meeting of the ACL, pages 104—117, 1985.

Michael C. McCord. Slot Grammar: A system for simpler construction
of practical natural language grammars. In R. Studer, editor, Natural
Language and Logic: International Scientific Symposium, Lecture Notes
in Computer Science, pages 118-145. Springer Verlag, Berlin, 1990.

Michael C. McCord. Heuristics for broad-coverage natural language pars-
ing. In Proceedings of the ARPA Human Language Technology Workshop,
pages 127-132. Morgan-Kaufmann, 1993.

Michael C. McCord. Word sense disambiguation in a Slot Grammar frame-
work. Technical report, IBM T. J. Watson Research Center, 2004. RC
23397.

Michael C. McCord. A formal system for Slot Grammar. Technical report,
IBM T. J. Watson Research Center, 2006. RC 23976.

Michael C. McCord. Using Slot Grammar. Technical report, IBM T. J.
Watson Research Center, 2006. RC 23978.

Michael C. McCord and Susanne Wolff. The lexicon and morphology for
LMT, a prolog-based MT system. Technical report, IBM T. J. Watson
Research Center, 1988. RC 13403.

Adrian Walker, Michael C. McCord, John F. Sowa, and Walter G. Wilson.
Knowledge Systems and Prolog: A Logical Approach to Expert Systems and
Natural Language Processing. Addison-Wesley, Reading, MA, 1987.

