
RC23980 (W0606-096) June 21, 2006
Computer Science

IBM Research Report

A Decentralized Application Placement Controller
for Web Applications

Constantin Adam1, Giovanni Pacifici2, Michael Spreitzer2, Rolf Stadler1,
Malgorzata Steinder2, Chunqiang Tang2

1School of Electrical Engineering
Royal Institute of Technology

Stockholm, Sweden

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Decentralized Application Placement Controller

for Web Applications?

Constantin Adam1, Giovanni Pacifici2, Michael Spreitzer2, Rolf Stadler1, Malgorzata
Steinder2, and Chunqiang Tang2

1 School of Electrical Engineering, Royal Institute of Technology, Stockholm, Sweden
2 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract. This paper addresses the problem of dynamic system reconfigura-
tion and resource sharing for a set of applications in large-scale services en-
vironments. It presents a decentralized application placement scheme that dy-
namically provision enterprise applications with heterogeneous resource require-
ments. Potential benefits, including improved scalability, resilience, and contin-
uous adaptation to external events, motivate a decentralized approach. In our
design, all nodes run a placement controller independently and asynchronously,
which periodically reallocates a node’s local resources to applications based on
state information from a fixed number of neighbors. Compared with a central-
ized solution, our placement scheme incurs no additional synchronization costs.
We show through simulations that decentralized placement can achieve accu-
racy close to that of state-of-the-art centralized placement schemes (within 4%
in a specific scenario). In addition, we report results on scalability and transient
behavior of the system.

1 Introduction

The service sector has undergone a rapid expansion in the past several decades. In the
United States, services account for approximately three quarters of GDP and eight out
of ten jobs. This trend has driven the IT industry to shift its focus from the sales of
computer hardware and software toward providing value-added IT services. Another
trend in the industry is that many organizations increasingly rely on web applications
to deliver critical services to their customers and partners. These organizations typi-
cally want to focus on their core competency and avoid unnecessary risks caused by
sophisticated IT technologies. IT service providers are therefore encouraged to host
the web applications in their data centers at reduced cost and with improved service
quality.

An IT service provider that offers comprehensive enterprise computing services may
run hundreds of data centers, and a single data center may host hundreds of applications
running on thousands of machines. The sheer scale and heterogeneity of hardware and
software pose grand challenges on how to manage these environments. Our vision is
to engineer a middleware system that dynamically reconfigures in reaction to events,
such as changes in the external demand, or node failures. In addition, the system
should provide self-management functionality, by adapting to addition and removal of
applications or resources, and changes in management policies. Fig. 1(a) is an example
of such a system.

The idea of providing middleware support for large-scale web services is not new.
Successful research projects in this area include Ninja [1] and Neptune [2], and leading

? This work was mainly done during Constantin’s internship at IBM T.J. Watson Research
Center in 2005. The authors are in alphabetic order. Contact: ctin@kth.se.

Database

Entry
Points

Clients

Internet

…

Nodes

a1 a2 an…Application
Processes

Placement Executor

Placement Controller

Application Profiler

Start/Stop

Application Resource
Requirements

Desired Placement

Overlay Construction

Set of
Neighbors

Load Balancer

Request Router

Queue Controller

Fig. 1. (a) infrastructure for decentralized placement. (b) A node’s components related to
application placement.

commercial products include IBM WebSphere and BEA WebLogic. Despite the great
success of these systems, the rapidly increasing demand for web services calls for next-
generation middleware systems that address existing systems’ limitations in resilience,
scalability, and manageability.

Inspired by the recent success of peer-to-peer (P2P) systems with millions of users
(e.g., KaZaA [3] and Skype [4]), we argue that next-generation middleware systems
should leverage P2P technologies that have been proven to be scalable, fault-tolerant,
and self-organizing. In P2P architectures, all active computing entities (or nodes) are
treated equal. Nodes organize themselves into an application-level overlay network and
collectively route traffic and process requests. Neither there is a single point of failure,
nor the bottlenecks associated with a centralized system.

This paper focuses on a single component of our peer-to-peer middleware system:
the application placement controller. Other components such as request routing and
load balancing mechanisms will be presented in detail elsewhere. The placement con-
troller supports several applications on a single node and therefore enables the de-
ployment of a potentially large number of different applications in the system. Each
node runs a placement controller that decides the set of applications that the node is
offering. The decision aims at maximizing a global objective function.

The unique feature of our approach for application placement is the decentralized

design of the placement controller. Each node independently and asynchronously exe-
cutes the placement algorithm that manages its local resources. Although each node
makes its own decisions independently, collectively all nodes work together to meet a
global objective.

The problem of dynamic application placement has been studied before, and cen-
tralized solutions have been proposed in [8, 9, 13]. We argue that our decentralized
approach offers advantages over a centralized design, such as increased scalability, ab-
sence of single points of failure, zero configuration complexity, and the capability to
adapt continuously to changes in demand and to failures. Compared to a centralized
solution, the additional overhead incurred by our approach is small in terms of com-
putational costs and less efficient use of resources.

The rest of the paper is organized as follows. Section 2 gives an overview of our
P2P middleware system. Section 3 presents the details of our decentralized application
placement algorithm. Section 4 evaluates the algorithm and compares it with state-of-
the-art centralized algorithms. Related work is discussed in Section 5. Finally, Section 6
concludes the paper.

2 Overview of Our P2P Middleware System

Fig. 1(a) shows a possible deployment scenario for our system. We consider a large-scale
system with several entry points, each of which is logically connected to a large number
of nodes, potentially all the nodes in the system. An entry point directs incoming
requests to the nodes using a forwarding policy, such as weighted round robin.

The nodes self-organize into a logical overlay network through application-level
(TCP) connections. They use the overlay for exchanging state and routing informa-
tion. Many overlay construction protocols [6, 10–12] have been proposed, and most of
them could be used in our system. A comparative assessment of overlay construction
mechanisms for our system is beyond the scope of this paper.

Upon receiving a request, a node either processes it locally or forwards it to a peer
that offers that application.

2.1 Node Model

As shown in Fig. 1(b), a node runs a single application process for each application
(a1, a2 · · · an) it offers. The placement mechanism, which manages a set of applications,
has three components: the profiler, the placement controller and the placement execu-
tor. The profiler gathers local application statistics, such as the request arrival rate, the
memory consumed by an application process, and the average number of CPU cycles
used by a request. The placement controller runs periodically on each node. It gathers
application statistics from the local profiler, as well as from the profilers of the overlay
neighbors. Then, it computes a list of application processes to run on the local node
during the next placement cycle and sends this list to the executor, which stops and
starts the required applications. The complete node model also includes components,
such as request router, load balancer, and queue controller, which are not discussed
here.

2.2 The Global Application Placement Matrix

If a node cannot process a request locally, it routes the request to another node using
a local copy of the placement matrix P , which lists for each application the nodes that
run it.

In addition to supporting routing, P provides information, such as the number of
instances of a given application that are running in the entire system. This data can
be used by the application placement controller to implement policies, such as the
minimum or maximum number of application instances in the system.

The local copy of the matrix P on each node is maintained by GoCast, a gossip-
enhanced multicast protocol [6]. Whenever a node changes the set of applications run-
ning locally, it uses GoCast to disseminate the changes to all other nodes.

Note that maintaining a copy of the global placement matrix at each node po-
tentially limits the scalability of the system, as the number of broadcast operations
increases linearly with the system size. However, GoCast enforces a maximum mes-
sage rate on each overlay link, as it buffers all the updates received by a node during
a certain time interval and aggregates them into a single message. The limitation in
scalability therefore stems from the fact that the size of an aggregated message and
the processing load on a node increases with the system size.

3 Decentralized Application Placement Controller

3.1 The Application Placement Problem

We consider a set N of nodes and a set A of applications. Let n be a node in N and
a an application in A. An application’s demands for resources can be characterized
as either load-dependent or load-independent. A running application instance’s con-
sumption of load-dependent resources depends on the offered load. Examples of such
resources include CPU cycles and disk bandwidth. A running application instance also
consumes some load-independent resources regardless of the offered load, even if the
program processes no requests. An example of such a resource is the storage space for
the program’s executable.

Due to practical reasons, we treat memory as a load-independent resource and
conservatively estimate the memory usage to ensure that every running application
has sufficient memory. Our system includes a component that dynamically estimates
the upper limit of an application’s near-term memory usage based on a time series of
its past memory usage. Because the memory usage estimation is dynamically updated,
our placement controller indirectly considers some load-dependent aspects of memory.

We treat memory as a load-independent resource for several reasons. First, a sig-
nificant amount of memory is consumed by an application instance, even if it receives
no requests. Second, memory consumption is often related to prior application usage
rather than to its current load. For example, even under low load, memory usage may
still be high because of data caching. Third, because an accurate projection of future
memory usage is difficult and many applications cannot run when the system is out of
memory, it is reasonable to use a conservative estimation of memory usage, i.e., taking
the upper limit instead of the average.

Among the many load-dependent and load-independent resources, we choose CPU
and memory as the representative ones to be considered by our placement controller,
because we observe that they are the most common bottleneck resources. For example,
our experience shows that many business J2EE applications require on average 1-2GB
real memory. While the description of our algorithm only considers CPU and memory,
it can be applied to other types of resources as well. For example, if the system is
disk-bounded, we can use disk bandwidth instead of CPU cycles as the load-dependent
resource. Regarding measuring the demand and resource consumption of an application,
we refer readers to prior work [13–15] on application profiling.

For an application a ∈ A, let γa denote the memory demand of an instance of a,
and ωreq

a denote the total CPU demand for a throughout the entire system. For a node
n ∈ N , let Γn and Ωn denote its memory and CPU capacities, respectively. The CPU
demand of an application is measured in CPU cycles/second (on a standard reference
machine). We assume that, because of the memory constraint, a node n can run only a
subset Rn of all applications offered by the system. Let ωreq

n,a be the CPU cycles/second

needed on node n in order to process the request rate for application a. Let ωreal
n,a be

the CPU cycles/second that node n allocates to application a. Let ωreal
a denote the

total number of CPU cycles/second that the entire system allocates to application a,
i.e., ωreal

a =
∑

n∈N ωreal
n,a .

The goal of application placement is to maximize the sum of CPU cycles delivered
to all applications.1 We state the problem as follows:

max
∑

n∈N

∑

a∈A

ωreal
n,a (1)

such that

∀n ∈ N Γn ≥
∑

a∈Rn

γa (2)

∀n ∈ N Ωn ≥
∑

a∈Rn

ωreal
n,a (3)

Formulas 2 and 3 stipulate that the allocated CPU and memory resources on each node
cannot exceed the node’s CPU and memory capacities, respectively.

3.2 The Application Placement Algorithm

Our placement algorithm executes periodically on each node. The time between two
executions of the algorithm is called the placement cycle.

The placement algorithm has three consecutive phases. In the first phase, a node
gathers placement and load information from its neighbors. In the second phase, the
node determines a set of applications to run locally during the next placement cycle. In
the last phase, the node carries out the placement changes (i.e., start or stop of appli-
cations) and advertises its new placement configuration to other nodes using GoCast.
We give the pseudo-code of the algorithm and describe each of its phases below.

1. class AppInfo {

2. string app_id;

3. double cpu_demand, cpu_supply;

4. }

5. List<AppInfo> active_apps, standby_apps, new_active_apps;

6. List<AppInfo> neighbor_active_apps;

7. double max_cpu_supply, cpu_supply;

8. while(true) {

9. active_apps=getLocalActiveApps();

10. neighbors=overlay.getNeighbors();

11. neighbor_active_apps=getAppStats(neighbors);

12. standby_apps=getIdleAppStats(local_node, neighbors);

13. for each app in neighbor_active_apps

14. if(active_apps.contains(app)==false)

15. if(app.cpu_demand>app.cpu_supply)

16. standby_apps.add(app);

17. active_apps=sortIncreasingDensity(active_apps);

18. standby_apps=sortDecreasingUnmetDensity(standby_apps);

19. new_active_apps=active_apps;

20. max_cpu_supply=currentCpuSupply()

21. num_active_apps=active_apps.size();

22. for(i=0;i<=num_active_apps;i++) {

1 Our system can also be configured to optimize a certain utility function, but a detailed
discussion is beyond the scope of this paper.

23. remove top i apps from active_apps;

24. cpu_supply=allocateIdleResources(standby_apps);

25. if((cpu_supply-change_cost)>max_cpu_supply) {

26. max_cpu_supply=cpu_supply-change_cost;

27. new_active_apps=active_apps-top_i_active_apps+sel_standby_apps;

28. }

29. }

30. if(new_active_apps!=active_apps) {

31. advertise(new_active_apps, state=STARTING);

32. stopAndStartApps(active_apps, new_active_apps);

33. advertise(new_active_apps, state=ACTIVE);

34. }

35. wait until the end of the placement cycle;

36. }

Phase 1: Gathering State Information. A node retrieves from each neighbor x the
list of applications (a1 · · · am) running on x, the memory requirements (γa1

· · · γam
) of

those applications, the CPU cycles/second (ωreal
x,a1

, · · · , ωreal
x,am

) delivered to those appli-
cations, and the CPU demands of those applications (ωreq

x,a1
, · · · , ωreq

x,am

) (lines 10-11).
In addition, neighbor x also reports the locally measured demands for applications it
could not route, since they are not offered in the system (line 12). (A high demand
for these inactive applications might trigger their activation during the next placement
cycle.)

Phase 2: Computing a New Set of Active Applications. Using the information gath-
ered in the previous phase, a node builds a set of active applications R = {r1, · · · , ri}
(line 9) and a set of standby applications S = {s1, · · · , sj} (lines 12-16). R contains
the applications that are currently active on the local node. S contains two types of
applications: those that run in the neighborhood of the node but not on the node itself,
and applications are currently not offered in the system.

The placement algorithm attempts to replace a subset of applications in R with
a subset of applications in S, so that the local CPU utilization is maximized. Since
the candidate space for the optimal configuration grows exponentially with |R∪S|, we
apply a heuristic that reduces the complexity of the problem to O(|R| ∗ |S|) (lines 17-
29).

On a node n, the active applications in R are sorted in increasing order of their
density da, which we define as the load delivered by n to application a, divided by the
memory consumption of a, i.e., da = ωreal

n,a /γa. A high-density application consumes
system resources efficiently, in the sense that it causes a relatively high CPU utilization
while consuming a relatively little memory. The applications in the standby set S are
sorted in decreasing order of their residual density d∗

a, which we define as the unmet
demand of a divided by its memory demand, i.e., d∗

a =
∑

n∈neighbors(ω
real
n,a − ωreq

n,a)/γa.
The standby applications that have no unmet demands are removed from S, because
there is no need to start additional instances for them. Intuitively, the placement con-
troller tries to replace low-density applications in the active set R with high-density
applications in the standby set S, so that the CPU utilization is maximized.

The placement algorithm has |R| + 1 iterations (k = 0 · · · |R|). During the first
iteration (k = 0), it does not remove any application from R. If the local node n has
available memory and CPU cycles (i.e., Γ free

n > 0 and Ωfree
n > 0), then the algorithm

attempts to add one or more applications from S to R. This is done by selecting
applications from the top of S, subtracting the cost for starting the applications, and
evaluating the resulting gain in CPU utilization.

During iteration k > 0, the algorithm removes the top k applications from R. It
then computes the available memory and CPU resources and attempts to assign these
resources to applications in S in the following way. The algorithm attempts to fit the
first application s1 ∈ S into the available memory. If this operation succeeds, then the
algorithm attempts to allocate the entire unmet CPU demand for s1. This means that
min((ωreq

s1
− ωreal

s1
), Ωfree

n) CPU cycles/second are allocated to application s1. If there
is not enough free memory to fit s1, the algorithm continues with the next application
s2 ∈ S, etc. The iteration k ends when either the free memory or CPU are exhausted,
or when all the applications in S have been considered.

After each iteration k, the placement controller produces a new placement solution
Rk that lists a set of applications to run on the local node during the next placement
cycle. At the end of the loop, the placement algorithm returns from the set {Rk|k =
0, 1, · · · , |R|} the configuration that maximizes the total number of CPU cycles/second
delivered to the active applications.

Note that the algorithm takes into account the cost of stopping and starting an
application, as illustrated in the following example. If, for instance, starting application
s consumes the local CPU for 9 seconds and the length of the placement cycle is 900
seconds, then the cost of starting s is 1% of the total CPU resources of the node
during that placement cycle. The same rule applies for stopping an application. (A
more detailed model could take into account the current node utilization and the fact
that the start and the stop processes do not take the entire CPU capacity.)

Phase 3: Reconfiguring and Advertising the New Configuration. The algorithm an-
nounces the new configuration for the node if the set of active applications has changed
(lines 30-31). Next, it switches from the old configuration to the new configuration by
stopping and starting applications (line 32). After completing these operations, the
algorithm advertises its current configuration (line 33).

The placement controllers process the announcement of a new configuration, whose
purpose is to reduce unnecessary configuration changes, such as several nodes activating
the same idle application. The announcement of the commitment of the placement
operation is used for routing requests.

3.3 Comparison with Centralized Placement Controllers

Our decentralized scheme for application placement has a number of advantages over
proposed centralized solutions [8, 9, 13].

First, it scales to a large number of nodes. The controller makes decisions based
on state information collected from a small subset of the nodes in the system (i.e. its
neighbors), which does not grow with the system size. (As we have discussed, there
is a limitation to which size the update propagation scheme scales, since it is based
on maintaining a copy of the global placement matrix on each node. We are currently
working on a decentralized update scheme, where each node knows about a configurable
number of providers for each application.)

Second, decentralized application placement contributes to a robust system, as fail-
ures of single nodes do not affect the availability of the rest of the system. In contrast
to a centralized system, all components are functionally identical.

Third, decentralized placement enables a large system to adapt to external events
almost instantly, while a centralized approach does not have this capability. Consider a
centralized controller that periodically gathers data about the state of the system and
computes a placement solution. The timescale according to which such a system can
adapt is determined by the length of the placement cycle. In the decentralized case, a

large number of controllers reconfigure asynchronously and periodically. The placement
operations are distributed over time and parts of the system react almost instantly to
external events.

Fourth, decentralization of the application placement does not come at the cost of
additional complexity. All communication takes place between pairs of nodes, without
further synchronization. Furthermore, one can use the same algorithm for centralized,
as well as decentralized placement.

Compared to a centralized solution, decentralized application placement also has
disadvantages, as our results in the next section show. Running a controller on each
node generally results in a higher processing overhead for application placement. Sec-
ond, the number of changes in the sense of application starts and stops is usually larger
in the decentralized case, since there is no coordination between the decisions of the
local controllers.

4 Experimental Results

We implemented our design in Java and studied its behavior through extensive simula-
tions. The implementation is based on the javaSimulation package [16] that provides a
general framework for process-based discrete event simulation. (We also implemented
our algorithms in a real system based on the Tomcat [17] environment. Measurements
from the testbed will be reported elsewhere.)

We have conducted simulations with a large number of system configurations and
load patterns. We use several models for synthetic load because we are not aware of any
large-scale load traces of J2EE applications. Due to space limitations, we only report
results here for one type of load pattern called “power-law” [18], where applications
are ranked according to their popularity and the application with rank α is assigned
a random weight in the interval [0, α−2.16]. To obtain the load for individual applica-
tions, these weights are normalized, and multiplied by the total CPU demand for all
applications. In our experiments, the load changes periodically. The weights assigned
to the applications in a given period are independent of the previous period.

Following our previous work [8], we use two parameters to control the difficulty of an
application placement problem: the CPU load factor (CLF) and the memory load factor

(MLF). The CLF is the ratio between the total CPU demand of the applications and the
total CPU capacity available in the system: CLF =

∑
a∈A ωreq

a /
∑

n∈N Ωn. Similarly,
the MLF is the ratio between the sum of the memory required by each deployed appli-
cation and the total memory available in the system: MLF =

∑
a∈A γreq

a /
∑

n∈N Γn.
In case MLF = 1, the system has enough total memory to run one instance of each
application. Note that the memory is scattered across the nodes, and it might be not
possible to find a placement solution for any value of MLF > 0.

We use two performance metrics to evaluate the placement algorithms: the accuracy
and the number of placement changes. Accuracy is the ratio between the satisfied CPU
demand and the total CPU demand. An accuracy of 1 means that the system can
process all the incoming requests. The number of placement changes is the total number
of application starts and stops in the entire system during one placement cycle. A good
algorithm should exhibit high accuracy and a low number of placement changes.

In the simulation, the memory capacity Γn of a node is uniformly distributed over
the set {1, 2, 3, 4} GB. The memory requirement γm of an application is uniformly
distributed over the set {0.4, 0.8, 1.2, 1.6} GB. The CPU capacity Ωn is the same for
all nodes and is set to 2 GHz.

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

memory load factor

ac
cu

ra
cy

decentralized base centralized improved centralized

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

CPU load factor

ac
cu

ra
cy

decentralized base centralized improved centralized

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

memory load factor

nu
m

be
r

of
 c

ha
ng

es

decentralized base centralized improved centralized

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

CPU load factor

nu
m

be
r

of
 c

ha
ng

es
decentralized base centralized improved centralized

Fig. 2. Comparison between the decentralized and centralized placement algorithms for 100
nodes. Top: Placement Accuracy (left: CLF=0.9, right: MLF=0.4) Bottom: Number of changes
(left: CLF=0.9, right: MLF=0.4)

Unless otherwise noted, each placement cycle lasts 900 seconds and each simulation
run lasts 3600 seconds. The first cycle (900 seconds) is a warm-up period and the
results from this period are discarded. The load pattern changes every 900 seconds and
the performance metrics (accuracy and number of placement changes) are measured at
the end of each placement cycle. During a placement cycle, nodes independently pick
a random time to run the placement algorithm. The default time to start or stop an
application is 0 seconds.

The measurement points in the Figs. 2, 3 are averages of 100 simulation runs.

Comparing the Decentralized and Centralized Algorithms. Fig. 2 shows a perfor-
mance comparison between our decentralized placement controller and two centralized
controllers with the same control objectives. The “base centralized” algorithm [8] (pre-
viously developed by us) uses a greedy heuristic and two network flows algorithms (max
flow and min cost) on a bi-partite graph to find the optimal allocation. The “improved
centralized” algorithm is our most recent, enhanced version of the “base centralized”
algorithm.

The evaluation is based on a system with 100 nodes. In the decentralized case, each
node has 16 neighbors. We report on two series of simulations. First, we set CLF = 0.9
and vary MLF from 0.1 to 1. For the second series, we set MLF = 0.4 and vary CLF
from 0.1 to 1.

Fig. 2 shows the evaluation results. The accuracy of the decentralized algorithm
is about 5% lower than the accuracy of the improved centralized algorithm. This cost
in CPU resources is paid for a decentralized solution. We further observe that the
number of placement changes in the decentralized algorithm is several times higher
than that of the improved centralized algorithm. We expect a higher number of changes
in the decentralized case, because the nodes make decisions independently and do not
coordinate them. We believe that the number of changes could be reduced by applying
only those changes that significantly improve the control objective.

As expected, the CLF influences the accuracy significantly. For relatively low CPU
utilizations (CLF ≤ 0.5), the accuracy of the decentralized algorithm is close to that of

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

memory load factor

ac
cu

ra
cy

100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

cpu load factor

ac
cu

ra
cy

100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

memory load factor

nu
m

be
r

of
 c

ha
ng

es

100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

cpu load factor

nu
m

be
r

of
 c

ha
ng

es
100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

Fig. 3. Scalability of the decentralized placement algorithm. Top: placement accuracy (left:
CLF=0.9, right: MLF=0.4). Bottom: number of changes (left: CLF=0.9, right: MLF=0.4).

the centralized algorithm and, furthermore, close to the ideal value of 1. The decrease in
accuracy accelerates for CLF ≥ 0.8. In the decentralized case, the number of placement
changes increases with CLF, peaks around CLF = 0.8 and decreases afterwards. We
explain this decrease by the fact that, for a high CLF, many nodes are loaded close to
their capacity, and it is difficult for the algorithm to find placement changes that can
further improve their utilization.

Scalability of the Decentralized Placement Algorithm. To investigate the scalability
of our algorithm, we consider a system where nodes have on average 16 neighbors. We
report on two series of simulations, in which we vary the number of nodes in the system
from 100 to 500. First, we set CLF = 0.9 and vary MLF from 0.1 to 1. For the second
series, we set MLF = 0.4 and vary CLF from 0.1 to 1. Fig. 3 shows that the accuracy
tends to slightly increase by about 1-2% when the system size increases from 100 to
500 nodes. Fig. 3 also shows that the number of placement changes increases linearly
with the size of the system.

Convergence after a Load Change. Fig 4 illustrates the system behavior during
transient phases that follow changes in the external load pattern. The system has
200 nodes and each node has on average 16 neighbors. We perform three series of
experiments for which the time needed to start or to stop an application is 0, 20, and
100 seconds, respectively. The length of the placement cycle is 900 seconds. The system
starts in a random configuration and, at time 0, we generate a load pattern that does
not change during the remainder of the simulation. We set MLF = 0.4 and CLF = 0.9.

Fig. 4 shows that the increase in accuracy and the number of placement changes
is initially large and then levels out over time. We observe that the time t needed to
start and stop applications significantly impacts the convergence time of the system.
Specifically, if t is small (0 seconds or 20 seconds), the system converges during a single
placement cycle. For large values of t (100 seconds), the system needs 2-3 placement
cycles to converge. When increasing t, the placement accuracy becomes lower, because
some CPU resources are used for starting and stopping applications. As expected, we
observe changes in the system even in steady state.

0

0.2

0.4

0.6

0.8

1

0 900 1800 2700 3600

simulation time (sec)

ac
cu

ra
cy

t=0 t=20 t=100

0

4

8

12

16

0 900 1800 2700 3600

simulation time (sec)

nu
m

be
r

of
 c

ha
ng

es

t=0 t=20 t=100

Fig. 4. Convergence after a load change. Left: placement accuracy. Right: number of changes.

5 Related Work

The application placement problem, as described in Section 3.1, is a variant of the
class constrained multiple-knapsack problem, which is known to be NP-hard [19]. Vari-
ations of this problem have been studied extensively in several contexts. In the area of
application placement for web services, this work is closely related to the centralized

placement algorithm [8] previously developed by us.

Stewart et al. [13] present a centralized method for automatic component placement
that maximizes the overall system throughput. In the area of content delivery and
stream processing, [20–22] describe methodologies for placing a set of operators in
a network, by balancing two objectives: (a) minimizing the delay of the information
delivery and (b) minimizing the bandwidth used to send the information. In the context
of utility computing, [23] presents a decentralized placement algorithm that clusters
application components according to the amount of data they exchange.

6 Conclusion

In this paper, we presented a decentralized control scheme for application placement
that attempts to maximize resource utilization. Through simulations, we have shown
that decentralized placement can achieve accuracy close to that of state-of-the-art
centralized placement schemes (within 4% in a specific scenario). Our decentralized
scheme does not include additional synchronization costs compared to a centralized
solution. Moreover, conceptual advantages such as scalability, resilience and continuous
adaptation to external events motivate the study of decentralized placement as an
alternative to a centralized scheme.

A number of issues require further consideration. Our current design does not ad-
dress the server affinity problem and the concept of the user session. In addition, we did
not consider the interaction with the database tier in our design, which limits the use
of the current scheme to applications that do not require transactional capabilities or
state persistence. Finally, we need to improve further the scalability of our placement
scheme. As we have shown, maintaining a copy of the global placement matrix at each
node potentially limits scalability, as the processing load on a node increases with the
system size. We are currently evaluating an adaptive update mechanism, where each
node only knows about a configurable number of providers for each application.

We are in the process of implementing and evaluating the scheme described in this
paper in the Tomcat environment. The placement controller runs as an application
filter in Tomcat, following the approach described in [24]. We plan to evaluate the
performance of our system using the TPC-W and RUBiS benchmarks.

References

1. S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler, N. Borisov, S. Czer-
winski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, B. Zhao, “The
Ninja Architecture for Robust Internet-Scale Systems and Services,” Journal of Computer
Networks, vol. 35, no. 4, March 2001.

2. K. Shen, H. Tang, T. Yang, L. Chu, “Integrated Resource Management for Cluster-based
Internet Services”, OSDI’02, December, 2002.

3. KaZaA, http://www.kazaa.com, June 2006.
4. Skype, http://www.skype.com, June 2006.
5. C. Tang, M. J. Buco, R. N. Chang, S. Dwarkadas, L. Z. Luan, E. So, C. Ward, “Low Traffic

Overlay Networks with Large Routing Tables,”, ACM SIGMETRICS’05.
6. C. Tang, R. N. Chang, C. Ward, “GoCast: Gossip-enhanced Overlay Multicast for Fast

and Dependable Group Communication”, DSN’05, Yokohama, Japan, 2005.
7. R. M. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A. N. Tantawi, A. Youssef, “Perfor-

mance Management for Cluster Based Web Services”, IEEE/IFIP IM, 2003.
8. A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, A. Tantawi,

“Dynamic Application Placement for Clustered Web Applications”, the International
World Wide Web Conference (WWW), 2006.

9. S. Shingal, S. Graupner, A. Sahai, V. Machiraju, J. Pruyne, X. Zhu, J. Rolia, M. Arlitt,
C. Santos, D. Beyer, J. Ward., “Quartermaster: A Resource Utility System”, IEEE/IFIP
IM 2005, Nice, France, May 2005.

10. Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H., Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM 2001.

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., A scalable content-
addressable network. ACM SIGCOMM 2001.

12. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems, IFIP/ACM Middleware 2001.

13. C. Stewart K. Shen, S. Dwarkadas, M. Scott, Profile-driven Component Placement for
Cluster-based Online Services, IEEE Distributed Systems Online, October 2004.

14. B. Urgaonkar, P. Shenoy, T. Roscoe, “Resource Overbooking and Application Profiling in
Shared Hosted Platforms”, USENIX 2002, Boston, MA, December 2002.

15. G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder, A. Tantawi, A. Youssef, “Managing
the response time for multi-tiered web applications”, IBM, Tech. Rep. RC 23651, 2005.

16. K. Helsgaun, Discrete Event Simulation in Java, Writings on Computer Science, 2000,
Roskilde University.

17. Apache Tomcat, http://tomcat.apache.org, June 2006.
18. L.A. Adamic, B.A. Huberman,“Zipf’s law and the Internet”, Glottometrics 3,2002.
19. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer-Verlag, 2004.
20. S. Buchholz and T. Buchholz, “Replica placement in adaptive content distribution net-

works”, ACM SAC 2004, Nicosia, Cyprus, March 2004.
21. K. Liu, J. Lui, Z-L Zhang, “Distributed Algorithm for Service Replication in Service

Overlay Network”, IFIP Networking 2004, May, 2004, Athens, Greece.
22. P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, M. Seltzer, “Network-

Aware Operator Placement for Stream-Processing Systems”. ICDE’06, Atlanta, GA, April
2006.

23. C. Low, “Decentralized application placement”, Future Generation Computer Systems 21
(2005) 281-290.

24. C. Adam and R. Stadler, “Implementation and Evaluation of a Middleware for Self-
Organizing Decentralized Web Services”, IEEE SelfMan 2006, Dublin, Ireland, June 2006.

