RC23978 REVISED (W1003-081) March 24, 2010
Computer Science

|BM Resear ch Report

Using Slot Grammar

Michael C. McCord
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Y orktown Heights, NY 10598

— = Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

Using Slot Grammar

Michael C. McCord
IBM T. J. Watson Research Center

Abstract

This report describes how to use a Slot Grammar (SG) parser in ap-
plications, and provides details on an API. There is a companion report,
“The Slot Grammar Lexical Formalism”. Both reports are written in a
fairly self-contained way. The current one can serve as an introduction
to Slot Grammar and as a kind of user guide. Topics covered include:
(a) An overview of SG analysis and parse displays. (b) The use of SG in
interactive mode, including an editor-based interactive mode. (c) The use
of SG on whole documents, or collections of documents. (d) Descriptions
and inventories of SG slots and features — both morphosyntactic features
and semantic types. (e) Controlling the behavior of the parser with flag
settings. (f) Tag handling and annotation methods for named entities and
other text chunks. (g) The parse tree data structures. (h) The API and
compilation of SG-based applications. (i) Handling user lexicons.

1 Introduction

In this report we describe how to use a Slot Grammar (SG) parser in ap-
plications. There is a companion report [13], “The Slot Grammar Lexical
Formalism”, which describes SG lexicons in enough detail that the reader should
be able to create such a lexicon for a new language. Both reports are written
in a fairly self-contained way.

There is also a report, [12], “A Formal System for Slot Grammar”, which
describes a formalism (SGF) for writing the syntax rules for a Slot Grammar.
But this methodology is not currently used in SG, for reasons of efficiency.

The main current implementation of SG is in C. The SG parsers can be used
in executable form, or via library (or DLL) versions, with an API described in
this report. And there is a bridge of the C implementation to Java, developed by
Marshall Schor in the context of UIMA (Unstructured Information Management
Architecture) — see http://www.ibm.com/research/uima.

Currently there are Slot Grammars for English, French, Spanish, Italian,
Brazilian Portuguese and German, which we call, respectively, ESG, FSG,
SSG, ISG, BPSG, and GSG. More languages will come. There is a single
syntactic component, 1tsyn, for the Latin-based languages (French, Spanish,

M. C. McCord: Using Slot Grammar 2

Italian, Portuguese), with switches for the differences. We will use “XSG” to
refer generically to one of the Slot Grammars.!

The examples in this document are given mainly for English, but most of the
material applies to all the languages for which we have Slot Grammars. Most
of the slot and feature names are the same for all languages (are shared across
languages), but we list most of the exceptions. The data structures and the API
are the same for all languages.

XSG runs on a variety of platforms, including all Windows 32 platforms,
AIX, Solaris, Linux, HP, and VM. Where it is relevant below, we will use ter-
minology from Windows.

Both single-byte and Unicode versions of XSG are available. The single-byte
version uses ISO 8859-1 (which is a “subset” of Unicode).

The rest of the report is organized as follows:
e Section 2, page 2: “Overview of Slot Grammar analysis structures”

Section 3, page 6: “Running the executable”
Section 4, page 8: “Options for parse tree display”

Section 5, page 10:
Section 6, page 11:
Section 7, page 11:
Section 8, page 25:
Section 9, page 33:

Section 10, page 37:
Section 11, page 37:
Section 12, page 47:
Section 13, page 52:
Section 14, page 56:
Section 15, page 60:
Section 16, page 65:

“Processing a file of sentences”
“The 1do interface”

“Features”

“Slots and slot options”
“Flags”

“Tag handling”

“Multiwords, named entities, and chunks”
“The data structure for SG parse trees”
“Punctuation and tags in SG analyses”
“Compiling your own XSG application”
“Using your own lexicons”

“Lexical augmentation via WordNet”

2 Overview of Slot Grammar analysis structures

As the name suggests, Slot Grammar is based on the idea of slots. Slots
have two levels of meaning. On the one hand, slots can be viewed as names for
syntactic roles of phrases in a sentence. Examples of slots are:

IThe author developed the initial versions of the Slot Grammars and continues to develop
ESG. Claudia Gdaniec took over GSG and developed most of it to its current state. Es-
méralda Manandise took over the Latin languages syntactic component 1tsyn, and continues
to develop that, currently with special emphasis on Spanish. Contributions to the lexicons
and morphology have been made by Claudia Gdaniec and Marga Taylor for German, by Con-
suelo Rodriguez, Esméralda Manandise, Sue Medeiros and Joaquin Salcedo for Spanish, by
Esméralda Manandise for French, and by the Synthema company for Italian and Portuguese.

M. C. McCord: Using Slot Grammar 3

subj subject

obj direct object

iobj indirect object

comp predicate complement
objprep object of preposition
ndet NP determiner

On the other hand, certain slots (complement slots) have a semantic signifi-
cance. They can be viewed as names for argument positions for predicates that
represent word senses.

Let us illustrate this. Figure 1 shows an example of slots, and the phrases
that fill them, for the sentence Mary gave John a book. It shows for example
that Mary fills the subj (subject) slot for the verb gave, John fills the iobj slot,
etc. One can see then that the slots represent syntactic roles.

obj
subj e
10b] ndet

Mary ga\gam a{a)ok

Figure 1: Slot filling for Mary gave John a book

To illustrate the semantic view of slots, let us understand that there is a word
sense of give which, in logical representation, is a predicate, say give;, where

(1) givey(e,x,y,z) means “e is an event where x gives y to z”
The sentence in Figure 1 could be taken to have logical representation:
(2) Fedy(book(y) A givei(e, Mary,y, John))

From this logical point of view the slots subj, obj, and iobj can be taken as
names for the arguments x, y, and z respectively of give; in (1). Or, one could
say, these slots represent argument positions for the verb sense predicate.

Slots that represent predicate arguments in this way are called complement
slots. Such slots are associated with word senses in the Slot Grammar lexicon
— in slot frames for the word senses. All other slots are called adjunct slots. An
example of an adjunct slot is ndet in Figure 1. Adjunct slots are associated
with parts of speech in the syntactic component of the Slot Grammar.

Natural language often provides more than one syntactic way to express the
same logical proposition — where the variations can express extra ingredients of
emphasis, topic, and the like.? Figure 2 shows an alternative syntactic way of
expressing the same basic proposition as in Figure 1.

2These extra ingredients should figure in the logical representation also.

M. C. McCord: Using Slot Grammar 4

Mary gave mok 0 John

Figure 2: Slot filling for Mary gave a book to John

In fact, the logical representation for this sentence (not counting differences in
emphasis, etc.) is the same as in (2) above. The sentence analysis in Figure 2
uses the same complement slot frame

(3) (subj, obj, iobj)

as that in Figure 1. In both cases, the frame comes from the same word sense
entry for give in the lexicon. But the iobj slot is filled differently in the two
sentences — in the first case by the NP John, and in the second case by the PP
to John. And the orderings of the slot fillers are different in the two examples.
But the syntactic component of the Slot Grammar knows about these alter-
native syntactic ways of using slots — alternatives that lead to the same basic
predication in logical form.

Because of this dual role of slots, Slot Grammar parse trees show two levels
of analysis — the surface syntactic structure and the deep logical structure. The
two structures are shown in the same parse data structure. The full form of the
SG parse tree is illustrated in Figure 3, for the sentence Mary gave a book to
John.

Surface Structure }
[Tree Lines | Slotsl [Features ;

Deep Structure
Word Senses &rguments

(4

—eYt—subj(n) Mary1 (1) noun propn sg h

° top givel(2,1,4,5) verb vfin vpast sg vsubj
£ ndet a(3) det sg indef

obj(n) book1(4) noun cn sg
—e— iobj(p) t02(5,6) prep pprefv motionp

Lo— objprep(n) Johnl(6) noun propn sg h

Figure 3: Ingredients of a Slot Grammar analysis structure

M. C. McCord: Using Slot Grammar 5

Note then that the surface structure of the sentence is shown in the tree lines
and the slots on the left, and the features on the right. And the deep (or logical)
structure is shown in the middle section through the word sense predicates and
their arguments.

The lines of the parse display are in 1-1 correspondence with the (sub-)phrases,
or nodes, of the parse tree. And generally each line (or tree node) corresponds to
a word of the sentence. (There are exceptions to this when multiword analyses
are used, and when punctuation symbols serve as conjunctions.) Slot Grammar
is dependency-oriented, in that each node (phrase) of the parse tree has a head
word, and the daughters of each node are viewed as modifiers of the head word
of the node.

So on each line of the parse display, you see a head word sense in the middle
section, along with its logical arguments. To the left of the word sense predica-
tion, you see the slot that the head word (or node) fills in its mother node, and
then you can follow the tree line to the mother node. We describe the roster
of possible slots in Section 8. To the right, you see the features of the head
word (and of the phrase which it heads). The first feature is always the part
of speech (POS). Further features can be morphological, syntactic, or semantic.
We describe the possible morphosyntactic features in Section 7. The semantic
features are more open-ended, and depend on the ontology and what is coded
in the lexicon.

What are the arguments given to word sense predicates in the parse display?
The first argument is just the node index, which is normally the word number of
the word in the sentence. This index argument can be considered to correspond
to the event argument e in (1) above (with a broad interpretation of “event”).
The remaining arguments correspond to the complement slots of the word sense
— or rather to the fillers of those slots. They always come in the same order as
the slots in the lexical slot frame for the word sense. So for a verb, the first of
these complement arguments (the verb sense’s second argument) is always the
logical subject of the verb. Generally, all the arguments are logical arguments.
So passivized expressions are “unwound” in this logical representation. This is
illustrated in Figure 4, the parse for the passive sentence The book was given to
John by Mary.

Note that the word sense predication givel(4,7,2,5) appropriately has node 7,
by Mary (and from this Mary), as its logical subject, and has node 2, the book,
as its logical object.

The type of parse display shown in this section is close to the default dis-
play for XSG. Actually, what we show here uses some special techniques (with
PSTricks) in IWTEX, especially for drawing the tree lines. This special BTEX
form can be produced automatically by the XSG parser when a certain flag is
turned on, and this was done for the examples of this kind in this document.
The default parse display mimics the nice tree lines with ASCII characters, but
it is still readable.

M. C. McCord: Using Slot Grammar 6

Logical Object

é ndet thel(1) det sg indef N
I—I:subj (n) book1(2 noun cn sg
——top be(3,2,4) verb vfin vpast sg vsubj

L pred(en) givel(4,7,2,5) verb ven vpass

—e——iobj(p t02(5,6) prep pprefv motionp
LO—ObJpI‘ep) Johnl(6) noun propn sg h
—e—subj(agent) byl(7:8) prep pprefv
_ Lo—obJprep) Maryl(8) noun propn sg h)

[Logical Subject]

Figure 4: Parse of a passive sentence

There are several other options for parse displays (or parse output), and these
are described in Section 4.

The actual C data structures for parse trees are described in Section 12.

3 Running the executable

The files needed to run XSG are the executable XSG .exe plus the lexical
files. For ESG the lexical files are:

en.lxw en.lxv

The lexical files for GSG, SSG, FSG, ISG and BPSG are similar to those for
ESG, with en replaced by de, es, fr, it and bp, respectively.

When you run the executable xsg without any arguments, you will be in a
loop with a prompt “Input sentence:”. We call this interactive mode. From
this you can type in sentences (spanning several lines if you want), or other
special commands. All sentences have to end with a sentence terminator, and
all commands have to end with a period. Commands should be on one line.
You can end the session by typing

stop.

or Ctrl-C. (Generally stop is better because it allows XSG to release storage,
and some operating systems may not do this automatically.)

Parse tree output may be seen directly on the console, or in various editors.
There are interfaces on Windows to Notepad, Kedit, and Epsilon, on Unix/AIX
to Emacs, and on VM to XEDIT. The version of XSG that you get may be
set by default to one or the other of these. If you want to direct output to the
console, type:

M. C. McCord: Using Slot Grammar 7

-xout.
The command
+xout.

then causes the output to go to the file sg.out and then the chosen editor is
invoked on that file. When you leave the file, you will be back in interactive
mode.

If you have another editor, called by name E, then the command
sgeditor F.

will cause later output to go to that editor.

If you want to give an operating system command C' while in the Input sentence
loop, then you can type

/C.
For instance,
/dir /w.

would do a directory listing.

When the executable XSG .exe is called, it can take command-line argu-
ments that accomplish various things. These same command-line arguments
can also be passed into an initialization function xSGstart for the DLL form of
XSG, as described below in Section 14.

One kind of command-line argument is -dofile, described below in Sec-
tion 5, which allows you to run XSG on a text file.

Several command-line arguments allow various settings for XSG. The most
important are flag settings, for the flags discussed below in Section 9. These
commands are of the form:

-on Flag
-off Flag

which, respectively, turn Flag on or off.

The remainder of this section is a bit more esoteric, and could be skipped on
first reading.

The command-line argument pair
-sentlen N

where N is an integer, sets the maximum length of a segment (in words, not
counting punctuation or tags) that XSG will attempt to parse. The default is
60. It should not be set higher than 100.

The command-line argument pair

M. C. McCord: Using Slot Grammar 8

-timelimit NN

where N is an integer, sets the maximum time in milliseconds that will be spent
parsing a segment. The default is 15000.

One can also use command-line arguments to change default storage allo-
cations for XSG. These allocation commands are of the following four forms,
where N is an integer:

-stStorage N
-ptStorage N
-PstStorage N
-PptStorage N

The first, -stStorage, determines the number of characters in the temporary
string storage buffer used by XSG. “Temporary” refers to the fact that the
buffer is zeroed after each segment is parsed. The default value varies with the
installation of XSG, but is in a range like 1M to 4M. The second, -ptStorage,
determines the number of bytes in a buffer used for temporary storage of pointers
and numbers. Its default value is in the range 4M to 20M. The third and fourth
commands are similar, but for the main “permanent” storage areas (persisting
across parses of segments). Their default values are respectively 1.5M and 2M.

The most esoteric command described here is
-prunedelta P

where P is a real number or integer. This sets an internal field prunedelta to
P. XSG does parse space pruning during parsing (see the flag prune described
in Section 9), to clear away unlikely partial analyses. The pruning is most
vigorous when prunedelta is 0, and this is the default for most languages.
When prunedelta is set higher, pruning is less vigorous and more parses are
produced, but at the cost of efficiency (more space required and more time per
parse).

4 Options for parse tree display

The default form for parse tree display has been described in Section 2. Parse
trees can be displayed also in other forms. If you type

+deptree 0.

then you will see trees in a different kind of indented form, like so, for the
sentence John sees Mary.

M. C. McCord: Using Slot Grammar 9

top verb vfin vpres sg vsg vsubj thatcpref
subj(n) noun propn sg h m gname sname
John1(1)
seel(2,1,3)
obj(n) noun propn sg h f gname
Mary1(3)

Typing either of the following gives the default form:

+deptree.
+deptree 1.

Typing -deptree is equivalent to +deptree 0. If you type this:
+deptree 2.

then you will see trees in an XML format that may be convenient to use for
some interfaces, like so:

<seg start="0" end="15" text="John sees Mary.">
<ph id="2" slot="top" f="verb vfin vpres sg vsg vsubj thatcpref">
<ph id="1" slot="subj(n)" f="noun propn sg h m gname sname">
<hd w="John" c="John" s="Johnl" a=""/>
</ph>
<hd w="sees" c="see" s="seel" a="1,3"/>
<ph id="3" slot="obj(n)" f="noun propn sg h f gname">
<hd w="Mary" c="Mary" s="Maryl" a=""/>
</ph>
</ph>
</seg>

These are indented for easier readability. If you type
+deptree 3.

then the trees will still be in XML, but with no indentation whitespace, like so:

<seg start="0" end="15" text="John sees Mary.">

<ph id="2" slot="top" f="verb vfin vpres sg vsg vsubj thatcpref">
<ph id="1" slot="subj(n)" f="noun propn sg h m gname sname">

<hd w="John" c="John" s="Johnl" a=""/>

</ph>

<hd w="sees" c="see" s="seel" a="1,3"/>

<ph id="3" slot="obj(n)" f="noun propn sg h f gname">

M. C. McCord: Using Slot Grammar 10

<hd w="Mary" c="Mary" s="Maryl" a=""/>
</ph>
</ph>
</seg>

5 Processing a file of sentences

In interactive mode you can make XSG process a whole file by typing:
do InF'ile OutFlile.

If you omit the OutF'ile, then output will go either to sg.out or to the console
according as xout is on or off. It will send results to sg.out a segment at a
time.

Another way to process a whole file is to invoke the XSG executable with
arguments as follows. (The -dofile keyword can also be preceded by the types
of command-line arguments described at the end of Section 3.)

XSG -dofile InFile OutF'ile

The InF'ile argument can actually be a file pattern, like \texts*.htm, and it
will process all the files matching that pattern, sending all the output to the
same output file. You can omit the OutF'ile, in which case the output will
all go to sg.out (all the results in one step). Or you can specify OutFile as
the empty string "", in which case the output will go to sg.out one segment
at a time if xout is on, or to the console otherwise. You can also give XSG
-dofile optional arguments of the following forms, appearing after the ~dofile
keyword.

-on Flag
-off Flag
-sa SubjectArea(s)

to turn a flag on or off or to set subject areas for the run. Available SG flags
are described in Section 9. If you want to set a flag to a value Val, you can use
an argument pair:

-on "Flag Val"

If there is more than one subject area, you should use -sa just once, and let its
“argument” contain all the desired subject areas, enclosed in double quotes and
separated by blanks, like so:

fsg -dofile -sa "computers instructions"

M. C. McCord: Using Slot Grammar 11

6 The 1do interface

There is an editor-based interactive interface to XSG which is useful in trying
out variations of sentences when developing an application. It is called 1do. In
interactive mode with XSG you can type:

ldo Flile.

This will open up F'ile with the editor. Then you can place the cursor on
the first line of any sentence (the cursor need not be at the beginning of the
sentence) and press F6. Then XSG will parse that sentence and show the results
in sg.out. When you press F3 in the editor, you will return to editing File in
the same spot you were.

You can edit and change sentences in F'ile, in order to experiment with
variations of them, and again press F6 to parse them. As long as you do not
save the file, when you return from sg.out, File will be in its original state
(before you made a variation of the test sentence).

When you are editing F'ile in 1do mode, you can press F3 to return to the
XSG command line. This will leave the file in its original state, even if you have
made changes — as long as you do not save the file. Of course you may want
to save the file, because you have found some useful variations of sentences to
work on later.

Once you have used the above 1do command with a given file argument, you
can just type

1ldo.

even after leaving XSG and reinvoking it, and it will return to the same file you
were working on, and on the same line where the cursor was when you left the
file with F3.

In preparing a test file for use with 1do, you should arrange it so that no two
sentences share any of the same line. Start each new sentence on a new line.

The 1do software exists partly in the C code of the SG shell and partly in
the macro language of the editor. Currently there is a editor macro program in
Kedit on Windows.

7 Features

The features that appear in a Slot Grammar parse tree can be divided roughly
into grammatical (or morphosyntactic) features and semantic features. In our
formal data structure for a Slot Grammar phrase (which we describe in Sec-
tion 12 below), all the features (grammatical or semantic) for each phrase are
given in a single undifferentiated list of strings attached to the phrase. A phrase

M. C. McCord: Using Slot Grammar 12

always has a head word, and a feature may refer only to the head word, or to
the whole phrase.

Grammatical features may represent morphological characteristics of (head)
words, or may have more to do with the syntax of the whole phrase. An example
of the former is vpast, for a past tense verb; an example of the latter is vsubj,
which means that a verb phrase has an overt subject (in that same phrase).

Semantic features (also called semantic types or concepts) are names for sets
of things in the world, and they are organized into an ontology, which contains
not only the set of types, but also a specification of the subset relation between
the types:

Typer C Types

For instance the set h of humans is a subset of the set 1iv of living beings:
h C liv. These “things in the world” can include events, states, etc., and so
for example an event referred to by a verb sense could have a semantic type. It
is most typical (and useful) to mark semantic types on noun senses, but they
could be marked on any part of speech.

There are two ways of dealing with semantic types in XSG. One is to specify
them in an ontology lexicon, which should be named ont.1x. For the form of
ont.lx, see [13]. Currently the non-English XSG’s use an ont.lx, and ESG can
also. But the latest version of ESG uses a second method: The most basic types
are encoded directly in ESG and its base lexicon; and then we use a method,
described in Section 16 below, based on WordNet to augment the type marking.

For the sake of efficiency, in the current implementation the SG grammatical
features, and some of the most basic semantic types, are represented internally
during parsing by bit strings (or mappings onto bit positions). It is possible to
do this because the grammatical features form a closed class. However, most
semantic types are represented internally essentially as strings. In spite of the
difference in internal (parse-time) representation of features, the SG API data
structure for phrases, described in Section 12, represents both types of features
as strings. This is done for the sake of simplicity of the API.

In the remainder of this section we first describe the grammatical features
used in XSG, and then describe the most basic semantic types used for ESG.

We try to use as uniform a set of grammatical features across the different
languages as possible. Of course some features are not applicable to all the
languages. The SG system basically works with the union of all the possible
features, and some of them just do not get used in all the XSG.

As mentioned above, the part of speech feature comes first in the list of
features of a phrase. The possible parts of speech are these:

noun, verb, adj, adv, det, prep, subconj,
conj, qual, subinf, infto, forto, thatconj,
special, incomplete

M. C. McCord: Using Slot Grammar 13

The first six of these have obvious meanings. Let us go over the others:
subconj. Subordinate conjunction, like if, after, ...
conj. Coordinate conjunction, like and, or, ...
qual. Qualifier, like very, even. Can modify adverbs and adjectives, not verbs.

subinf. For multiwords like in order to and so as to that act like preinfinitve
to for infinitive verbs.

infto. The preinfinitive sense of to, or analogs in the other languages.
forto. The sense of for in for-to constructions like for John to be there.
thatconj. The subordinate conjunction sense of that (or que, che, daf).
special. A catch-all category for special “words” like apostrophe-s.

incomplete. Used as the part-of-speech category for the top node of an in-
complete parse.

Now let us look at the other possible features of a phrase. We organize these
mainly by part of speech of the phrase.

Shared features. There are some features that are shared across several parts
of speech. These include: sg (singular), p1 (plural), sgpl (singular and plural),
dual (dual), cord (coordinated), wh, and whnom. The last is used on determiners,
nouns, and verbs; its ultimate purpose is to mark clauses, like what you see, that
can be used essentially anywhere an N P can.

Verb features. We list these in alphabetical order.

badvenadj. A past participle of such a verb does not easily fill the nadj slot.
Example: said.

gerund. This gets marked on an ing-verb that has become a gerund, as in the
barking of the dogs.

ingprep. A verb whose ing form behaves like a preposition. Example: con-
cern.

invertv. A verb (like arise or come) that allows its subject on the right and
a comp PP or there left modifier.

npref. Prefers to modify nouns over verbs, as head of non-finite V P.
objpref. Verb preferring NP object over finite clause or that-complement.
q. Question clause.

relvp. Relative clause.

M. C. McCord: Using Slot Grammar

se. German verb that takes sein for the present perfect.

sta. Stative verb.

14

thatcpref. Verb allowing both finite V P or that-complement but preferring

the latter.

transalt. Verb (like increase) allowing transitivity alternation. The theme
(the entity undergoing change) can be either the direct object or the sub-

ject (when no direct object is given).
vcond. Conditional mood.
vdep. Dependent clause.
ven. Past participle.
vfin. Finite verb.
vfinf. German infinitive verb modified by zu.
vfut. Future tense (for Latin languages).
vimperf. Imperfect (for Latin languages).
vimpr. Imperative V P.
vind. Indicative mood.
vindep. Indepedent clause.
vinf. Infinitive.
ving. Present participle.
vlast. VP whose last modifier is another V P.

vobjc. (For GSG) a verb with an overtly filled obj or iobj.

vobjnom. (For GSG) a verb with a nominative overtly filled obj.

vpass. Passive ven verb, as in he was taken.
vpast. Past tense.

vpersl. First person.

vpers2. Second person.

vpers3. Third person.

vpluperf. Pluperfect (for Latin languages).

vpref. Prefers to modify verbs over nouns, as head of non-finite V P.

M. C. McCord: Using Slot Grammar 15

vpres. Present tense.

vrelv. Verb that easily allows a relative clause modifier of its subject to
right-extraposed.

vsbjnc. Subjunctive.
vsubj. VP with overtly filled subject.
vthat. Relative clause with that as the relative pronoun.

whever. A clause like whatever you see or whichever road you take that is
modified by an extraposed wh-ever NP.

postcomp. Means that the verb cannot have a comp slot filler preceding a filler
of (obj n).

Noun features.

acc. Accusative.

advnoun. A noun that can behave adverbially. Main examples: time nouns
and locative nouns.

cn. Common noun.

cpropn. Proper noun, like “Dane” or “Italian”, that is like a common noun
in denoting a class.

dat. Dative.

def. Definite pronoun.

detr. Noun requiring a determiner when it (the noun) is singular.
encprn. Can be an enclitic (for the Latin languages).

f. Feminine.

gen. Genitive.

glom. A multiword noun obtained by agglomerating certain capitalized nouns
in sequence.

goodap. Can easily be a right conjunct in comma coordination even though
it itself is not coordinated.

hplmod. Noun that allows a plural nnoun modifier.
indef. Indefinite pronoun.

iobjprn. Can be non-clitic iobj (Latin languages).

M. C. McCord: Using Slot Grammar 16

lmeas. Linear measure.
m. Masculine.

meas. Measure.

mf . Masculine or feminine.
mo. Month.

nadjpn. Pronoun that can fill nadj and must agree with head noun (Latin
languages).

nadvn. Noun that can fill nadv and must agree with head noun (Latin lan-
guages).

nom. Nominative.
nonn. A noun that cannot have an nnoun modifier.
notnnoun. A noun that cannot be an nnoun modifier.

npremod. Can be a noun premodifier of a noun even though it is also an
adjective.

nt. Neuter.

num. A number noun.

objpprn. Can be object of preposition (Latin languages).
objprn. Can be non-clitic obj (Latin languages).
oreflprn. Can be use only as a reflexive (Latin languages).
percent. A percent number noun.

perspron. Personal pronoun.

persl. First person.

pers2. Second person.

pers3. Third person.

plmod. Noun that can be an nnoun even when it is plural.
posit. Position (like middle or end).

poss. Possesive pronoun.

procprn. Can be proclitic (Latin languages).

pron. Pronoun.

M. C. McCord: Using Slot Grammar 17

propn. Proper noun.

quantn. Denotes a quantity (like all or half).

reflprn. Reflexive pronoun.

relnp. An NP that can be the relativizer of a relative clause.

tonoun. A noun, like school, that can by itself (without premodifiers) be the
objprep of to, even though it is also a verb.

uif. Uninflected.
way. Manner/way.

whevern. An NP like whatever or whichever road.

Adjective features.

adjnoun. Adjectives like poor that can have a the premodifier and act like the
head of an NP.

adjpass. An adjective like delighted that is also a past participle, but the past
participle is not allowed to fill pred(en).

aqual. (For German) an adjective, like denkbar that can premodify an adverb
(filling advpre).

compar. Comparative.
detadj. Adjectives like next and last that have an implicit definite article.

erest. Can use -er and -est for comparative and superlative. Applies to
adverbs too.

lmeasadj. Adjective like high allowing constructions like three feet high.
noadv. (For German) an adjective that cannot be used as an adverb.
noattrib. Not allowed as filler of nadj.

nocompa. Not allowed as filler of comp(a).

nocompare. Not allowing comparison (for Latin languages).

nopred. Not allowed as filler of pred.

nqual. Adjectives like medium that allow constructions like a medium quality
car.

post. Adjective like available that can easily postmodify a noun, as in the
first car available.

M. C. McCord: Using Slot Grammar 18

soadjp. Gets put by the grammar on an adjective phrase like so good to allow
that phrase to fill nadv in an N P like so good a person. This is done when
the adjective (like good) is premodified by a qualifier marked soqual.

superl. Superlative.
tmadj. A time adjective like early.

toadj. Similar to tonoun.

Adverb features.

badadjmod. Preferred not to modify adjective.

compar. Comparative.

detadv. Can modify a determiner.

interj. An interjection.

initialmod. Modifies on left only as first modifier.

introadv. Adverb like hello that easily left-coordinates by comma-coordination.
invertadv. Adverb that allows certain constructions Adv Verb Subj.
loadv. Easily modifies a locational prep or adverb (particle).
locadv. Locative adverb like above.

noadvpre. Cannot have (qualifier) premodifier.

nopadv. Cannot modify preposition.

notadjmod. Cannot modify an adjective.

notinitialmod. Cannot appear clause-initially.

notleftmod. Cannot modify verb on left.

notnadv. Cannot premodify a noun.

notrightmod. Cannot modify verb on right.

nounadv. Can modify noun.

nperadv. Can fill nper slot for nouns, like apiece and each.

npost. Can postmodify a noun in slot nadjp.

partf. Adverb that can be a particle (also applies to prepositions that can be
particles).

post. Can postmodify (like enough).

M. C. McCord: Using Slot Grammar 19

ppadv. Can modify preposition (with no penalty).

prefadv. Adverb analysis as vadv is preferred over noun analysis as obj.
reladv. For Spanish, an adverb like cuando that can create a relative clause.
superl. Superlative.

thereprep. Adverb like thereafter, thereof,

tmadv. Time adverb like before, early,

vpost. Cannot modify a finite verb on the left.

Determiner features.
all. Only for the determiner all.
ingdet. Marked on possdets and the. Can premodify present participle verbs.
possdet. Possessive pronoun as determiner.
prefdet. Preferred as determiner (over other parts of speech).

reldet. For Spanish, a determiner like cuyo that can create an NP serving
as relativizer.

the. Marked only on the.

Qualifier features.

badattrib. If it modifies an adjective, then that adjective cannot fill nadj
slot.

c. Modifies only comparative adverbs.
post. Can postmodify.
pre. Can premodify (the default).

soqual. See soadjp for adjectives above.

Subordinate conjunction (subconj) features.
assc. For as (or analogs in other languages).
comparsc. For assc or thansc.
finsc. Allows only finite clause complements (filling sccomp).

notleftsc. A clause with this as head cannot left-modify a clause (as vsubconj).
Example: for.

M. C. McCord: Using Slot Grammar 20

okadjsc. Allows adjective complement.
oknounsc. Allows noun complement.
oknsubconj. Can fill nsubconj.
poorsubconj. Preferred not as subconj.

sbjncsc. For the Latin languages: Suppose a subjconj S has a finite clause
complement C' (C'is filler of sccomp). Then S must be marked bjncsc if
C' is marked vsbjnc (subjunctive) but not vind (indicative). And if S is
marked sbjncsc and C' is marked vsbjc, then remove vind from C if it
is present.

thansc. For than (or analogs in other languages).
tosc. Allows infto complement.

whsc. A wh-subconj (like whether).

Preposition features.

accobj. (For German) allows the objprep to be accusative.

adjobj. (For German) allows the objprep to be an adjective or past participle
phrase.

asprep. For as and analogs in other languages.
badobjping. Cannot have a ving objprep (under certain conditions).

daprep. For German. For PPs like dabei and darauf. A word da+Prep is
unfolded to a PP with head Prep marked daprep and objprep filled by
es.

datobj. (For German) allows the objprep to be dative.
genobj. (For German) allows the objprep to be genitive.

hasadjobj. (For German) the objprep is an adjective or past participle
phrase.

infobj. (For Latin languages) has an objprep that is an infinitive V P.
locmp. Used for multiword prepositions that fill comp(lo).

motionp. Prefers not to fill comp if the matrix verb is marked sta.
nonlocp. Cannot be a filler of comp(lo).

notwhpp. Cannot have wh objprep (under certain conditions).

M. C. McCord: Using Slot Grammar 21

pobjp. The objprep can be a PP itself. Example: from.

ppost. The preposition can follow the objprep. If the preposition is marked
ppost but not ppre, then the preposition must be on the right.

ppre. The preposition can precede the objprep. There is no need to mark
this feature on the preposition, in order to allow the preposition to be on
the left, unless the preposition is marked ppost.

pprefn. Prefers to modify nouns.
pprefv. Prefers to modify verbs.

preflprn. Marked by the grammar on a PP when the objprep is a reflexive
pronoun.

relpp. A PP that can serve as a relativizer for a relative clause.

staticp. Preposition like in or on that is used normally to represent static
location vs. goal of motion (as with into and onto).

timep. Common modifier of time nouns, as in two days after the meeting.
timepp. For certain PPs where the objprep is a time noun.

woprep. Like daprep, but with wo instead of da.

Basic semantic types.

Here we list and briefly describe the most basic semantic types used with
ESG. They are listed in alphabetical order. Most of the types are marked on
nouns, and just a few (named specifically) are marked on verbs.

abst. Abstraction.

act. Act by a human.

ameas. Unit of area measure.

anml. Animal (not including humans).

artcomp. Artistic composition — literary, musical, visual, dramatic, etc.
artf. Artifact.

century. Named century like “300 B.C.”

chng. Event of change.

cmeas. Unit of volume (cubic) measure.

cognsa. Cognitive state or activity.

M. C. McCord: Using Slot Grammar 22

coll. Collection.

collectn. Collective noun dealing overtly with a set — like “set”, “group”,
“family”. Subtype of coll.

cpropn. Meant to suggest “common proper noun”. A propn, like “German”
that can name a class, and so behaves also like a common noun.

cst. State or province in a country.

ctitle. A postposed company title, like “Inc.” or “Co.”.
ctry. Named country (propn).

cty. Named city.

discipline. Branch of knowledge.

doc. Document.

dy. Day. Named weekdays like Tuesday or named holiday days.
emeas. Unit of electromagnetic measure.

evnt. Event.

f. Female.

feeling. Feeling, emotion.

geoarea. Geographical area.

geoform. Geological formation.

geopol. Named geopolitical unit — like ctry, cst, cty.
gname. Human given name.

h. Human individual.

hg. Human group.

imeas. Unit of illumination measure.

inst. Instrument — artifact used for some end.
langunit. Language unit, like word, discourse, etc.
liv. Living thing.

lmeas. Unit of linear measure..

loc. Pronoun for location, like “here”, “anywhere” or certain general loca-
tional common nouns like “outside”.

M. C. McCord: Using Slot Grammar 23

location. Point or region in space.
locn. Named location — like a geopol or an ocean.

locnoun. Noun like “here” or “east” that can function adverbially or fill
comp(lo).

m. Male.

massn. Mass noun.

meas. Unit of measure.

mmeas. Unit of money.

mo. Named month, like “October”.

name. Usual sense.

natent. Natural entity (not made by humans).

natlang. Named natural language.

natphenom. Natural phenomenon.

ntitle. A postposed part of a human name like “Jr.” or “Sr.”.
org. A human organization. Subtype of hg.

percent. Percent expression.

physobj. Physical object.

physphenom. Physical phenomenon.

process. Sequence of events of change.

professional. Person with a profession requiring higher education.

propcn. A common noun, like “society” or “mathematics”, that can name a
single entity and function like a propn — sometimes capitalized, especially
in older writing.

property. (Synonym of “attribute”).
ptitle. A postposed human title, like “Ph.D.” or “M.D.”

quantn. Quantity pronoun like “more”, “half”, or ordinal number, or collectn
noun.

relig. A named religion.

rlent. Role entity. An entity (usually person) viewed as having a particular
role — includes many human roles like leader, artist, engineer, father,

M. C. McCord: Using Slot Grammar 24

rmeas. Relation between measures, like rate or scale.
saying. Expression or locution.

sayv. Verb of saying.

sbst. Substance.

smeas. Unit of sound volume measure.

sname. Human surname.

socialevent. Human social event.

speechact. Speech act, e.g. request, command, promise.
strct. Structure (thing constructed).

title. Human title, like “President” or “Professor”.
tm. Time noun, like “year” or “yesterday”.

“ 99

tma. Time noun, usually a pron or propn, or behaving as such — e.g. “now”,
“tomorrow” .

tmdetr. Time noun, like “season”, that requires a determiner in order to act
adverbially.

tmeas. Unit of temperature measure.

tmperiod. Time period.

tmrel. Time noun allowing certain finite clauses as nrel modifiers.
trait. Distinguishing property (usually applied to persons).
transaction. Act in conducting business.

ust. U.S. state. jcst

vchng. Change (verb type).

vchngmag. Change magnitude/size (verb type).

vcreate. Cause sth to exist or become (verb type).

vmove. Change locations (verb type).

wlocn. Named water mass, like “Atlantic Ocean”.

wmeas. Unit of weight measure.

yr. Year. Specific year, usually given numerically.

M. C. McCord: Using Slot Grammar 25

8 Slots and slot options

The SG parse tree shows for each phrase (or tree node) the slot that is filled
by the phrase. Slots are of two kinds — complement slots and adjunct slots. As
indicated in Section 4, the complement slots correspond to logical arguments of
the head word sense of the phrase; they are specified in the lexical entry for the
word sense. The possible complement slots for verbs are these six:

subj subject

obj direct object

iobj indirect object

pred predicate complement
auxcomp auxiliary complement
comp complement

We discuss these in more detail below.

The fillers of adjunct slots are like “outer modifiers”. In logical form, they
often predicate on the logical form of the phrase that they modify. For instance
the determiner slot ndet for an NP may contain a quantifier that is like a
higher-order predicate on the rest of the N P. Adjunct slots are associated with
parts of speech, and are specified in the syntactic component of XSG.

An SG phrase also shows the slot option chosen for a given slot. Slot options
correspond roughly to the phrase category (part of speech) chosen for the filler
of the slot. A given slot may be filled by phrases of various categories. For
instance the iobj slot in English can normally be filled by either an NP or a
to-PP, as in these two examples:

Mary gave John the book.
Mary gave the book to John.

The lexical entry for a word sense shows, for each of its complement slots, what
slot options are allowed for that slot. The semantic idea is that (as mentioned)
the slot corresponds to a logical argument, but the list of options for the slot
indicates how the argument can be realized syntactically. (The slot itself also
carries syntactic information though.) The current possible SG slot options are
these:

a, agent, aj, av, bfin, binf, dt, en, ena,

fin, fina, finq, finv, ft, ger, gn, inf, ing, io, it,
itinf, itthatc, itwh, lo, n, na, nen, nmeas, nop, nummeas,
p, padj, pinf, pinfd, prflx, prop, pt, pthatc, pwh,

qt, rflx, sc, so, thatc, v, wh

We will not describe these here because usually (though not always) the feature
list of the phrase contains the information provided by the slot option — espe-
cially since the feature list includes the part of speech of the phrase. But see

M. C. McCord: Using Slot Grammar 26

[13] for a description of the main options. Generally, one should think of slot
options as providing control for parsing itself. There is one case at least where
it is important to look at the slot option: The comp slot for verbs can have an
n option, fillable by N Ps, for object complements like this:

They elected FEllen president of the company.
obj (n) comp (n)

But comp also allows an option io, fillable by N Ps, for an alternative form of
the indirect object, like this:

They took John the contract.
—_~ ——
comp(io) obj(n)

Since in both cases comp is filled by an NP — even a human NP — it is worth
looking at the distinction of options n vs. io.

Now let us look at the SG slots. We organize the description by part of
speech. It is worth noting that most slots — especially complement slots —
allow several options. In some of the description, we will be a bit imprecise by
not distinguishing between a slot and the filler of the slot. For instance, in a
statement like “The subj agrees with the finite verb”, we really mean: “The
filler of subj agrees with the finite verb”.

Verb complement slots. We will elucidate these in part in terms of the
thematic roles THEME, LOCATION, GOAL, and AGENT, in the sense of
Gruber [3] and Jackendoff [4]. In verbs that describe a change, the THEME is
what changes, and it changes to the GOAL state. The AGENT is the participant
that carries out the change. In verbs that describe a state, the THEME is what
the state is predicated of and the LOCATION is that state.

subj. Most readers of this document will be familiar with the subject slot,
but let us make a few comments. If a verb has an AGENT, then this will
normally fill subj. The subject may also be THEME. The default position
of the subject in our European languages is before the verb in an active
declarative clause. The subject is filled overtly (in these languages) only
in finite clauses, and then it must agree in person and number with the
finite verb. In non-finite V Ps, we often show the logical subject in the
word sense predication. The subj slot may be filled by several different
categories of phrases besides noun phrases, as in:

Seeing him was difficult.
That he did that is amazing.
Whether he can go is an open question.

M. C. McCord: Using Slot Grammar 27

obj. If a verb has a THEME and a filled obj, then that obj is normally the
THEME. The obj may be filled by several different categories of phrases,
as in:

He believes John’s story.

He believes in John.

He believes that John was there.
He believes what John said.
John said, “I was there”.

He likes seeing John.

He believes John to be honest.

iobj. The indirect object normally has a GOAL role. In English, it can
most typically be filled by both an NP and a to-PP. But some verbs, like
ensure, can take only an NP iobj. And others, like confess, take only a
to-PP iobj. The iobj sometimes allows other prepositions, as in:

She bought some books for me.
She bought me some books.

An NP iobj normally takes the dative case in our European languages.

comp. In the thematic roles, the basic idea of comp is that it is the GOAL in
verbs of change and the LOCATION in verbs that describe a state. The
iobj slot could actually be folded into the comp slot, and in fact the option
io for comp is more or less an alternative way of expressing iobj(n), as
mentioned above. But we use iobj, partly for the sake of familiarity. As
with the other verb complement slots, comp allows several options. We
gave N P examples above. The most typical comp is a PP. Examples:

Alice drove Betty to the store.

——
obj(n) comp(lo)

Alice drove Betty to distraction.

—_—

——

obj(n) comp(lo)
Alice drove Betty crazy .

N~

obj(n) comp(a)

pred. In English, pred is a slot only for the verb be. It can be filled by a very
wide range of categories of phrases, illustrated in part by the following:

Bob is a teacher.

Bob is happy.

Bob is in love.

Bob is to leave tomorrow.
Bob is leaving tomorrow.
Bob was taken to the station.

M. C. McCord: Using Slot Grammar 28

(- subj (n) Bob1(1) noun propn sg h
I—top mayl1(2,1,3) verb vfin vpres sg vsubj
Loi auxcomp (binf) have perf(3,1,4) verb vinf

Lo—auxcomp(ena) be(4,1,5) verb ven
Lo—pred(ing) be(5,1,6) verb ving

pred(en) takel(6,u,1,u,7) verb ven vpass

comp (1lo) t02(7,9) prep pprefv motionp

ndet thel(8) det sg def the ingdet
_ objprep(n) stationl(9,u) noun cn sg

Figure 5: Bob may have been being taken to the station.

In our other European languages, pred is used for some more verbs besides
the analogs of be; for instance for German it is used for werden as well as
sein.

auxcomp. This slot is used in English mainly for the modal verbs, where
auxcomp is filled by a bare infinitive, for the auxiliary do, which also takes
a bare infinitive, and for the perfect sense of have, where the filler is an
active past participle. Two of these cases are illustrated in Figure 5, which
also contains the use of pred for the progressive and the passive.

Verb adjunct slots. The names of most of these slots begin with “v”. For
most of these, instead of giving a general definition, we will just give one or
more examples.

vadv. He always likes chocolate.

vprep. In that case, please buy some chocolate.
vsubconj. If the shoe fits, wear it.

vnfvp. The nfvp stands for “non-finite verb phrase”.

Using the mouse, select the chocolate icon.
Made in Switzerland, this chocolate is sold in many countries.
To select the chocolate icon, use the mouse.

vivp. The fvp stands for “finite verb phrase”.

However you do it, select the chocolate icon.
Had you selected this kind of chocolate, you would be happier.

vforto. For John to be there on time, we’ll have to call.

vcomment . This chocolate, I think, is best.

vadjp. Happy with the results, she left.

M. C. McCord: Using Slot Grammar 29

vvoc. John, can you hear me?
vadj. happy-seeming

vdet. his seeing the car
vnoun. user-defined

vrel. Someone appeared who I didn’t expect.

vextra. It was assumed that she would arrive Tuesday.

vpreinf. zu sehen
vap. Votre ami, aime-t-il le chocolat?

vinfp. Trouver ce chocolat, c’est tres difficile.

vdat. Mi mangio una mela.
vnthatc. Er hat keine Erkenntnis gehabt, dafS sie da war.
whadv. When did you eat?

whprep. At which table did you sit?

Noun complement slots.

There are four of these. The most important are:
nsubj, nobj, ncomp
For deverbal nouns, these slots correspond to the verb slots:
subj, obj, comp

— allowing for the view that iobj is a kind of special case of comp. These noun
slots have roughly the same range of possible slot options as the corresponding
verb slots do. But the n option for the noun slots is filled by an ofPP instead
of an NP.

For example we have the correspondence:

John knows that Bill was there
—~—

subj (n) obj(thatc)
John’s knowledge that Bill was there
——

nsubj(n) nobj(thatc)

M. C. McCord: Using Slot Grammar 30

Filling of the nsubj slot by John’s here is seen only in the deep structure, in
the predicate arguments of knowledge. In the surface structure, John’s fills the
adjunct slot ndet of knowledge.

The nsubj slot can be filled directly in postmodification by by-NPs, of-NPs,
or from-NPs, depending on the head noun and the modifier context.

There are relational nouns that are not deverbal, but still have some of the
slots nsubj, nobj, ncomp. Example:

A poem by Smith about nature
—_——— N———
nsubj(agent) ncomp(p)

There are many nouns that have only the slot nobj, typically with option n,
for example in:

Department of Mathematics
_——

nobj(n)

The last noun complement slot is nid (“noun identifier”), which is illustrated
in nid slots for page and Appendiz, in:

T in A } B
t appears on page 235 in Appendiz
nid(n) nid(n)

Noun adjunct slots. The names of these all begin with “n”. For English, the
first four premodify the noun, and the remaining postmodify.

ndet. the house
her house
my mother’s house

nadj. the large house
the Chicago house
three houses

nnoun. the boat house
nadv. only the house
nposs. John s

nadjp. anyone available for the job

nper. $2.00 per gallon
nprop. company X

nappos.

M. C. McCord: Using Slot Grammar

John, my brother
Paris, the capital of France

nloc. Paris, France
nprep. the man in the house
ngen. ein Freund meines Vaters

nrel. the man that I saw yesterday

nrela. the man I saw yesterday

nnfvp. anyone seeing John
anyone seen by John
the first person to see John

nsubconj. the situation as described by John

ncompar. more money than he has

Adjective complement slots. There is only one — aobj

happy with the result
happy to see the result
happy that the result was good

Adjective adjunct slots.
adjpre. very happy
anoun. user-friendly
adjpost. happy enough
acompar. happier than John
aprep. red in the face
asothat. so red that he glowed

arel. der Rote, der auf dem Tisch steht

Adverb complement slots. There is only one — avobj.

enough for me
enough to accomplish the result
enough that the result was good

Adverb adjunct slots.

. Examples:

Examples:

31

M. C. McCord: Using Slot Grammar 32

advpre. very quickly

advpost. quickly enough

advinf. how to do it

avsothat. so quickly that it smoked

avcompar. more happily than John

Preposition complement slot: objprep. Examples:

in the house
in seeing the house
in what you see

Preposition adjunct slots.

padv. out in the yard
expressly for John

pvapp. daran, dafS er geht

Determinar adjunct slot: dadv. Example: almost all people

Complement slot for subconj: sccomp. Example: if the shoe fits
Adjunct slot for subconj: scadv. Example: only while she eats
Complement slot for infto: tocomp. Example: to eat chocolate
Adjunct slot for infto: toadv. Example: only to eat
Complement slots for forto.

forsubj. for John to write the book

forcomp. for John to write the book

Complement slot for thatconj: thatcomp. Example: that he wants to go

Complement slot for subinf: subinfcomp. Example: in order to see the show

M. C. McCord: Using Slot Grammar 33

9 Flags

The SG system has several flags that can be set to control various aspects of
parsing. Each flag can have an integer value, which is normally either 1 (flag is
on) or 0 (flag is off), but a couple of flags can have other integer values. The
flag deptree, discussed above, can have values 0, 1, 2, or 3. Default values for
all flags are set by XSG at initialization time.

To set a flag F' on (or off) in interactive mode, you can type +F or -F
respectively. Or you can type +F n to set the value to any non-negative integer
value n. (So -F is equivalent to +F 0.)

You can also set flags when you compile your own XSG application, by using
the API function xSGsetflag, described on page 60 in Section 14.

Here is a list (in alphabetical order) of the most useful flags and their mean-
ings. We will usually explain what the effect of having the flag on is.

all. Process all of the top-level parses. When all is off, only the first (best-
ranked) parse is processed. Processing a parse means displaying it, if the
flag syn is on, and calling any post-parse hook functions.

allcapprop. The general idea of allcapprop is that a word that consists of
all capital letters will be treated as a proper noun. But more precisely it
is this: Suppose (1) the flag is on, (2) W is a word consisting of all capital
letters and having at least two letters, and (3) the containing segment
does not consist totally of capital letters. Then the system will use only
W itself in morphology and lexical look-up; it will not do morphology and
look-up on the lower-case form of W. The latter action is the default.
For instance, if the input segment contains MAN, the system will look up
both “MAN” and “man”. If allcapprop is on (and the segment is not all
caps), then it will look up only “MAN”. This flag is off by default.

allcappropl. This has the following effect. Suppose (1) the flag is on, (2) W
is a word consisting of all capital letters and having at least two letters,
(3) the containing segment does not consist totally of capital letters, and
(4) there is no lexical analysis of W itself. Then the system will create a
proper noun analysis for W. And, if allcapprop is off, the system will
add any lexical analyses it can obtain for the decapitalized form of W.
This flag is off by default.

capng. This causes capitalized noun groups to be agglomerated into multi-
word proper nouns. The noun group can contain (capitalized) common
nouns, proper nouns, or adjectives. The agglomeration will not take place
unless the segment is an lcseg; this means that the segment contains some
“content words” (nouns or verbs) in lower case. The flag capng is off by
default.

capprop. This is similar to capng but does not produce as many proper
noun agglomerations. If the segment is an lcseg then it agglomerates

M. C. McCord: Using Slot Grammar 34

sequences of capitalized words that have some proper noun analysis. Else
it agglomerates only capitalized words that have a wunique analysis and
this analysis is a proper noun. This flag is on by default.

captoprop. This is the strongest of schemes for turning capitalized words into
proper nouns. The basic idea is that every capitalized word W becomes a
proper noun, but there are several exceptions, as follows: (1) The segment
is not an leseg; (2) W is the first word of the sentence, or the first word
after a quote; (3) W is a pronoun or already has a proper noun analysis;
(4) W has one of the semantic types:

tma, propcn, meas, title, hlanguage, st_people,
st_religion, st_discipline, mmeas, wmeas, emeas, cmeas

This flag is off by default.

colonsep. Basically this causes colons to be treated as segment terminators.
It is on by default. But if in addition the flag 1inemode is on, then the flag
1ncolonsep must be off in order for colons to be treated as terminators.
When colons are not terminators, they will be treated as punctuation
conjunctions.

deptree. Controls type of parse tree display. Discussed above.

displinecut. If the current input is within a display tag (see dodisplays),
then newlines break segments, i.e., segments cannot span across lines. On
by default.

dodisplays. Certain tags are designated display tags in the shell (and which
ones they are depends on the formatting language). The flag dodisplays,
which is on by default, enables processing (parsing, etc.) of text within
display (begin and end) tags.

doshowstat. Show parsing statistics for a file. Output goes at the end of the
output file. On by default.

echoseg. Echo (print out) the input segment for each parse. On by default.
echosegext. Echo segment-external material in output. Off by default.

forcenp. This is used in ESG. When it is on, only the NP analyses of a
segment will be produced, as long as there exists at least one NP analysis.
Off by default.

fullfeas. Activates display of additional phrase features in parse output,
namely the features:

lel, le2, 1le3, le4, ril, ri2, ri3,
xtra, cord, comcord, unitph, lcase, glom

M. C. McCord: Using Slot Grammar 35

Among the len, it shows only the strongest one — the one with greatest n
which the phrase has as a feature. Similarly for the rin. This flag is off
by default.

html. Enables processing of HTML documents. On by default. The flag sgml
should also be set on when html is on.

ibmiddoc. Enables processing of IBMIdDOC documents (used in some IBM
manuals). Off by default. The flag sgml should also be set on when
ibmiddoc is on.

limitall. Suppose the value of this flag is the integer N. If the flag all is
on, then only the first N parses of the current segment will be processed
(if N <0, this means that no parses will be processed). If all is off, then
exactly the first parse will be processed, no matter what 1imitall is set
to. The default value of 1imitall is a “large integer” (like 1000000).

linemode. Causes newlines to break segments (so that segments cannot span
across lines). Useful for regression testing. A segment (on a line) need
not have a segment terminator (like a period, question mark, etc.). Off
by default.

lncolonsep. It is on by default. See flag colonsep for the effect of this flag.

noparse. If this flag is turned on, then only the morpholexical part of parsing
will be done; the chart parsing will be skipped.

otext. Enables processing of Otext documents. The flag sgml should also be
turned on when otext is on. Off by default.

predargs. This is on by default, and in parse displays, it enables word senses
to be shown with their arguments, like:

believe2(2,1,3,4)
When it is off, you would see just believe2 in the head sense position.

predargslots. When this is turned on, it causes word sense predications to
be displayed with slot names attached to the arguments, like so:

believe2(2,subj:1,0bj:3,comp:4)

prefnp. This is used in ESG. When it is on, short top-level segments that
have some NP analysis are preferred as NPs — the shorter, the more
preference. This is implemented in topeval by decrementing the eval
field by an amount that increases with shorter segments. This flag is off
by default. It can also be turned on with a value different from 1 (or 0).
When it is given a non-zero value, that value will be used as a multiplier
in a certain formula that rewards NP analyses. So for example a value of
3 will produce 3 times the reward of a value of 1.

M. C. McCord: Using Slot Grammar 36

printsentno. When this is on (and it is on by default), and a file is parsed,
the segment number of each segment will be printed before the segment
string in the output file.

prune. When this is on (and it is on by default), the parsing algorithm prunes
away (discards) partial analyses whose parse scores become too bad. We
will not describe the details of parse scoring in this report, but see [12]. If
you turn this flag off, the parser generally produces many more parses. If
not enough space is allocated for XSG and prune is off, then there may
be problems for parsing longer sentences. An alternative to turning prune
off is to increase the XSG field prunedelta, as described in Section 3.

semicolonsep. Causes semicolons to be treated as segment terminators. It is
on by default. When it is off, semicolons will be treated as punctuation
conjunctions.

sgml. Enables processing of SGML texts. It is on by default. Even when it is
on, plain text is handled because plain text is just viewed as SGML text
with no tags.

showaopts. This is off by default, but when it is turned on, the chosen option
o for each adjunct slot s will be shown in parses in the form s(o0). So for
example for the determiner the, one would see the slot ndet (dt) instead
of just ndet.

shownumparses. In parse output, shows the total number of parses obtained.
On by default.

shownumsent. When this is on and a file is parsed, the segment number of
each segment will be printed to the console. On by default.

showopts. When this is turned on, the chosen option o for each complement
slot s will be shown in parses in the form s(o0). On by default.

showsense. In word sense predications in parse displays, this causes sense
names of the words to be used as the predicates. It is overridden by
showssense. If both showsense and showssense are off, citation forms
will be used for the predicates. On by default.

showslots. Show the available (unfilled complement) slots of each phrase in
the parse tree. Off by default.

showssense. For the predicate of each word sense predication in parse dis-
plays, this shows a deeper kind of sense expression for some word senses
(details not given here). Off by default.

spacelinecut. If this on, then each line of input text that consists only
whitespace will break the current segment. Off by default.

sgsyn. Causes parse trees to be printed out. On by default.

M. C. McCord: Using Slot Grammar 37

timit. Causes tracing of time used for analyzing each sentence. On by default.

toktrace. Causes display of the tokens for a segment that are produced by
the tokenizer. See Section 13 for the description of the token data type.

xout. When it is on, results go, in interactive mode, to the file sg.out. When
it is off, they go to the console. Off by default, except on VM.

This completes the inventory of flags.

10 Tag handling

XSG can read texts in various formats. One of these of course is plain text
(without any tagging). In addition, XSG can handle various forms of SGML
or XML and the IBM BookMaster document format. The main two forms of
SGML known to XSG are HTML and IBMIdDoc. See the flags in Section 9 for
switching to these tag systems. Adapting to a new form of SGML is a matter of
specifying for XSG certain classes of tags for that DTD (this currently cannot
be done directly by the user).

Generally XSG does better with tagged text than with plain text, for at
least three reasons:

(1) Sometimes in plain text it is not clear to XSG where segments end,
because segments like section titles are usually written without end punctuation.
Tags will usually show XSG where such segments end.

(2) In tagged text, tag pairs within segments like those that indicate font
changes, italics and boldface are often useful to XSG in delineating subphrases
of segments.

(3) Some tags can provide clues to XSG as to the kind of segment that follows
the tag. For example, headings or titles are often noun phrases as opposed to
sentences, and XSG can pay attention to heading tags like the HTML <H1> and
parse the following segment with a preference (though not strict requirement)
for an NP analysis.

(4) Sometimes parts of documents are not meant to be processed by the
parser or NLP system. For example an MT system should not try to translate
a Javascript section of an HTML document. In tagged text, such sections are
usually delimited by certain tags, which XSG can pay attention to.

11 Multiwords, named entities, and chunks

XSG has several strategies for handling multiwords, named entities, and
special kinds of tokenization. We discuss these in this section.

M. C. McCord: Using Slot Grammar 38

11.1 Normal lexical multiwords

The XSG lexicons contain many multiword entries, which can be of any
part of speech. Multiwords always have a headword, which can be inflected.
The headword is by default the last word in the multiword, but this can be
overriden by putting an = sign in front of the desired headword, as in this entry
for “attorney general”:

=attorney general < n nobj h title

By default, a multiword entry, if it applies, is “irrevocable” in the sense of
not allowing other analyses of the string it matches. But if a multiword frame
has the feature sepmw (“separable multiword”), then the parser is allowed to
create alternative analyses. For instance the ESG lexicon has a sepmw entry for

“in that” as a subconj, and this allows alternative parsing, as needed for “in
that house”.

11.2 Structured lexical multiwords

Certain multiwords, which we call structured multiwords or star multiwords,
can exhibit a ”have-it-both-ways” scheme, where syntactic structure is shown
for the multiword string, but the multiword still behaves basically as a unit, or
is “insular”, in parsing: Proper subphrases of the multiword cannot modify, or
be modified by, phrases outside the multiword.

Example: If “blue sage” has a lexical entry that makes it a star multiword,
then for the sentence “We saw some blue sage”, we get the parse:

subj(n) we(1) noun pron pl persl nom h perspron
I: top seel(2,1,5) verb vfin vpast pl vsubj thatcpref perceive
ndet somel(3) det sg indef prefdet
nadj bluel(4) adj erest
obj(n) sage2(5) noun cn sg physobj plnt liv (* blue sage)

The semantic types physobj plnt liv come from type markings on the whole
multiword “blue sage”, not just the headword “sage”. They come ultimately
from the WordNet-based lexical augmentation described in Section 16 below,
where there is a star multiword entry for “blue sage” with such types marked.
And yet the parse shows syntactic structure of “blue sage”, helping one to know
that blue sage is a kind of sage (in a limited sense of “sage”). But note that the
parse also shows the string for the multiword, via the feature (* blue sage)
of the headword.

The multiwords that can get structured in this way are restricted as follows:
They must have exactly one lexical sense, which is a common noun, and the
headword is the last word of the multiword. Call these “nouny multiwords”.

M. C. McCord: Using Slot Grammar 39

Note that “attorney general” wouldn’t satisfy the last condition. Nouny mul-
tiwords can be designated as structured by marking a star (*) as a feature in
their sense frame.

In the WordNet-based lexical augmentation described in Section 16, approxi-
mately 28,000 multiwords in the WordNet-based augmentation get starred. The
criteria for marking a multiword W in this way are: (1) W is a common noun
and has an ESG nouny analysis (ESG parsing is used to check this). (2) There
are no punctuation marks in W. (3) The components of W are all common
nouns, adjectives, or verb participles that are found in the ESG base lexicon.

The structuring of star multiwords happens at parse time, but it is done in
an efficient way — it doesn’t add significantly to parse time. It is done at a stage
before real parsing starts — at the stage where multiwords are being glommed
and dealt with. But it does use regular parsing, just for those multiword strings.

There are two flags that control how the multiwords are handled: parsemw
(on by default), and parsemwa (off by default). If both flags are off, then starred
multiwords are treated just as normal (non-structured) multiwords. If parsemw
is on, then all nouny multiwords with a star (*) in their lexical features will get

structured. If parsemwa is on (the “a” suggests “all”), then all nouny multiwords
will get structured.

11.3 Quote nodes

Another way XSG can deal with chunks, in this case for named entities, is
through quote node, or gtnode analyses in parse trees. Here is an example:

“Ralph sang Rock Around the Clock for Betty.”

@ subj(n) Ralphl1(1) noun propn sg m h gname sname capped N
o— top sing1(2,1,202,7,u,u) verb vfin vpast sg vsubj
—e——— obj(n) qtn(202) noun propn sg gtn
L._ qtsl(n) rock2(3,u,u,4) verb vfin vinf vpres pl capped
comp(lo) aroundl1(4,6) prep badobjping capped
L[ndet thel(5) det sg def the ingdet
objprep(n) clockl(6) noun cn sg physobj artf inst instr device
—e—— iobj(p) forl(7,8) prep pprefv nonlocp pobjp
_ objprep(n) Bettyl(8) noun propn sg f h gname capped)

Note that there is a proper noun analysis above the subphrase “Rock Around
the Clock”, which has sense name qtn and feature qtn. This is a qtnode. This
node has one slot qtsl, which is filled with a VP analysis of “Rock Around
the Clock”. So we “have it both ways”, where the NE is clearly a proper noun
chunk, but underneath there is an appropriate syntactic structure.

Qtnode analyses are based not on lexical entries, but are built at syntactic
analysis time mainly through attention to capitalization and possible quoting.

M. C. McCord: Using Slot Grammar 40

The NE may be actually quoted, and that helps, but quotes may be absent, as in
the above example, and then capitalization is the main clue. Of course certain
“little words” (like prepositions and articles) may be in lower case, also as in
this example. But the needs of slot filling also play a role. Since prepositions
may be in lower case, what is to prevent the whole string “Rock Around the
Clock for Betty” being taken as the qtnode? What happens in this example is
that “sing” allows a “for”-PP iobj, and the filling of this gets rewarded.

Qtnode analysis is turned on or off by the flag qtnodes, which is on by
default.

11.4 Named entity lexicons

Another method for dealing with named entities in XSG is lexically based.
XSG can accept a NE lexicon, which should be named ch.1x. The ch.1x file
should should follow the syntax of XSG/ lexicons, as described in [13], with
the relaxation that the head word of an entry (normally a multiword) can stand
just by itself (with no sense frame information), in which case it is taken to be a
proper noun with no other features. But features can be given, after the usual
< sign that separates head words from sense frames.

The look-up in ch.1x can handle very large lexicons efficiently. ESG can use
a large ch.1x NE lexicon which I extracted from Wikipedia, with approximately
1.4 million entries. The extraction routine looks at Wikipedia links instead of
titles, because links usually respect case, and so are a better clue to proper noun
vs. common noun readings. Various sorts of filtering are done in the extrac-
tion, including ESG parsing of the candidate entries, to rule out problematic
candidates for NEs. The extraction routine is actually bundled with the ESG
executable, and may be made callable in a subsequent release. But the ESG
user can construct his/her own version of ch.1x and use it with ESG.

For using a ch.1x lexicon, one must be compile it using the command:
esg —compilex ch.lx

Then to cause ESG to read in ch.1lx upon initialization and use it in parsing,
the flag chlex should be set on in initialization.

By default, analysis with ch.1x just shows the NEs found as multiwords, as
in the following example. Note that the multiword has the feature chn.

“She sang Sing a Song of Sixpence.”

subj(n) she(1) noun pron sg def nom f h perspron
— top sing1(2,1,7,u,u,u) verb vfin vpast sg vsubj
obj(n) Sing a Song of Sixpence(7) noun propn sg capped chn

However, ch.1x analysis can be similar to qtnode analysis in having a “have
it both ways” option. If the flag chstruct is turned on, then chn nodes are still

M. C. McCord: Using Slot Grammar 41

proper nouns, but show syntactic structure of the multiword underneath. For
the preceding example, we then get an underlying VP analysis of “Sing a Song
of Sixpence”:

@ subj(n) she(1) noun pron sg def nom f h perspron N
I— top sing1(2,1,202,u,u,u) verb vfin vpast sg vsubj
Loi obj(n) Sing a Song of Sixpence(202) noun propn sg chn
Ly chsl(n) sing1(3,202,5,u,u,u) verb vfin vinf vpres pl capped
ndet a(4) det sg indef
obj(n) songl(5,u,6,u) noun cn sg abst artcomp musicomp comm
L, nobj(n) of1(6,7) prep pprefn nonlocp
_ L objprep(n) sixpencel(7) noun cn sg pl sgpl abst comm)

11.5 Creating chunks at tokenization time via tags

Normally, text tokenization by XSG follows the usual rules for tokenization,
paying attention to runs of letters, delineation by punctuation symbols, effects
of abbreviations, and the like. But some special XSG tag pairs — let us call them
“chunking tags” — can be used to delineate larger tokens, or “chunk” tokens, so
that any characters, even blanks and newlines, can appear in the chunk (aside
from the end-tag of the tag pair).

Chunking tags can be used to delineate named entities, making multiword
(or single-word) named entities into chunks, and even specifying semantic types
for the chunks, which will figure in the parsing. Such tagging of named entities
might be done by a preprocessor for XSG, which passes the tagged text to
XSG for better parsing. Actually, the XSG chunking tags can be used to
provide much more general lexical specifications for chunks than are normally
considered for “named entities”, as we will see below.

In the next subsection we will describe an additional method for providing
“chunking control” for XSG at tokenization time. Instead of using tags, this
method involves function calls to a hook (call-back) function that is monitoring
the text for the existence of chunks at particular positions in the input document.

There are two classes of chunking tags known to XSG: (a) literal or delimiter
tags, and (b) lezical tags.
When a chunk xxx is surrounded by a literal tag <ttt> (and its end tag) as
in
<ttt >xxx</ttt>

the chunk xxx will be treated like any other word that is looked up in the XSG
lexicon (with morphology) for parsing. If the chunk is not found in the lexicon,
then it will be given the default lexical analysis for all unfound words — a singular
proper noun. Currently, XSG knows only one literal chunking tag, named 1it.

M. C. McCord: Using Slot Grammar 42

The basic idea of a lexical tag <ttt> is that some of the lexical and semantic
feature control lies with the tag itself. The chunk xxx surrounded by the tag
and its end-tag may or may not be actually looked up in the lexicon, but even if
it is looked up, the tag may filter out lexical analyses and may specify additional
semantic features of the chunk. What is done depends on the attributes within
the tag <ttt>, to be described below.

Three particular lexical tags — <ch> (for “chunk”), <ne> (for “named enti-
ty”), and <pn> (for “proper noun”) — can contain attributes that specify lexical
features of the chunk xxx. In spite of the different names for these three tags,
they are all treated the same by XSG. You might as well use <ch> in all cases.
I have kept <ne> and <pn> for compatibility reasons. In the discussion below, I
will use only <ch>, but you could use either of <ne> and <pn> as well.

Here is an example of use of a lexical tag:
<ch lex="propn Company">International Business Machines</ch>

This will make “International Business Machines” into a chunk which is a proper
noun (propn) and has the semantic type Company.

There are two types of attributes a lexical tag can have — 1ex and sem, which
should be used separately (not both together in the same lexical tag).

Let us look first at 1ex. With the lex attribute, one completely specifies the
lexical analysis of the surrounded chunk xxx, and xxx will not be looked up in
the lexicon. In general, the form of a lex attribute-value pair in a <ch> tag is:

lex="LexicalAnalysis"

Note: No spaces are allowed on either side of the = sign. The same is true for
other attribute value pairs below. The LexicalAnalysis is in general what can
appear as a lexical analysis in an XSG lexicon (see [13]). (There is an exception
in the notation, described below.) Such lexical analyses can specify not only
proper noun frames, as in the above example, but frames of any part of speech,
and even more than one frame.

Here is a more complex example:

<ch lex="n (p for) ~~ v obj">fixem up</ch>

This would give the multiword fixem up both a noun analysis n (p for) (a
common noun with a for-prepositional complement slot) and a verb analysis
v obj with a direct object slot. The symbol ~~ is used to separate lexical
analyses in the lex attribute instead of the usual < in XSG lexicons. These
lexical analyses can express anything that normal XSG lexical entries can —
any parts of speech, slot frames, semantic types, subject area tests, etc.

One constraint, when the lex attribute is used, is that no morphology is done
on the chunk. If the chunk appears in an inflected form, then the lex attribute
must itself specify the morphological features. So for a noun plural fixem ups,
you might write something like:

M. C. McCord: Using Slot Grammar 43

<ch lex="n (p for) pl">fixem ups</ch>

thus showing the noun plural feature pl.

Actually, for the LMT machine translation system, the lex attribute can
show even more than just described. It can show complete LMT bilingual
lexical entries for chunks, and LMT will use those in parsing (with XSG) and
translation. In the lex attribute notation, the symbol $$ is used instead of the
symbol > that is normally used in LMT lexicons to introduce transfers.

Now let us look at lexical chunking tags where the sem attribute is used.
Here is an example:

<ch sem="n PERSON MALE">fathers</ch>

When the sem attribute is used, the surrounded chunk ¢s looked up in the
lexicon, with morphology. Initially, in this example, the lexical analysis shows
fathers both as a plural noun and as a third person singular present tense verb.
However, with sem, only one lexical analysis will be used, which in this example
will be the noun analysis, because of the initial POS symbol n in the value of
sem. In addition, the semantic features PERSON and MALE, included in the value
of sem, are added to the lexical analysis, and they will show in the parse tree
for this node.

In general, the value of the sem attribute should be a string of the form
[POS] SemFea; SemFeas ...

The optional part of speech POS should be chosen from these part of speech
symbols:

n, propn, pron, num, v, adj, adv,
det, prep, subconj, conj, qual

These are parts of speech that can appear in XSG lexical entries. The first four
are used for subcategories of nouns — common noun, proper noun, pronoun and
number, respectively. The meanings of the others should be clear. If the POS is
omitted, the default propn is used. The subsequent items SemFea; in the value
of sem are semantic features, and will be added to the semantic features of the
lexical analysis. These features need not be “known” to XSG. They will appear
in the parse tree on the node corresponding to the chunk.

So, given a ch tag with a sem attribute, XSG will do morphology and lexical
look-up on the surrounded chunk. But XSG will select only one lexical analysis.
If there is an analysis whose POS matches that of the sem tag, then XSG uses
the first such. Otherwise, if the POS of the sem is propn and there is an n
(common noun) lexical analysis, XSG will use the first such. Otherwise, XSG
will take the analysis to be propn. In all cases, any semantic features listed in
the value of sem will be added to the lexical analysis.

If the <ch> tag has no lex or sem attribute, as in

M. C. McCord: Using Slot Grammar 44

<ch>International Business Machines</ch>

then the chunk will be given the default lexical analysis of a singular proper
noun.

So there is a great deal of generality in the lexical specification allowed with
the <ch> tag; it includes more than is usually encompassed under the notion of
“named entity”. I wish to thank Nelson Correa for a useful discussion about
using XSG chunking tags to specify properties particularly of named entities,
which led me in part to the general formulation described here with lexical
chunking tags.

XSG knows several other lexical chunking tags. When HTML tag reading is
turned on, the additional tags of this sort (besides <ch>, <ne> and <pn>) that
are recognized are:

<code>, <samp>, <var>, <1>

XSG does not recognize lex or sem attributes in these, and the surrounded
chunks just get the default lexical analysis of singular proper noun.

11.6 Creating chunks at tokenization time via call-back
functions

Now let us look at the second way of specifying chunks and their lexical
analyses for XSG at tokenization time (not using tags). This involves a “chunk
hook function” (defined by the user of XSG) which knows about document
positions and tells XSG where the chunks start and end (in terms of document
positions), and what their lexical analyses are. This methodology is used when
XSG is embedded in UIMA (see the Introduction). I wish to thank Marshall
Schor for discussions that led to this formulation.

To explain the form and use of chunk hook functions, I need to say a bit
about the way XSG handles document positions.

When XSG is processing a file, the system keeps track of line numbers and
column numbers in the file. Column numbers are like byte offsets on a line, so
a column number of 0 is used for the position right before the first character.
(You can tell XSG to process a file either by calling the API function xSGdoFile
described below in Section 14, or by using the command do in interactive mode,
as described above in Section 5.) So in the case of file input, document positions
are specified by ordered pairs (LineNo,ColumnNo), and the hook function
needs to deal with these.

On the other hand, XSG can process a document given to it directly as a
string, with the XSG output also produced as a string. (You can tell XSG
to do this via the API function xSGdoSt, described below in Section 14.) In
this case, all that counts for giving a document position is the byte offset in
the document string. Newlines are treated as normal characters that count in

M. C. McCord: Using Slot Grammar 45

the byte offset. But XSG still deals formally with line numbers and column
numbers in this scenario, and the chunk hook function must also. The “line
number” is always just kept at 0, and the “column number” is the byte offset
in the whole document string.

Given this explanation of line numbers and column numbers for specifying
document positions, we can now describe the form of a chunk hook function for
specifying chunks. Such a function (let’s call it chhook here) should have the
following type:

sint chhook(ptr id, sint slineno, sint scolno,
sint *elineno, sint *ecolno, st *annotation)

Here the types are defined by:

typedef void * ptr;
typedef long int sint;
typedef unsigned char * st;

(The type st has a different definition in case XSG is compiled in Unicode
mode — see Section 12.) The arguments of chhook are as follows:

1. id is the SG handle, as described in Section 14. You obtain this by calling
the SG initialization function xSGstart, described in that section.

2. slineno and scolno give the starting line and colmun number pair of the
chunk. These are passed by the XSG tokenizer to chhook.

3. *elineno and *ecolno give the ending line and colmun number pair of
the chunk. These are passed back to the tokenizer by chhook.

4. *annotation is a string that is an attribute-value list. This is returned
by chhook to XSG. This list can contain one of the attribute-value pairs

lex="LexicalAnalysis"
sem="SemAnalysis"

of just the same form allowed as lex or sem attribute-value pairs on the
chunking tag <ch>. Then XSG will associate a lexical analysis with the
chunk, in just the same way it would if <ch> had been used. Actually,
XSG stores the whole *annotation list with the chunk, but currently
XSG does not use any more of it than a lex or sem attribute-value.

During tokenization, XSG calls the chhook function at every spot where a pos-
sible new token could begin. It passes in the current document position to
chhook in the pair (slineno, scolno). If chhook succeeds, that is, return-
s a non-zero integer, then XSG will create the chunk from all characters in
the document stretching from the current position up to the ending position

M. C. McCord: Using Slot Grammar 46

(elineno, ecolno) returned by chhook, or up to the end of the documen-
t, whichever comes first. And it will associate the *annotation list with the
chunk, as indicated.

In order for XSG to call a chunk hook function chhook during tokenization,
you have to make chhook known to XSG as such, and you do this by calling
the API function

void xSGsetChhook(ptr id,
sint (*chhook) (ptr, sint, sint,
sint *, sint *, st %))

where the first argument id is the SG handle and the second argument is (a
pointer to) the hook function. So if the hook function is named chhook, you
would call:

xSGsetChhook(id, chhook);

Figure 6 shows a simple example for chhook, used with the file-mode of
processing (where the line number coordinates vary), which for each line will
cause the string stretching from column position 3 to column position 14 to be
a common noun with semantic type Weird.

sint chhook(ptr id, sint slineno, sint scolno,
sint *elineno, sint *ecolno, st *lex) {
if (scolno != 3)
return O;
*elineno = slineno;
*ecolno = 14;
*lex = "lex=\"n Weird\"";

return 1;

Figure 6: Example of a chunk hook function

So what would this chunk hook function do for the following text?

In tagged text, tag pairs within segments like those that
indicate font changes, italics and boldface are often useful
to XSG in delineating subphrases of segments.

First chhook is called at position (1, 0), because a token is starting there, but
chhook fails. It is next called at position (1, 3), and here it succeeds, creating
the chunk "tagged text" (up through position (1, 14)). It is called several
times more on the first line, but without success. On the second line, the only

M. C. McCord: Using Slot Grammar 47

chance for a successful call would be at position (2, 3), but the tokenizer is in
the midst of doing the token "indicate" at that point, and no call is made. On
the third line, there is a successful call at position (3, 3), which creates the
token "XSG in deli" (through position (3, 14)). The next token on that line
(recognized by normal tokenization, not by chhook) begins immediately, and is
"neating".

We have discussed two ways of specifying chunks of text for XSG and giv-
ing them lexical analyses. There is a third way that will work for most kinds
of chunks — simply to put them in a user lexicon for XSG. User lexicons are
described below in Section 15, and they use the general SG lexical format speci-
fied in [13]. This will work in many cases, but there are advantages to using
chunking tags or a chunk hook function:

e Named entities may be determined on-the-fly by a named entity recognizer
that uses general rules instead of depending on a known list.

e Chunks (as specified in this section) can consist of any characters, whereas
multiwords in XSG lexicons are more restricted.

e If an XSG lexicon has too many multiwords (e.g. in the hundreds of
thousands), the processing may not be efficient enough. (This problem
does not exist for single-word entries.)

12 The data structure for SG parse trees

The XSG API described in this report uses a certain data structure for
parse trees that we call sgph (for “Slot Grammar phrase”). We describe this
data structure in the current section. In the next section, we describe the
representation of punctuation and tags in XSG analysis structures.

The sgph data structure is considerably simpler than the data structure for
phrases that SG uses internally during parsing. The definition of sgph involves
only a total of six datatypes (including itself), but the definition of the internal
phrase structure involves about eighteen datatypes. The external API datatype
sgph contains essentially all the same applicable information as the internal one,
but the internal one has finer distinctions for the sake of efficiency and control of
the parsing process itself. For instance, as mentioned in Section 7, grammatical
features are encoded via bit string positions in the internal representation.

In the sgph structure, features, slots, and slot options are represented as
strings. The string datatype is named st. For the single-byte case, st is defined
by:

typedef unsigned char * st;
For the double-byte (Unicode) case, st is defined by:

typedef wchar_t * st;

M. C. McCord: Using Slot Grammar 48

The list of features for an sgph structure is represented by a string list, stlist,
defined by:

typedef struct Stlist {st hd; struct Stlist * tl;}
* stlist;

We also find it convenient to have a separate name, sint, for long signed inte-
gers, defined by:

typedef signed long int sint;
And we define ptr (for “pointer”) by:
typedef void * ptr;

Now we can define the phrase structure sgph itself. It is given in Figure 7. To
be complete, this requires only the definition of struct Sgphlist (and the type
of a pointer to it), which is given in Figure 8.

typedef struct Sgph {
sint wordno; sint 1lb; sint rb;
stlist £f;
st word; st lcword; st cite;
st sense; st ssense;
intlist osenses; dbllist oweights;
stlist compslots; struct Sgphlist * frame;
struct Sgphlist * lmods; struct Sgphlist * rmods;
st sl; st opt;
struct Sgph * mother;
double eval;
ptr ref;

} * sgph;

Figure 7: Definition of the sgph data structure

typedef struct Sgphlist {
sgph hd;
struct Sgphlist * tl;
} * sgphlist;

Figure 8: Definition of the sgphlist data structure

Notice that these two data structures are mutually recursive. If we express
them totally in terms of the pointer types, we see that an sgph is a pointer to
a structure with the fields:

M. C. McCord: Using Slot Grammar 49

sint wordno; sint 1lb; sint rb;

stlist f;

st word; st lcword; st cite; st sense; st ssense;
intlist osenses; dbllist oweights;

stlist compslots;

sgphlist frame;

sgphlist lmods; sgphlist rmods;

st sl; st opt;

sgph mother;

double eval;

And a phrase list, or sgphlist, is a pointer to a structure with the two fields:

sgph hd;
sgphlist tl

It is best to view sgph and sgphlist that way as we look further at what these
structures represent.

The idea of the data structure sgphlist should be clear; it is just a list of
sgph objects. So it remains to describe sgph.

Let us go through the different fields of an sgph and describe what they
mean. We will look at an example parse tree to illustrate each point, the parse
for the sentence:

The cat was watching twenty-four blackbirds.

ndet thel (1) det sg def the ingdet
I—Csubj (n) cat1(2) noun cn sg

top be(3,2,4) verb vfin vpast sg vsubj

pred(ing) watch1(4,2,7,u) verb ving

nadj twenty-four(6,u) noun num sg pl sgpl glom

obj(n) blackbirdl(7) noun cn pl

So here are the individual fields of an sgph and what they mean:

wordno. The word number in the sentence of the head word of the phrase. In
our example, for the subphrase for the cat, it is 2. This number shows in
the parse tree display as the first argument of the word sense predication.

1b. The left boundary of the phrase in the sentence. It is one less than the
sentence word number of the leftmost (single) word in the phrase. In our
example, for twenty-four blackbirds, it is 4. In this example, the tokenizer
sees twenty and four as separate tokens, and the word number of twenty
is 5.

rb. The right boundary of the phrase in the sentence. It is the sentence word
number of the rightmost (single) word in the phrase. For the cat, it is 2.

M. C. McCord: Using Slot Grammar 50

f. The feature list of the phrase, as a list of strings. For the whole sentence
in the example, then, it is the list consisting of:

verb vfin vpast sg vsubj

word. The head word, exactly as written in the input, including capitalization.
For the ndet filler, it is The.

lcword. The lower case form of the head word. For the ndet filler, it is the.

cite. The citation form (after inflections are “undone”) of the head word.
For the obj filler, it is blackbird.

sense. The sense of the head word. For the obj filler, it is blackbirdl.
For twenty-four, it is twenty-four. In parse tree displays, the default
is to show the sense string as the predicate portion of each word sense
predication. One can see this in the display of our example. However,
flags can be set to show either the cite field of the ssense field instead;
see Section 9, page 36.

ssense. A variant of the sense of the head word. In most cases, it will be
exactly the same as sense, but for example for literal numbers, a numeric
representation of the number is shown. For twenty-four, the ssense looks
roughly like this:

(Inum 24.00)

For ordinal numbers like twenty-fourth, the 1num would be replaced by
olnum.

osenses, oweights. These have to do with word sense disambiguation, and
we omit the discussion here.

compslots. The list of names of the complement slots of the head word sense.
The list is given in the order of the complement slots specified in the lexical
entry for the word sense, or derived from such a lexical frame.?

frame. This is the list of filler phrases of the complement slots of the head
word sense. They are in 1-1 correspondence with the slots (slot names) in
the compslots field. L.e., the nth member of frame, if it is non-null, is the
filler of the slot named by the nth member of compslots. The frame field
is reflected in the arguments of the word sense predication in the parse
tree — the arguments after the first one (which is the wordno). This is
explained in part on page 5 above in Section 2. In our example, the word
sense predication for watching is:

3Some complement slots may not be required in lexical entries (and so are implicit); for
example the subj slot of a verb need not be listed, unless it has special conditions on its fillers.
A word sense may be obtained by derivational morphology; in this case the morphology will
create a derived complement slot frame from that of the base word.

M. C. McCord: Using Slot Grammar 51

watch1(4,2,7,u)

In this form of the display, each member of the frame list is exhibited only
by its wordno. The 2 is for the logical subject of watching, which is the
cat. The 7 is for the logical direct object, which is twenty-four blackbirds.
If a slot of the complement slot frame is not filled, then the corresponding
member of frame is nil (the null pointer), and is indicated in the parse
display by u (“unfilled” or “unknown”) in the word sense predication.
If the flag predargslots is turned on (see Section 9), then the slot from
compslots corresponding to each frame member is also shown in the parse
display, like so:

watchl(4,subj:2,0bj:7,comp:u)

The slots and fillers in compslots and frame are the logical slot-fillers for
the word sense. For example a subj slot is the logical subject.

lmods. The list of left modifiers of the head word (each member of which is
an sgph object). They appear in left-to-right sentence order in the list.
Both they and the right modifiers are shown in the obvious way in the
tree display.

rmods. The list of right modifiers of the head word. They also appear in left-
to-right sentence order in the list. In the internal phrase data structure,
the right modifiers are shown in the reverse order of this, for efficiency
reasons.

sl. The slot filled by the phrase. This is shown in the parse tree display just
to the left of the word sense predication.

opt. The option chosen for the slot filled by the phrase. For (most) comple-
ment slots, this is shown in parentheses after the sl field. It will be shown
also for adjunct slots if the flag showaopts is turned on (see Section 9).
For the top-level phrase, the slot is top.

mother. The mother phrase (again an sgph) of the phrase. It is the null
pointer for the top-level phrase, but is non-null for all subphrases.

eval. This floating point number (a double) gives a parse score for this
phrase. We will not try to describe parse scoring in this report, but one
thing that should be noted is that a higher score is a worse score.

Note that the sgph parse tree is “well-pointered”. There is the upwards pointer
provided by the mother field, and the downwards pointers in the lmods and
rmods fields. Also there are the pointers in the frame field, which can point to
a remote filler, as in examples like

Who did you say the book was written by?

M. C. McCord: Using Slot Grammar 52

where the parse tree is

/f—objprep(n) whol(1) noun pron sg pl sgpl wh nom h)
e—top do1(2,3,4) verb vfin vpast pl q wh vsubj
——subj(n) you(3) noun pron pl def h perspron
—e—— auxcomp(binf) sayl1(4,3,7,u,u) verb vinf noadj sayv badvenadj

ndet thel(5) det sg def the ingdet
subj (n) book1(6,u) noun cn sg
obj(fin) be(7,6,8) verb vfin vpast sg vsubj
pred(en) writel1(8,9,6,u,u) verb ven vpass
_ Lsubj (agent) by1(9,1) prep pprefv Y,

Note here that the second argument (with wordno equal to 1) of the byl node
points back to the whol node, showing that who is the objprep of by. In turn
the agent byl node (with wordno equal to 9) is shown as the second argument
of the writel node, which is for the logical subject of writel. This means
essentially that who is the logical subject of write.

13 Punctuation and tags in SG analyses

The sgph data structure described in the preceding section by default does
not show punctuation symbols or tags that appear in the input sentence. Many
punctuation symbols, such as commas that set off adverbial modifiers of clauses,
or font-change tags, are not crucial to the grammatical structure of the sentence.
The XSG parser does notice them and use them in constraining parses; but they
are often optional to the grammaticality of the sentence, and their presence in
the parse output is not essential to some applications. In fact, the omission
of them in the parse structure simplifies most applications of XSG, because
this reduces the number of cases one has to look at in postprocessing of the
parse structures. However, they are important for some applications, and they
are indeed accessible in the XSG API. We describe this in the current section.
More generally, we describe how to see the results of XSG tokenization.

The kinds of tags that can be omitted in the parse trees include font-change
tags, HTML anchor tags, the chunking tags described in Section 11, tags that
denote punctuation symbols, and others. Such tags usually occur in pairs (begin
and end tag) within a segment, and often (but not always) bracket grammatical
phrases. The tag pairs can sometimes cross segments, however. We call these
bracketing tags in general, also sometimes highlighting tags.

Of course some tags are used to denote grammatical elements that act as
words or whole phrases in the segment, especially proper nouns. These are
shown in the parse tree.

In the remainder of this section, we will usually just use the term “punctua-
tion” to include both (normal) punctuation and bracketing tags.

M. C. McCord: Using Slot Grammar 53

There is an exception to the omission of punctuation in the XSG parse trees.
When a punctuation symbol plays the role of a coordinator, then it is shown in
the parse tree. Consider for example the sentence:

After they ate lunch, Mary, John, and Bill went walking.

The parse tree is:

/ —e——vsubcon)] after2(1,3) subconj \
subj(n) they(2) noun pron pl def nom perspron
sccomp(bfin) eat1(3,2,4,u) verb vfin vpast pl vsubj

Lobj(n) lunch1(4) noun cn sg tonoun

lconj Mary1(5) noun propn sg h
,—Csubj (n) ,(105) noun propn pl h
ulconj John1(6) noun propn sg h
rconj and1(7) noun propn pl h
chonj Bill1(8) noun propn sg h

'3 top £01(9,105,10) verb vfin vpast pl vsubj invertv

k—comp(ing) walk2(10,105,u,u) verb ving /

Note that the parse tree shows only one comma — the one after Mary that acts
as a coordinator. (This is the case for the sgph data structure also.) The first
comma (after lunch) is merely a phrase separator, and could even be omitted
without loss of grammaticality in the sentence. The third comma is of course
connected with coordination, but XSG considers the real coordinator there to
be and, with the comma used in an ancillary way. (Note that this comma is
optional also.) The period at the end of the sentence is also not reflected in the
parse tree.

When a punctuation symbol, like the comma after Mary in our example,
is used as a coordinator, we say that it is promoted to a sentence tree node.
In such a case, the promoted symbol is assigned a node number which is 100
plus the node number of the preceding word. In our example, Mary is the 5th
word, so the comma after it gets node number 105 in the parse tree. In counting
words of the sentence, one does not count the punctuation tokens. The constant
100 is actually a #defined constant in XSG, called sentlenmax, which sets a
maximum on the number of words in a segment that XSG will try to parse.
XSG can be compiled with a higher value for sentlenmax.

So how does one see the punctuation symbols that are not promoted? The
intuitive answer is that they are stored “in the interstices” between the words
of the segment. The interstices are indexed by integers that run from 0 to the
word number for the last word of the segment. The interstice indexed by 0 holds
the punctuation, as a list of tokens, that occurs before the first word. For ¢ > 1,
the interstice indexed by ¢ holds the punctuation occurring right after word i.
Punctuation symbols that are promoted are also shown in these token lists in
the interstices, in their proper place.

M. C. McCord: Using Slot Grammar 54

Using Actions, you can open the data base.

| type | id | word | lcword | spword | tagname | sp

wordtok | gtok "Using" "using" "Using" "using" {3, 0, 3, 5}
1lhili gtok "<p>" "<p>" "" "b" {3, 6, 3, 9}
wordtok | gtok "Actions" "actions" "Actions" "actions" {3, 9, 3, 16}
rhili gtok "" "" "" "/b" {3, 16, 3, 20}
septok comma | "," " " " {3, 20, 3, 21}
wordtok | gtok "you" "you" " you" "you" {3, 22, 3, 25}
wordtok | gtok "can" "can" " can" "can" {3, 26, 3, 29}
wordtok | gtok "open" "open" " open" "open" {3, 30, 3, 34}
wordtok | gtok "the" "the" " the" "the" {3, 35, 3, 38}
wordtok | gtok "data" "data" " data" "data" {3, 39, 3, 43}
wordtok | gtok "base" "base" " base" "base" {3, 44, 3, 48}
termtok | dot " " " " {3, 48, 3, 49}

Figure 9: Display of token analysis for a segment

The next step in explaining these notions is to make precise what a token is.
The XSG tokenizer produces, for each segment, a list of objects of type token.
These include both the words of the segment and the punctuation between the
words. One can see a display of the tokens for a segment by turning on the flag
toktrace. An example of toktrace output for a sentence is shown in Figure 9.
(We have lined up the output in a tabular form that is a bit easier to read.)

In Figure 9, seven fields of each token are displayed; they are labeled at the
beginning of the output. There is an eighth field, called annotation, which is
not shown in toktrace output, and we explain that below. Let us describe the
seven fields.

The type field of a token (of C datatype sint) shows the general category
of the token. The most common type is wordtok, for normal words. The type
1hili (for “left highlight”) is for begin bracketing tags, and rhili is for the
corresponding end tags. The type septok is for punctuation (like commas and
dashes) that can serve as a separator between a modifier and its modifiee, but
such a token may also be promoted to a coordinator. The type termtok is for
segment terminators. We will not try to list all the token types in this report,
but the API function

st xSGtoktype(token tok)

provides the string form of the type field of token tok.

The id field (of C datatype sint) is used to name very special tokens that
figure heavily in the XSG grammar. In Figure 9 one sees three examples, comma
and dot, with obvious meanings, and gtok (standing for “general token”). There
are quite a few possible ids in the system, mainly corresponding to specific
punctuation symbols, and we will not list them here. The API function

M. C. McCord: Using Slot Grammar 55

typedef struct { sint slineno; sint scolno;
sint elineno; sint ecolno; }
* span;

typedef struct { sint type; sint id;
st word; st lcword; st spword; st tagname;
st annotation; span sp; }
* token;

typedef struct Tokenlist {token hd; struct Tokenlist * tl;}
* tokenlist;

Figure 10: Definition of the token data structure

st xSGtokid(ptr handle, token tok)

provides the string form of the id field of token tok. The first argument is the
SG handle, as described in Section 14.

All the rest of the fields are of datatype st (string), except for sp.

The word field is the underlying string for the token, just as it appears in the
text, including capitalization.

The lcword field is like the word field, but is made lower case.

The spword field (for “space plus word”) consists the word string, prefixed
by any whitespace characters that occur between the preceding token and the
current token. One can reconstruct the whole segment string by concatenating
all the spword fields of the tokenlist created by the tokenizer.

For tags, the tagname field is the name of the tag, i.e. the part of the tag
string that starts after the initial < and goes up to a blank or otherwise up to
the closing >. It is also normalized to lower case. For non-tags, the tagname is
the same as the lcword.

Finally, the sp field of a token gives its span. This represents the start
and end positions of the token in the input document (not counting preceding
whitespace). The sp field is of type span, defined in Figure 10. It is a pointer to
a quadruple of integers giving, respectively, the start line and column numbers
and end line and column numbers of the token. See the discussion on page 44
in Section 11 for more detail on how these positions are calculated.

The XSG data structure for a token is defined in Figure 10. In this figure,
we define not only token but also the auxiliary data types span and tokenlist.

From the preceding discussion, it should be clear what the meaning is of all
these datatype ingredients, except for the annotation field of a token. This
relates to chunking, as described in Section 11. If chunking is done through
a chunk hook function (see page 44), then the annotation field of the chunk

M. C. McCord: Using Slot Grammar 56

token is set to the annotation returned in the last argument of the chunk hook
function.

Now let us return to the way the XSG API allows one to see punctuation
and word tokens.

First, the API function
token * xSGwds(ptr id)

where id is the SG handle (as described in Section 14), returns an array of the
regular word tokens for the most recently parsed segment. For convenience, let
us call this array Words in the following. The API function

sint xSGwdsLen(ptr id)

returns the index of the last word of the segment. Let us denote this by n in
the remainder of this section. Thus the the members of Words are indexed by 1
through n inclusive.

Next, the API function
tokenlist * xSGpuncs(ptr id)

returns an array — call it Puncs — such that for each 7,0 < i < n, Puncs[i] is
the list of punctuation tokens in interstice 1.

For the example in Figure 9, the arrays Words and Puncs would look like
this:

i 0 1 2 3 4 5 6 7 8

Words [i] Using | Actions | you | can | open | the | data | base

Puncs[i] | O | () | (,) | O O 0O 0O O)

In the Words row we are displaying the word tokens by their word fields. In the
Puncs row we are displaying the punctuation tokenlists in the form (w; ws - -),
where w; is the word field of the jth list member.

It should be noted that the tokens in the Words array do not show multiword
agglomeration. For example, the ESG lexicon has a multiword entry for data
base. In the ESG parse of our example sentence, data base will show as a
single node. Its wordno field will be 8, and no node in the tree has wordno 7. In
general, the parse wordno of a multiword will be the Words index of the token
that is the head word of the multiword.

14 Compiling your own XSG application

If you have the object files or a DLL for the XSG modules and you want to
compile your own application that uses XSG, then the following information is
relevant.

M. C. McCord: Using Slot Grammar 57

You will get a header file xsg.h with the SG datatypes given in Section 12,
and the prototypes for the API functions described in the current section. And
you will get a DLL X'sg.d11l and X'sg.1ib.

In the following, let us use the following abbreviations (these definitions are
in xsg.h).

#define nil NULL
typedef FILE * file;

Two API functions that you will need to call in your own program are:

sint xSGstart(int argc, unsigned char **argv, ptr *id)
void xSGend(ptr id)

The function xSGstart should be called to initialize XSG. Its first two argu-
ments are like the two arguments of main in a C program used to hold command-
line arguments of the corresponding executable. Thus argv should be an array
of strings, and argc is the length of that array. These arguments can be used
to control initialization of XSG and to cause XSG to perform certain auxil-
iary operations. The initialization command-line arguments for the executable
XSG . exe described at the end of Section 3 can all be given to xSGstart in its
argc and argv arguments. We also discuss other aspects of this in Section 15.
It is permissible to call xSGstart with argc equal to 0 and argv equal to nil
if no auxiliary operations are desired. The third argument *id will be set by
xSGstart to a pointer called the SG handle, which is used in other API func-
tions. If *id is set to nil, this means that initialization was not successful —
perhaps because of insufficient memory or because XSG could not access it-
s lexical files. In this case, XSG will write an error message to stderr, and
xSGstart will return 0. The function xSGstart may also return 0 if its first
two arguments initiate certain auxiliary operations, as discussed in Section 15.
Otherwise, 1 is returned.

We mention here one kind of parameter pair that xSGstart can take in its
first two arguments. A pair of parameters of the form

-lexpath Path

will allow the XSG lexical files to be in another directory than the current
directory. The Path string should show either the complete directory path
(with an initial slash) for the lexical files, or else the subpath (without an initial
slash) from the current directory. (The first option would be the normal one.)
The Path string should not contain a final slash.

You should call xSGend(id), where id is the SG handle set by xSGstart,
when you are finished using XSG. This frees storage.

In the following, we will use id to refer to the SG handle set by xSGstart.

There are two basic ways of using XSG:

M. C. McCord: Using Slot Grammar 58

1. Your program is in charge of file handling and text segmentation, and you
pass segment strings to XSG, getting parses (sgph data structures) back.

2. XSG is in charge of processing input texts and files, and calls a “hook”
after each parse that invokes a function of yours that does what you want
with the parse.

Let us look at these two methods.

(1) For each segment string s, you should call the XSG API function:
sgph xSGpars(ptr id, st s)
This returns the best XSG parse as an sgph tree.* Note: xSGpars(id, s)

should not be called when the number of tokens in s is greater than 100.

You should call the APT function
void xSGclear(ptr id)

sometime after each parse but before calling xSGpars the next time. This clears
storage space for the next parse. The storage area used in the returned parse
from xSGpars will get overwritten after you call xSGclear, so you should make
sure to do what you need to do with the returned parse (like writing results to
a file, or storing information in some other storage area of your own).

Under method (1) there is an alternative API function:
sgphlist xSGparsl(ptr id, st s)
This returns the list of all the parses for segment s, ordered according to parse

score (best first).

(2) In the second method of interfacing XSG to your own program, XSG is
in charge of file handling, segmentation, tag handling, etc. You need to define
a “hook” function, with a prototype like this:

void my_hook(ptr id, sgph ph)

After each parse, XSG will call my_hook with id as the SG handle and ph as
the best parse for the sentence. But in order to communicate to XSG that this
is your hook function, you should make the call:

xSGhookfun(id, my_hook) ;

in your program at some point after your call to xSGstart.
There are three ways that your program can invoke the operation of XSG.
(a) A call to

4Best according to parse score in the field eval of sgph phrase structures.

M. C. McCord: Using Slot Grammar 59

void xSGinteractive(ptr id)

will put XSG into interactive mode, with the “Input sentence” prompt, de-
scribed in Section 3. As indicated in that section, you can leave this loop by
typing “stop.”.

(b) You can call:
sint xSGdoSt(ptr id, st text, st *analysis, sint *alen)

This takes input text as a string text, which may consist of any number of
segments. The results (parse displays or other output) are written into the
string *analysis. The length of the output string in bytes is put into *alen.

(c) A call to
sint xSGdoFile(ptr id, st InFile, st Outfile)

will process the input file InFile, writing results to output file OutFile. Actu-
ally, the input argument string InFile for xSGdoFile can be a pattern of files
(using * as wildcard), for example d:\texts*.html. In this case, all the files
matching the pattern will be processed, and all the output goes to the single
file OutFile.

The API function
file xSGout (ptr id)

returns a pointer to the (current) SG output file. If xSGdoFile is operat-
ing, then the SG output file is the output file specified for that function. If
xSGinteractive is operating, then the SG output file is stdout by default, but
will be sg.out if the flag xout is on and XSG is writing results. You can use
xSGout to write your own data to the SG output file. You can also open the
SG output file for a file name £1n by calling:

sint xSGopenOut(ptr id, st fln)
You can close the current SG output file by calling:
sint xSGcloseQOut(ptr id)

This will not only close the file, but will also set the current SG output to
stderr.

Three output functions provided in the API are these:
void xSGprst(ptr id, st x)

void xSGpnl(ptr id, st x)
void xSGpri(ptr id, sint x)

M. C. McCord: Using Slot Grammar 60

The first writes string x and the second is similar but adds a newline. The third
write the integer x. “Writing” is either to the current output file in the case of
the function xSGdoFile or the output string *analysis in the case of xSGdoSt.

See Section 13 for a description of the following API functions, which allow
access to the results of XSG tokenization and the treatment of punctuation and
tags.

token * xSGwds(ptr id)

sint xSGwdsLen(ptr id)
tokenlist * xSGpuncs(ptr id)
st xSGtokid(ptr id, token tok)
st xSGtoktype(token tok)

A useful API function for setting flags is:
sint xSGsetflag(ptr id, st flg, sint val)
This sets a flag with name f1g to the integer value val and returns 1, if £1g is

indeed a valid flag name. Otherwise it returns 0.

To set the SG editor to an editor with name Ed, call:

void xSGseteditor(ptr id, st Ed)

To display a phrase ph, you can call:

void xSGprphrase(ptr id, sgph ph)

Our two basic methods of interfacing to XSG are illustrated in short main
programs in Figure 11 and Figure 12.

15 Using your own lexicons

For the format of SG lexicons, see [13]. Suppose you have such a lexicon and
you want to use it with XSG, as an addendum to the main lexicons supplied
with XSG. Let us be specific, and suppose that the source language is English
and the name of the addendum lexicon is ena.lx. In general, lexicons should
have file type (extension) 1x.

The first step (after creating ena.lx) is to compile ena.lx. The purpose of
compiling a lexicon is to produce binary files that can be loaded and accessed
by XSG more efficiently.

If we have compiled ESG with the main program in either Figure 11 or
Figure 12, and the name of the executable is esg.exe, then we can compile
ena.lx by the command:

esg —compiles ena.lx

M. C. McCord: Using Slot Grammar

61

#include <xsg.h>

int main(int argc, st argv[]) {
char seg[1000];
sgph ph;
ptr id;
sint stopped = 0;

if (xSGstart(argc, argv, &id) !'= 1)
return -1;
while (!stopped) {
printf ("Input sentence (\"stop.\" to stop):\n");

gets(seg);

if (strcmp(seg, "stop.") == 0)
stopped = 1;

else {

xSGopenOut (id, "sg.out");
ph = xSGpars(id, seg);

fprintf (xSGout (id), "Parse of segment: \n%s\n",

xSGprphrase(id, ph);
xSGcloseOut (id) ;
system("edit sg.out");
xSGclear(id) ;
}

}

xSGend (id) ;

return O;

seg);

Figure 11: Interface to XSG based on xSGpars

M. C. McCord: Using Slot Grammar

#include <xsg.h>

void hook(ptr id, sgph ph) {
fprintf (xSGout(id), "Head word of phrase = ¥s\n", ph->cite);
fprintf (xSGout (id), "Showing phrase again:\n");
xSGprphrase(id, ph);

}

int main(int argc, st argv[]) {
ptr id;
if (xSGstart(argc, argv, &id) !'= 1)

return -1;

xSGsetflag(id, "xout", 1);
xSGhookfun(id, hook) ;
xSGseteditor(id, "edit");
xSGinteractive(id) ;
xSGend (id) ;
return O;

Figure 12: Interface to XSG based on xSGhookfun

M. C. McCord: Using Slot Grammar 63

This will produce binary files:
ena.lxw, ena.lxv, ena.lxi

If we do not have the convenient relationship between the main program’s
command-line arguments and xSGstart that exists in the programs in Figure 11
and Figure 12, and instead we want to compile ena.1lx more directly in a call to
xSGstart, then we would set up the integer variable argc and the string array
variable argv, and set

argc = 3;

argv([0] = "";

argv([1] = "-compiles";
argv[2] = "ena.lx";

and call xSGstart (argc, argv, &id).

When xSGstart is called with the —compiles keyword in this way, xSGstart
returns 0. One can see that for the programs in Figure 11 and in Figure 12, the
program will not go on with the rest of its possible activities after a compile via
-compiles. Also in this case, xSGstart will not try to find and load the main
lexicons of XSG.

The compiling function —compiles just described does not encrypt the binary
lexical files. There is another version, —~compilesenc, which is used the same
way, but applies a certain amount of encryption to the binary files.

The next step is to cause XSG to use ena.lx during parsing as an addendum
to ESG$ main lexicon en.1x. Again, assuming that we have esg.exe compiled
from the program in Figure 11 or in Figure 12, we would invoke it like so:

esg -mlex "ena.lx en.lx"

Or if we wanted to do it more directly through a call to xSGstart, we would
set its arguments as:

argc = 3;

argv[0] = "";

argv([1] = "-mlex";
argv([2] = "ena.lx en.lx";

Although we refer here to the source lexicon file names (like “ena.1x”), the
system actually reads the binary compiled forms of the lexicon.

The use of -mlex for specifying the lexicons in this way will cause the se-
quence of lexicons

ena.lx, en.lx

M. C. McCord: Using Slot Grammar 64

to be used in preference order. This means that when a word w is looked up
during lexical analysis, XSG will look in order in those two lexicons (ena.lx
first), and will use only the first successful look-up of w (ignoring later lexicons
in the list for that particular w). In this sense, the addendum lexicon overrides
the other lexicon (with this order of arguments for -mlex). Of course we can
change what overrides what by changing the order of arguments.

There is another way to use an addendum lexicon. Instead of letting its
entries override entries for the same word in the other lexicons, we can set it
up so that results of look-up in the addendum lexicon are merged or “unioned”
with the results (for the same word) in the other lexicons. To cause this to
happen, we can call esg like so:

esg —alex ena.lx

Or we could make a corresponding direct call to xSGstart.

For an example of the use of —alex method, suppose we add a noun entry
for the word write to ena.1x, like so:

write < n

Suppose write had only verb senses in the main ESG lexicons. Then with
ena.lx used as an alex, the word write will get the noun sense from ena.lx
and its verb senses from the main lexicon.

But one must be careful with alex lexicons. If there is too much overlap in
entries with the main lexicons, then this could overload the parser with redun-
dant analyses of words.

It is possible to specify both alex and mlex in the same call to xSGstart.
Example for the command-line case:

esg -mlex "ena.lx en.lx" -alex enc.lx

There is another compiling function for lexicons, ~compilex. This is simpler
than -compiles, in that it pays no attention to multiwords in head words
for entries. Actually, ~compilex does no encryption, but there is a variant
of it, —compilexenc, which does do encryption. If you have a source form of
the ontology lexicon ont.1lx and you need to compile that, then you must use
-compilexenc.

This completes our discussion of user lexicons. The initialization function
xSGstart can also invoke special utilities besides the lexical utilities discussed in
this section, if suitable keywords are given to it. But these are not as important
as the lexical utilities, and we will not discuss them in the current form of this
report.

M. C. McCord: Using Slot Grammar 65

16 Lexical augmentation via WordNet

The lexicon en.lx distributed with ESG (in the binary files en.lxw and
en.1xv) has no data derived from WordNet [14, 2]. ESG works well with just
that base lexicon. However, it is possible to augment en.1lx with information
from WordNet, to improve performance. In this section, we describe how to do
this.

WordNet is not distributed with ESG, but a user’s installation of WordNet
can be used, along with a utility EnWNaug packaged with the ESG executable
esg.exe, to do the lexical augmentation of en.1lx automatically. Automation
of the process has the advantage that new versions of WordNet released from
Princeton can be used — as long as the WordNet data files retain the same
format as current ones, as in versions 2.0 and 3.0.

There are two aspects to the augmentation by EnWNaug: (1) Lexical entries
derived from WordNet’s noun vocabulary (both multiwords and single words)
are added to the lexicon when they aren’t in en.1x. (2) Semantic types, based
on WordNet senses, are marked on the combined, larger lexicon.

Here’s what EnWNaug does for (2). There is a small ontology O used by ESG,
some of whose types get marked on entries. Currently O has about 130 semantic
types, which I have chosen either because they are useful for ESG parsing, or
because they are rather high-level types that might be useful to see marked in
parse trees used in applications of ESG. Most of the types in O correspond
to WN (WordNet) word senses (synsets); let O’ be the set of those that do.
The members of @ ~ @' can still be marked on parse tree nodes, because of
hierarchical information in ESG.

The semantic types listed at the end of Section 7 are included in O. They
are the main ones that are useful for parsing. Some of those types are coded
directly in en.1x and have long been there, independently of WN, although the
WN augmentation sometimes results in more words getting marked with such
types.

The basic process of type marking by EnWNaug on lexical entries is as follows.
For each word W in the WN vocabulary, and each open-class POS (part of
speech) P of W, we identify a set S(W, P) of WN senses of W with POS P,
as follows. Let S’(W, P) be the set of all WN senses of W with POS P. If
S" (W, P) =0, then we let S(W, P) = (. Otherwise we proceed as follows.

Basically we want to take S(W, P) to be the set of all members of S"(W, P)
that occur with high enough (relative) frequency. To measure frequency, we use
for any WN sense s, the corpus occurrence count C(s) of s provided by WN.
We let

T = ZSES’(W,P) C(S)

And if T > 0, we take the frequency of a sense s € S'(W, P) to be

M. C. McCord: Using Slot Grammar 66

F(s,W,P)=C(s)/T,
and we let
S(W,P)={se S (W,P): F(s,W,P) > 0.2}.

And if T = 0, we take S(W, P) to consist of just the member of S'(W, P) first
listed by WN. The threshold 0.2 for sense frequency is a guess at what is useful,
and perhaps should be adjusted.

Now let us describe how the set of WN senses S(W, P) is used to mark types
from @’ on the augmented lexical entry for W. For each POS P of W and each
s € S(W, P), we go up the WN hypernymy tree (it can branch upwards) from s,
and for each WN sense s’ encountered, if s’ corresponds to a type t € O, then
we mark ¢ on all the sense frames of W with POS P. There is a short table in
ESG showing for each t € O’ what WN senses correspond to t.

Note that there is no attempt at WSD. Types appropriate to more than one
sense of W (for the given POS) can get marked on W. However, the use of the
frequency threshold prevents rarer senses being used. For instance, for the noun
“man”, all of the senses besides the most common one (”adult male human”)
have frequency numbers below the threshold. So “man” gets only the types
appropriate to that most common sense. On the other hand, ESG parsing
is largely syntactic (though using semi-semantic information from detailed slot
frame specifications). So if “man” is used in a rare sense, the parse normally
works anyway.

Now let us describe how to run EnWNaug. The first step is to convert the WN
data files to a form that ESG can use. For efficiency purposes, ESG has its own
API to WN, which I wrote. The only portion of the Princeton WN distribution
needed is the set of data files, which would typically be in a directory like

\Program Files\WordNet\2.0\dict

on Windows. The ESG WN API needs nine data files, and expects the names
to be:

noun.dat, noun.idx, verb.dat, verb.idx
adj.dat, adj.idx, adv.dat, adv.idx,
sense.idx

If your distribution of WN uses those file names, then you can use them directly
where they are. But if they have another naming scheme, like

data.noun, index.noun,

then they should be copied to files named as above, and it is better to put these
in a separate, new directory.

The next step is to execute the command

M. C. McCord: Using Slot Grammar 67

esg -wnmake Dir

from the ESG directory, where Dir is the complete path of the directory (with-
out a final slash) where the nine WN data files are. This should create nine
data files:

wnsg.gls, wnsg.sid, wnsg.sns, wnsg.spc,
wnsg.swd, wnsg.syn, wnsg.top, wnsg.trc, wnsg.wds

in the ESG directory. These need to be there for the ESG WN API to work.

The next steps are for the actual lexical augmentation. The ESG distribution
provides the lexical files

en.lxw, en.lxv,
enbase.lxw, enbase.lxv

and these should be in the ESG directory. Copy (not rename) the first two files
to something like

enSV.1lxw, enSV.1xv

for safe keeping. It is important to save these if you wish to redo the augmen-
tation process (e.g. with a new WN distribution), or just to run ESG without
a WN-augmented lexicon.

Then execute:
esg -enwnaug

This should take about 15 seconds to run, and it should create binary lexical
files:

enaug.lxw, enaug.lxv, enaug.lxi

This is the new, augmented form of en.1x. Finally, make enaug.lx the new
form of en.1x by doing a copy-replace:

enaug.lxw => en.lxw
enaug.lxv => en.lxv

This completes the process of augmentation.

If you want to redo the augmentation process, then the saved base version
of en.1x,

enSV.1lxw, enSV.1xv,
should be copied (with replacement) to
en.lxw, en.lxv

and the process can be repeated.

M. C. McCord: Using Slot Grammar 68

References

1]

[10]

[11]

[12]

[13]

[14]

[15]

Veronica Dahl and Michael C.McCord. Treating coordination in logic gram-
mars. Computational Linguistics, 9:69-91, 1983.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT
Press, Cambridge, MA, 1998.

Jeffrey S. Gruber. Studies in Lexical Relations. PhD thesis, MIT, 1965.

Ray S. Jackendoff. Semantics and Cognition. MIT Press, Cambridge, MA,
1983.

Shalom Lappin and Michael C. McCord. Anaphora resolution in Slot
Grammar. Computational Linguistics, 16:197-212, 1990.

Shalom Lappin and Michael C. McCord. A syntactic filter on pronominal
anaphora for Slot Grammar. In Proceedings of the 28th Annual Meeting of
the ACL, pages 135-142, 1990.

Michael C. McCord. Slot Grammars. Computational Linguistics, 6:31-43,
1980.

Michael C. McCord. Using slots and modifiers in logic grammars for natural
language. Artificial Intelligence, 18:327-367, 1982.

Michael C. McCord. Modular logic grammars. In Proceedings of the 23rd
Annual Meeting of the ACL, pages 104—117, 1985.

Michael C. McCord. Slot Grammar: A system for simpler construction
of practical natural language grammars. In R. Studer, editor, Natural
Language and Logic: International Scientific Symposium, Lecture Notes
in Computer Science, pages 118-145. Springer Verlag, Berlin, 1990.

Michael C. McCord. Heuristics for broad-coverage natural language pars-
ing. In Proceedings of the ARPA Human Language Technology Workshop,
pages 127-132. Morgan-Kaufmann, 1993.

Michael C. McCord. A formal system for Slot Grammar. Technical report,
IBM T. J. Watson Research Center, 2006. RC 23976.

Michael C. McCord. The Slot Grammar lexical formalism. Technical report,
IBM T. J. Watson Research Center, 2006. RC 23977.

George A. Miller. WordNet: A lexical database for English. Communica-
tions of the ACM, 38:39-41, 1995.

Adrian Walker, Michael C. McCord, John F. Sowa, and Walter G. Wilson.
Knowledge Systems and Prolog: A Logical Approach to Expert Systems and
Natural Language Processing. Addison-Wesley, Reading, MA, 1987.

