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Abstract

This paper presents a framework for revenue management in on-demand e-services,
such as e-business hosting, e-services, software as service, capacity on demand, etc.
A critical component of the framework presented here is that price segmentation and
quality-of-service segmentation are performed jointly. As is often the case in the revenue
management literature, the relation between demand modeling and price segmentation
is captured explicitly. However, unlike much of the revenue management literature,
the relation between number of customers served and the quality-of-service level offered
is also explicitly modeled, in this case through queueing relations. The framework
presented here therefore involves models of customer behavior, customer servicing and
resource allocation. We argue that extending revenue management models beyond
dynamic pricing to include other, related, decisions facing a business is critical operating
profitably in an on-demand market of e-services.

1 Introduction

Because of the way the internet is used in doing business today, demand for products and

services changes at a much finer time scale than in previous decades. Furthermore, because

of the increasingly accurate ability of customers to compare prices and other characteristics

of the products and services available on the market, companies are finding that they need

to adapt themselves to these changes quickly in order to operate profitably. The principal

measures that a firm can use to deal with the rapid pace of business changes in such a

marketplace include dynamic pricing, resource allocation, and resource provisioning. Some

of these measures are facilitated by new software platforms for engaging in e-commerce.

In parallel to the efforts taking place within companies to respond profitably to a rapidly

changing marketplace, the ”IT on demand” paradigm has emerged as a partial solution to

some of these companies’ woes. Using third-party on-demand information technology (IT)

services, firms can access IT - software, online services, web-site hosting, computational or

memory capacity - when it is needed and in the quantity that it is needed. The use of on-

demand IT enables a firm to concentrate on its core business and outsource its IT functions

to an outside vendor, who makes assurances on its functionality and takes responsibility for

ensuring software upgrades, maintenance, capacity expansion, etc.

In particular, ”e-Services On-Demand” means that firms can outsource much of the IT

work that is required by the firm: from servers and software hosting to maintenance and

upgrades. Depending upon the service level agreed to between the firm and the service

provider, users need not perceive the difference; jobs and software are run remotely; web

sites are stored remotely, etc; the change should be seamless from the point of view of the
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users. The firm then pays for IT as a service, where the price paid depends upon usage,

rather than a capital and labor outlay; in particular, when usage needs change, no new

acquisition/capacity planning decisions need to be made. One very common example of an

on demand e-service that exists today is dynamic off-loading of web content. When a firm,

such as an online retailer, experiences heavy web site traffic, the retailer in many cases has

its excess traffic automatically redirected to an off-loading service. The process is usually

invisible to web customers of the retailer.

While the gains may be clear to the customer of the e-service, the on-demand IT service

provider may have trouble operating profitably. To attract business, the service provider

must offer a price visibly lower (in some cases, 25% or more) than what the customer

believes it is spending on its in-house management of IT. The customer also expects a

service quality level comparable to that which he would have in-house. Clearly, then, if the

service provider equips its own infrastructure with the same amount of IT equipment and

software licenses as the client, the savings that the service provider can generate will be low.

However, in order to satisfy the service level agreement (SLA) with the customer, the service

provider’s capacity must be sufficient or else SLA breach penalties would need to be paid to

the customer, and customer satisfaction may be sacrificed as well. Hence, from the service

provider’s point of view, cost reduction and revenue generation become critical to the success

of on demand e-services business. Furthermore, it is clear that judicious price-setting on the

part of the service provider is not sufficient for a successful on-demand IT service; setting

differentiated service-quality levels, and installing an appropriate level of total capacity are

critical elements of the business process, from both the point of view of the service provider,

and that of the customer. In other words, the decisions of segmented pricing and resource

allocation, or service-level determination, are heavily intertwined, and in the instance of

revenue management for IT services, cannot be effectively treated separately.

In this work, we consider the joint problem of price and service-level setting along with

capacity allocation for a service provider. Specifically, we present a modeling framework for

revenue management of on-demand e-services where quality-of-service parameter optimiza-

tion is performed jointly with pricing optimization. The framework also involves models of

customer behavior, customer scheduling and resource allocation and portrays the benefits

of revenue management to e-services; that is, we believe that price segmentation alone is

insufficient.

The rest of the paper is organized as follows. Section 2 offers a review of relevant

literature. We present the model and its principal components in Section 3. We discuss

some structural properties of the optimization problem in Section 4. Section 5 presents

computational analysis with the model, and considers a scenario in which a service provider

offers Enterprise Resource Planning (ERP) software on demand through a hosted facility.

Finally, we conclude in Section 6 with some suggestions for future work in the area.

2 Literature review

Historically, revenue management was first practiced in airlines for seat overbooking control

(see Littlewood (1972)[22] and Belobaba (1987)[3]). The last decade saw a rise in the
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application of revenue management techniques to diverse fields such as the hotel industry,

car rental agencies, retail stores, restaurants etc. (see Petruzzi (1999)[30]), and models

became more industry specific. There exists a vast literature on revenue management and

we refer interested readers to McGill and van Ryzin (1999) [24] , Bitran and Caldentry

(2002) [5], Elmaghraby and Ksskinocak (2003) [14] and the recent monograph by Talluri

and van Ryzin (2004) [32] for detailed reviews.

In the context of Internet services, pricing is also proposed as a tool to prevent network

congestion while simultaneously optimizing the revenue of service providers. However, since

the internet is basically a best-effort service model, works on Internet pricing consider price-

only decisions by the service provider with possibly muliple price classes and the service level

offered to the customers results as a by-product of pricing and customer choices. More often

than not, the literature on internet pricing deals with how to achieve system optimality and

reduce congestion for all users through judicious pricing, rather than profit maximization for

any particular provider. Nonetheless, there is some relation between the body of literature

on internet pricing and our revenue management model for e-services in that the underlying

mechanics of the system works in much the same way.

On that topic, Odlyzko (1997)[27] proposed a simple approach for internet pricing which

he called Paris Metro Pricing (PMP), to provide differentiated services on the internet and

prevent congestion. Here again, different classes of services (with different fixed prices and

with static capacity allocation) was proposed with the expectation that the pricing will

segment the incoming demand among different classes. Paschalidis and Tsitsiklis (2000)[29]

studied congestion-based and they show that the performance of an optimal dynamic pricing

strategy is closely matched by a set of suitably chosen static prices in some asymptotic

sense. Yuksel and Kalyanaraman (2002)[36] discuss implementation issues for congestion

based pricing of the Internet. Dube, Borkar and Manjunath (2002)[8] propose a pricing

scheme where incoming customers make decisions to join a particular service class based

on the price and the congestion level in the class. They showed that under heavy load the

individually optimum decisions made by users (to minimize their dis-utility) leads to social

optimality.

Another related branch of literature is the resource allocation literature for queueing

systems; in this body of work, researchers are concerned with the optimal allocation of

servicer capacity, for example as input into a scheduler or workload management software.

In many cases, pricing is part of the equation, especially in the literature called differentiated

or priority-bsed resource allocation for queueing systems. The principal difference of our

work with respect to this line of research is that our work is aimed at providing input

for a reservation system for revenue management of e-services, rather than the real-time

operation and scheduling of jobs in the system. In that respect, our framework focuses more

on modeling customer behavior, price sensitivity, etc. than the following literature.

In e-services, where service-level agreements (SLA) to be offered by the service provider

are negotiated during the contractual phase, a service class is identified the tuple of price

and service level and not by price alone. The SLAs can be described through soft Qual-

ity of Service (QoS) constraints such as probabilistic bounds on service delays or through

hard QoS constraints such as deterministic bounds. Mendelson (1985) [25] work studied

the effect of congestion due to queueing effects and users’ related costs on the pricing and
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capacity decisions at a computing center with a single processor. Mendelson and Whang

(1990) extended Mendelson’s (1985) model and obtained optimal incentive compatible pric-

ing for the single processor node with Poisson arrival of customers. Konana, Gupta and

Whinston (2000) [21] proposed dynamic priority pricing where each priority class is associ-

ated with a price and a delay, and priority pricing used for admission control and for job

scheduling. Van Mieghem (2000)[33] studied the optimal prices and service quality grades

of a service provider facing heterogeneous utility-maximizing customers in queueing models

and discusses both centralized systems (maximizing total system utility) and decentralized

systems (maximizing the server provider’s profit), under either full information or asymmet-

ric information. Hampshire, Massey, Mitra and Wang (2002)[18] used queueing models to

solve QoS provisioning and pricing problems. Fulp and Reeves (2004) [16] study a problem

with joint decisions on pricing and bandwidth provisioning, and they also discuss the class

promotions in off-peak hours. Dewan and Mendelson (1990) [7] studied optimal pricing

and capacity decisions by assuming a general delay cost structure which incorporates the

tradeoff between capacity and delay cost. Afeche and Mendelson (2004) [1] proposed a gen-

eralized delay cost structure by accounting for the interdependence between delay costs of

customers and their service valuations. Finally, Dube, Touati and Wynter (2006) [9] stud-

ied the pricing strategies under competitive environments by exploiting the interdependence

between price, system capacity, demand and customer preferences.

In the context of pricing of information goods in the on-demand paradigm, there has

been some recent work. Gurnani and Karlapalem (2001) [17] studied the economic viability

of pay-per-use licensing of packaged software over the internet by using a monopoly pric-

ing model. Paleologo (2004) [28] accounted for the impact of uncertainty in the decision

process in the pricing of on-demand e-services and proposed a novel methodology, ”Price-

at-Risk”. Sundararajan (2004) [31] established that a combination of usage-based pricing

and unlimited-usage fixed-fee pricing is optimal for the pricing of information goods in

the presence of transaction costs, contrasting the well-known results from nonlinear pricing

which suggests the optimality of purely usage based pricing (see Wilson (1993) [35]). Bakos

and Brynjolfsson (1999) [2] showed that bundling a large number of unrelated information

goods can be signifcantly more profitable for a multi-product monopolist. Vishwanathan

and Anandalingam (2005) [34] provide a review of literature on pricing of information goods

with particular focus on customisation, bundling and versioning strategies adopted by ser-

vice providers. A recent paper by Huang and Sundararajan (2005) [19] studied three pricing

models for on-demand computing under different settings of service provider’s infrastruc-

ture choice and cost structure, and customers’ valuation; however, this work did not model

queueing behavior or its impact on the SLA offered by the service provider.

Revenue management in the context of IT resources has been advocated by Dube, Liu

and Wynter (2003)[12] and by Dube, Hayel and Wynter (2005)[11], the idea being that

revenue management techniques within a reservation system can be used by IT service

providers to use their own capacity optimally and profitably. In this case, the provider

would set capacity allocations (server use, storage, and bandwidth) and offer multiple price

points to customers, depending on the available resource level of the service provider, as

well as the market demand. In [11], the problem was formulated as an optimization model

with fixed sojourn times of customers/jobs at the facility. The model was analyzed in a
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simplified setting with only two classes, while a numerical study using a large data set

made a convincing case for improved pricing and resource allocation in IT on demand

through revenue management techniques. However the assumption of fixed sojourn times

in [11] is too restrictive for e-services where, in general, the sojourn times are stochastic

and at best can be modeled through some probability distributions. Further in e-services,

requests from different customers are processed in parallel and hence yield management

framework for e-services should involve more realistic service models (see Liu, Squillante

and Wolf (2001)[23]). Recently Dube and Hayel (2006) [10] proposed a real-time revenue

management framework by explicitly accounting for the dependence of expected sojourn

times on the provider’s capacity and using a fixed point formulation for getting feasible set

of SLAs. However, because of the need to solve a fixed-point system just to obtain the set of

feasible SLAs, that model is not practicable as input into a large-scale reservation system.

3 The Model

3.1 Service Level Agreement over a Day

We assume a given time horizon is separated into N equal-length time periods, t = 1 . . . N .

Demand for computing and software services is divided into J demand classes, j = 1 . . . J .

Transactions, or jobs, are submitted by each demand class at the start of each period; a

demand class is defined so that transactions in the same class share the same features:

the same workload per transaction, identical sensitivities to price, the same preference for

higher/lower quality of service (QoS), and the same degree of propensity (or not) for waiting

for service.

In this framework, users may wait until a later period to have their transactions pro-

cessed; the motivation from the user’s point of view would be to obtain a lower price or

higher quality of service (QoS). Consequently, we denote by t the period when a transaction

is submitted, and by s the period when the that request is actually processed.

Demand for service is characterized by two input parameters, the arrival rate of transac-

tions, or jobs, τ t
j , submitted by demand class j at period t, and the is the average workload

per transaction in class j, wj .

In addition to the demand classes, we assume that the service provider has the possibility

of offering up to K price-service classes, k = 1 . . . K. All transactions in the same price-

service class during the same time period experience the same level of service, and are

offered at the same price per unit of workload.

We define the promised level of service by a multiplicative upper bound on the delay

experienced by the transaction. For example, if, for some demand class, k, the shortest

sojourn time of one unit of workload is T 0
k , then the promised sojourn time of a transaction

with workload w in price-service class k at period s is bounded from above, with probability

αs
k, by zs

kwT0. The variable, zs
k ∈ [1,∞), is thus the promised multiplicative upper bound

on the delay rate of class k at period s.

The objective of the model is to determine, for the service provider, the optimal prices,

{rs
k}, and service levels, {zs

k}, for each price-service class and each time period, that should

be offered to its customers over the time horizon, T , so as to maximize the provider’s revenue
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less the expected penalty costs given the optimal service levels offered in each price-service

class.

We shall make the following blanket assumption.

Assumption 1 The duration of any transaction in the system is much smaller than the

length of the time period.

Under Assumption 1, we shall isolate the transactions submitted in each period. Indeed,

while some small fraction of the transactions, arriving late in any period, may cross into

the next period, we neglect the effect of those on the next period’s capacity in our model.
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Figure 1: Customers’ Choices under Service Level Agreements

Figure 1 illustrates the demand model graphically. On the left side of the figure are

the demand classes, j = 1 . . . J for time periods 1 to N . The parameter τ t
j is the customer

arrival rate of demand class j at the start of period t, and wj is the average workload per

transaction in class j. On the right side of the figure are the price-service classes. The

service usage rate, πs
k, represents the total workload of service class k at period s. This rate

can be obtained by

πs
k =

s∑

t=1

J∑

j=1

τ t
jwjp

ts
jk. (1)

where pts
jk is the probability of a user in demand class j submitting a transaction at the

start of period t choosing price-service class k at period s. This probability is given by the

multinominal logit function, summarized below.

3.2 Multinominal Logit Function

The logit function can elegantly describe the probability that a user chooses one amongst a

finite, discrete set of options. The logit function is widely used in travel demand forecasting
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and marketing, and it is more robust than linear regression (see Ben-Akiva and Lerman

[4]).

We define a simple, linear dis-utility function composed of price and transaction delay

bound variable (upper bound on the promised delay):

U ts
jk =

{
−vt

j + rs
k + ηt

jz
s
k + ζt

j(s− t) if s ≥ t,

∞ if s < t,
(2)

where vt
j is the a user’s value for one unit of workload of a job in demand class j arriving

at period t, rs
k is the price per unit work load and zs

k the transaction delay bound for price-

service class k at period s, ηt
j is the scaling factor converting a user’s preference of high

QoS into a dollar amount, and ζt
j is the parameter representing a class j user’s willingness

(arriving at period t) to wait for service in a later period in order to have lower price or

higher QoS. Demands cannot be served in a period earlier than its arrival time; hence such

dis-utility values are set to infinity.

In addition, in order to model the probability of non-purchase, we define the dis-utility

for potential customers who choose to go to other service providers.

U t
j0 = −vj + rt

0 + ηjz
t
0. (3)

where rt
0 is price per unit workload, and zt

0 is the delay multiplier per unit workload available

on the market at period t. These values represent average market values of price and service

level guarantees across competitors of the service provider.

Then, the probability that a user from demand class j submits a transaction at period t

to price-service class k to be processed at period s is given by the multinomial logit function:

pts
jk(r, z) =






e
−θjUts

jk
(rs

k
,zs,k)

e
−θjUt

j0+
PN

n=t

PK
l=1 e

−θjUtn
jl

(r,z)
if s ≥ t,

0 if s < t.
(4)

As transactions cannot be processed in a period earlier than they are submitted, the prob-

ability is zero when s < t. When s > t, U ts
jk is the dis-utility of a job from demand class j

arriving at period t served in price-service class k at period s, and U t
j0 is the dis-utility of a

potential customer from class j processing its job through another service provider. Due to

mis-information and other unmeasurable parameters involved in decision making, there is

some randomness involved in customer choices; θj ∈ [0,∞) is the parameter characterizing

the degree of randomness involved in class j customers’ choices.

For example, in Figure 2, by varying this logit scaling parameter, θ, we isolate three

distinct cases for a model with two options, K = 2.

• When θ = 0, customer choices are totally random, and we can substitute the proba-

bility function with pk = 1/K for each choice k = 1, . . . ,K.

• When θ = ∞, customer choices are purely deterministic, as customers choose the

option with the minimal dis-utility.

• When θ = (0,∞), there is some error in the perception of the dis-utility of each choice,

or some degree of randomness involved in customer choices. In this case, the logit

function is differentiable, but non-linear over R.
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Figure 2: Logit Demand Function

3.3 Computational Capacity Allocation

Let φs
k be the portion of computational capacity, cs, used by class k at period s, and let µ be

the service rate of one unit of computational capacity. Let T0 be the baseline sojourn time

for a single workload unit, (note that the number of workload units per transaction varies

across demand classes through wj), and let zs
kT0 be the promised delay bound for a single

workload unit in price-service class k. Due to the dynamic nature of the service, there is

some probability that an actual service time for one unit of workload in price-service class

k at period s, T s
k , exceeds the promised sojourn time. According to a result of queueing

theory [20], this probability has an upper bound,

P [T s
k > zs

kT0] ≤

{
e−(φs

k
csµ−

Ps
t=1

PJ
j=1 τ t

j wjpts
jk

(r,z))zs
k
T0 if πs

k ≤ csµ,
1 if πs

k > csµ,
(5)

where as before, πs
k =

∑s
t=1

∑J
j=1 τ

t
jwjp

ts
jk(r, z). We henceforth denote this upper bound by

αs
k. When αs

k < 1, we require that πs
k ≤ csµ, and have:

αs
k = e−(φs

k
csµ−

Ps
t=1

PJ
j=1 τ t

jwjpts
jk

(r,z))zs
k
T0 . (6)

which is equivalent to

φs
k(r, z) =

∑s
t=1

∑J
j=1 τ

t
jwjp

ts
jk(r, z) −

log αk

zs
k
T0

csµ
. (7)

Hence, the capacity required by class k at period s can be obtained from the optimal values

of the decision variables, r∗ and z∗ as well as the constant upper bound on probabilistic

service-level degradation αs
k.

3.4 Problem Formulation

To make the problem tractable, we use the upper bound, αs
k, to approximate the proba-

bility of delay in the objective function[23]. According to [37] and [23], this approximation

8



always holds for exponential distributions of the service times of the jobs, and for general

distributions, is asymptotically correct when zs
k → ∞, if the service time distribution has

a heavy tail. We assume that the service provider must pay a penalty of lk if the actual

service time of a unit of workload in price-service class k at period s exceeds the promised

sojourn time, T s
k > zs

kT0, and the delay ratio is bounded from above by some tolerance level,

zs
k ≤ z̄s

k and from below by 1, since it is a multiplicative delay bound on the nominal delay.

The formulation of the IT revenue management optimization problem is given as follows,

max
r,z

N∑

t=1

N∑

s=t

J∑

j=1

K∑

k=1

τ t
jwjp

ts
jk(r, z)(r

s
k − lskα

s
k) (8)

s.t.

K∑

k=1

φs
k(r, z) ≤ 1, for s = 1, . . . ,N, (9)

1 ≤ zs
k ≤ z̄s

k, for k = 1, . . . ,K, s = 1, . . . ,N, (10)

φs
k(r, z), r

s
k ≥ 0, for k = 1, . . . ,K, s = 1, . . . ,N. (11)

where rs
k and zs

k are the decision variables, lsk, α
s
k, z̄

s
k, and wj are parameters, pts

jk(r, z) and

φs
k(r, z) are obtained from (4) and (7), (9) is the total capacity constraint, (10) is the upper

bound constraint of delay rate, and finally, (11) are the constraints ensuring non-negativity.

4 Properties of the Model

In this section, we present an analysis of the model and its properties. First, we consider

the existence of a feasible solution to the model. Note that since we are treating bounds

on the service quality as part of the revenue management reservation, and that we model

explicitly the link between customers served and service quality offered, a feasible solution

may not always be guaranteed. On the same topic, we provide a bound on the total level

of service provider capacity to ensure feasibility. Then, we discuss some properties of the

revenue function and of the optimal solution.

4.1 Feasibility and bounds

Proposition 1 [Feasibility of the system] Let the delay ratio bound, z̄s
k → ∞ for all k =

1 . . . K, s = 1 . . . N . Then, the optimization problem (8)-(11) admits a solution for any

value of the arrival process, τ t
j , wj ≥ 0.

Proof: We must show that, for any fixed value of α ∈ [0, 1], it holds that

∑s
t=1

∑J
j=1 τ

t
jwjp

ts
jk(r, z) −

log αk

zs
k
T0

csµ
≥ 0, k = 1 . . . K, s = 1 . . . N, (12)

and
∑

k,s

φs
k(r, z) =

∑

k,s

∑s
t=1

∑J
j=1 τ

t
jwjp

ts
jk(r, z) −

log αk

zs
k
T0

csµ
≤ 1 (13)
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for any τ t
j , wj ≥ 0. Recall that the logit probability, pts

jk(r, z), for any class includes the

dis-utility function of the competitor, whose price and service level are fixed and exogenous

to the model. Hence, the competitor’s capacity is infinite. As z̄s
k → ∞,

pts
jk(r, z) =

e−θjU ts
jk

(rs
k
,zs,k)

e−θjU t
j0 +

∑N
n=t

∑K
l=1 e

−θjU tn
jl

(r,z)
→ ∞. (14)

Indeed, when s ≥ t, U ts
jk = −vt

j + rs
k +ηt

jz
s
k + ζt

j(s− t), and zs
k → ∞; also, U ts

jk = ∞ for s < t.

Hence, as zs
k → ∞,

e−θjU ts
jk

(rs
k
,zs,k) → 0. (15)

Furthermore U t
j0 = −vj + rt

0 + ηjz
t
0 is a constant. Thus,

pts
jk(r, z) →

0

const+ 0
= 0 (16)

as zs
k → ∞. In addition,

logαk

zs
kT0

→ 0 (17)

as zs
k → ∞, since both αk and T0 are constants. Hence, there exists a ẑs

k for all k, s, such

that
∑

k,s

φs
k(r, ẑ) =

∑

k,s

∑s
t=1

∑J
j=1 τ

t
jwjp

ts
jk(r, ẑ) − log αk

ẑs
k
T0

csµ
≤ 1 (18)

Nonnegativity of each φs
k is straightforward, since − log(αk) ≥ 0 for all α ∈ [0, 1], and hence

all terms in (18) are nonnegative.

Remark 1 Observe that for z̄k → ∞, ∀k, for any α ∈ [0, 1] we can eliminate the constraints

on φs
k (this is because the constraints on φs

k are only design constraints and φs
k does not

enter explicitly in the objective function) in our optimization problem. Thus the problem

from Sec. 3.4 can be reformulated as:

max
r,z

N∑

s=1

s∑

t=1

J∑

j=1

K∑

k=1

τ t
jwjp

ts
jk(r, z)(r

s
k − lskα

s
k) (19)

s.t. rs
k, z

s
k ≥ 0, for k = 1, . . . ,K, s = 1, . . . ,N. (20)

The next result shows the effect of increasing service provider’s capacity on the model.

Proposition 2 Let the service provider’s capacity be fixed over the time horizon, i.e., cs = c

for all s. Then, there is a threshold value of c, called ĉ, such that when c ≥ ĉ, there exists a

solution to the optimization program (8)–(11) for any value of the arrival process, τ t
j , wj ≥ 0.

Furthermore ĉ ≤ 1
µ

maxs





∑

j,k,t=1..s

τ t
jwj −

log αk

T0




 ·

10



Proof: When cs = c for all s, the constraint on service capacity says that for every s =

1, ...N ,

∑

k

φs
k(r, z) =

∑

k

∑s
t=1

∑J
j=1 τ

t
jwjp

ts
jk(r, z) −

log αk

zs
k
T0

cµ
≤ 1,

which can be rewritten as

1

µ

∑

k

s∑

t=1

J∑

j=1

τ t
jwjp

ts
jk(r, z) −

log αk

zs
kT0

≤ c.

From above, we see that as c gets large, the contraint is always satisfied. Since for all

t, s, j, k, pts
jk(r, z) ≤ 1, zs

k ≥ 1, and logαk ≤ 0, as αk ∈ {0, 1}, the left-hand side is bounded

by 1
µ

∑

j,k,t=1...s

τ t
j , wj −

log αk

T0
. Hence, when the capacity is larger than

1

µ
max

s





∑

j,k,t=1...s

τ t
jwj −

log αk

T0




 ,

the constraint is always satisfied.

Note that the above result is a special case of the stability condition on a queueing

system. Indeed, the stability of a queue requires that λ ≤ µc, where λ is the arrival rate

of jobs into the queue, and µc the service rate and capacity, respectively. In this case,∑

j,k,t=1..s

τ t
jwj is equivalent to an arrival rate, as it is the product of the workload per user

type and the number of such users. The difference between the classic stability condition

and the condition above is that the arrival rate must be lower than the processing capability,

µc, by the quantity log αk

T0
. That quantity is the upper bound on the additional capacity

that is needed to achieve the service quality promised, which is independent of the arrival

rate of customers into the system.

4.2 Analysis of the optimal objective and price and service-level variables

The next result confirms similar results on other revenue management models and says

essentially that indeed, for this model as well, the revenue management strategies enable

a provider to obtain more of the consumer surplus than without revenue management and

increased market segmentation leads to increased potential revenues.

Proposition 3 Let rs
k − lskα

s
k ≥ 0 for all s, k. Then, the revenue function(8) increases with

the number of service classes.

Proof: The revenue function (8) is given by
∑

s,t,j,k

τ t
jwjp

ts
jk(r, z)(rs

k − lskα
s
k),

11



where the difference rs
k − lskα

s
k ≥ 0 for all s,k. Furthermore, the parameters τ t

jwj ≥ 0 for all

t, j. Consider next the probability function pts
jk(r, z). Given the non-negativity of the other

parameters, we must now show that the sum of the probabilities increases as K increases.

Note that the probability of customers going to the competitors is given by pts
j0(r, z), and

furthermore that ∑

s,k

pts
jk(r, z) = 1 − pt

j0(r, z).

In addition, pt
j0(r, z) can be expressed as

pt
j0(r, z,K) =

e−θU0(r0,z0)

e−θU0(r0,z0) +
∑

s,k=1..K

pts
jk(r, z)

.

Hence, the competitors’ probability pt
j0(r, z,K) is decreasing in K for fixed r, z, since each

term in the denominator satisfies pts
jk(r, z) ≥ 0, and the number of terms is increasing as K

increases. Since pt
j0(r, z,K) is decreasing in K, we have that

∑

s,k

pts
jk(r, z) is increasing in K.

This concludes the proof.

The above result says that the objective function of our revenue management formulation

with explicit price and service level models increases as the number of available price-service

classes increase, in the absence of capacity constraints. In our framework, though, the

effect of increasing the mass of customers served on service quality is explicitly modeled. In

particular, when service provider capacity is below a threshold, there is an effect on service

quality as the number of customers served increases. Hence, depending upon the market

structure, it is in many cases preferable to offer a lower number of price-service classes

when capacity is low, with the optimal classes serving the higher-paying segments of the

population.

Next, we study how customer’s choice changes with the optimal price and service level

of each class. For the purpose of simplicity, we focus on a single-period system, i.e. no

demand will be served in a later period. However, the results we obtain in the following are

not limited to single-period system.

Proposition 4 In a single-period system, the Logit probability has the following properties

(taking pjk as example):

∂pjk

∂rk
= −θjpjk(1 − pjk); (21)

∂pjk

∂rl
= θjpjkpjl; (22)

∂pjk

∂zk
= −θjηjpjk(1 − pjk); (23)

∂pjk

∂zl
= θjηjpjkpjl. (24)

12



Proof: For a single period system, let us denote ejk = e−vj+rk+ηjzk . Then the Logit probabil-

ity that a class j customer will choose service class k can be calculated as pjk = ejk/
∑K

i=0 eji.

Take derivatives over rk, rl, zk, and zl respectively, we have,

∂pjk

∂rk
=

−θjejk∑K
i=0 eji

−
−θjejkejk

(
∑K

i=0 eji)
2

= −θj
ejk[(

∑K
i=0 eji) − ejk]

(
∑K

i=0 eji)
2

= −θjpjk(1 − pjk);

∂pjk

∂rl
=

θjejkejl

(
∑K

i=0 eji)
2

= −θjpjkpjl;

∂pjk

∂zk
=

−θjηjejk∑K
i=0 eji

−
−θjηjejkejk

(
∑K

i=0 eji)
2

= −θjηj
ejk[(

∑K
i=0 eji) − ejk]

(
∑K

i=0 eji)
2

= −θjηjpjk(1 − pjk);

∂pjk

∂rl
=

θjηjejkejl

(
∑K

i=0 eji)
2

= −θjηjpjkpjl.

Equation (21) indicates that as the price for service class k increases, the probability

that a customer choose class k decreases, and the impact of rk is prominent when pjk = 0.5.

In other words, when pjk → 1− or when pjk → 0+, customer’s choice is not so sensitive

to price change as when pjk ≈ 0.5. Equation (22) indicates that as the price for service

class l increases, the probability that a customer choose class k increases. The sensitivity

is proportional to both pjk and pjl. Since pjl < 1 − pjk, the impact of rl on pjk is smaller

than that of rk.

Comparing equations (21) and (23), we find that the impact of the sojourn time in class

k, zk, is proportional to the impact of rk with rate ηj , which is class j customers’ sensitivity

to delay. Similar properties are found by comparing (22) and (24).

Nonconcavity of the objective function is clearly a concern as concerns solving the rev-

enue management model. Empirically, however, we observe that when capacity is suffi-

ciently large, standard nonlinear programming algorithms are quite well-behaved on the

model. Figure 3 shows the optimal objective function surface from the computation study

of Section 5 obtained from different starting point vectors indexed from 1 to 10. Note that

the surface is not the objective function but rather the optimal objective function value

according to starting point. Observe that for much of the region explored, the optimal

revenue is the same, i.e., the surface is flat, confirming a relative insensitivity of the optimal

solution found to starting point.

Remark 2 [Simple Processor Sharing System] Note that our model reduces to a processor

sharing system when in each period s all the classes get equal share of the total capacity cs,
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that is, φs
k = 1

K
. For such a system we have from (7):

s∑

t=1

J∑

j=1

τ t
jwjp

ts
jk(r, z) =

csµ

K
+

logαs
k

zs
kT0

(25)

From (7) and (19) we can hence write the objective function as:

N∑

s=1

K∑

k=1

s∑

t=1

J∑

j=1

τ t
jwjp

ts
jk(r, z)(r

s
k − lskα

s
k) =

N∑

s=1

K∑

k=1

(rs
k − lskα

s
k)

(
csµ

K
+

logαs
k

zs
kT0

)

Defining a new variable qs
k = 1

zs
k
, we can write the optimization problem of (19)-(20) as:

max
r,z

N∑

s=1

K∑

k=1

(rs
k − lskα

s
k)

(
csµ

K
+
qs
k log αs

k

T0

)
(26)

s.t.qs
k, r

s
k ≥ 0 for k = 1, . . . ,K, s = 1, . . . ,N. (27)

Observe that by restricting the choice of φs
k to 1

K
for all s and k we have introduced an

additional dependency between the decision variables r and z through (25). This restricts

the feasible set of variables r and z.

5 Computational Analysis: Example of an On-Demand Soft-
ware as a Service (SaaS) e-Services Utility

In this section, we report results of a computational study aimed at obtaining insights into

the revenue management framework proposed for a typical on demand IT service provider.

Our goal is two-fold: (i) examine the profit improvement for the service provider by using

our joint pricing and service-level strategy, which depends on factors such as number of

classes that can be opened and number of distinct classes among those that are opened,

time-of-day, user demand, and provider capacity, and (ii) identify how the optimal price

and service levels changes with the provider’s total capacity and demand. We discuss as

well the impact of the revenue management policy on the fraction of total demand that is

captured by the service provider.

5.1 Data and problem setup

In this section, we study an application example of revenue management at a Software as

a Service (SaaS) center supporting on-demand access to an Enterprise Resource Planning

(ERP) application software, such as PeopleSoft or SAP. ERP software includes typically

many modules, from finance to manufacturing to human resources, in a single platform,
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thereby facilitating the sharing of information and the cross-optimization of tasks and re-

sources. Modules of an ERP software package include for example Customer Relationship

Management (CRM), Enterprise Performance Management (EPM), Financial Management,

Human Capital Management (HCM), Supply Chain Management (SCM), and Project Man-

agement (PM). Clearly, then, usage patterns, willingness to pay for peak-time usage and

ability to run tasks offline in batch mode (and hence at possibly cheaper time periods)

vary across these modules. It is precisely this variability that allows a revenue management

approach to reap benefits in terms of profit increase and demand smoothing.

ERP software has traditionally been installed on the customer’s computer infrastructure.

In this case, it is generally deployed and maintained by the customers themselves. The on-

demand software-as-a-service paradigm, or e-business hosting (eBH), involves a third-party

service provider installing and maintaining a sufficient number of licenses for the software

and users access the software remotely from the customer’s site. As long as the service

provider’s capacity is sufficient, no conflicts will arise and response times for the user would

be very short.

In this study, the time horizon is a single day. Let us consider a hypothetical e-services

provider supporting six different ERP application suites including HRM, Finance, EPM,

CRM, SCM and PM. The provider faces the problem of allocating resources (database

and application servers) to these different applications so as to maximize its revenue from

hosting on-demand PeopleSoft applications. The provider also needs to allocate servers for

Administrative (Admin) purposes. Hence, in total there are 7 ERP modules, each of which

each has a different usage pattern.

Typically for the purpose of resource provisioning, users for different applications are

classified into three categories: heavy users, moderate users and light users, defined as

follows:

• Heavy User (HU) - a user whose principal job requirement is to enter, request and

update data. They submit transactions frequently. This type of user is sometimes

referred to as a ”power user” operating in a ”heads down” data entry or update mode.

• Moderate User (MU) - a user that enters data, requests data and updates the database

regularly but their requirements are not as intense as those of a heavy user. You may

consider a moderate user workload is half as much as a heavy user workload.

• Light User (LU) - a user that submits application requests or updates infrequently.

Table 1 gives the workload of each ERP application and the percentage of customers of

different customer types for each application. Apparently, for any function G ∈ Func, we

have

ψt
Gh + ψt

Gm + ψt
Gl = 1 for t = 1, . . . ,N.
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Service Work Load # Transactions % HUs % MUs % LUs

HCM wH = 2 xt
Hh = 10, xHm = 5, xHl = 2 ψt

Hh = 0.1 ψt
Hm = 0.3 ψt

Hl = 0.6

Finance wF = 3 xt
Fh = 50, xFm = 25, xF l = 10 ψt

Fh = 0.7 ψt
Fm = 0.25 ψt

F l = 0.05

EPM wE = 3 xt
Eh = 10, xEm = 8, xEl = 4 ψt

Eh = 0.25 ψt
Em = 0.6 ψt

El = 0.15

CRM wC = 4 xt
Ch = 80, xt

Cm = 45, xt
Cl = 20 ψt

Ch = 0.65 ψt
Cm = 0.25 ψt

Cl = 0.1

SCM wS = 2 xt
Sh = 45, xt

Sm = 22, xt
Sl = 6 ψt

Sh = 0.2 ψt
Sm = 0.65 ψt

Sl = 0.15

Admin wA = 1 xt
Ah = 15, xt

Am = 7, xt
Al = 3 ψt

Ah = 0.1 ψt
Am = 0.5 ψt

Al = 0.4

PM wP = 4 xt
Ph = 100, xt

Pm = 50, xt
P l = 20 ψt

Ph = 0.85 ψt
Pm = 0.13 ψt

P l = 0.02

Table 1: Fraction of different types of users and their average workloads at e-services
provider X.

Interval Characteristic Activity # Active Customers, ν

HCM Finance EPM CRM SCM Admin PM
0:00-8:00 night-time very low 2 4 2 4 4 2 2
8:00-9:00 start of day moderate 10 20 10 20 20 10 10
9:00-12:00 peak-time high 30 60 30 60 60 30 30
12:00-14:00 lunch-time moderate 10 20 10 20 20 10 10
14:00-16:00 afternoon high 30 60 30 60 60 60 30
16:00-19:00 end of office moderate 10 20 10 20 20 10 10
19:00-24:00 end of day low 6 12 6 12 12 6 6

Table 2: Average number of active customers, νj , in different periods over a typical business
day

We divide a day into different intervals depending upon the intensity of usage of ap-

plications, with periods of low, moderate and heavy activity. We capture this by taking

different arrival rates of customers in different periods over a typical business day given in

Table 2. Observe that interval from 0:00-8:00 (night time) has very low activity, 8:00-9:00

(start of business for some) has moderate activity, 9:00-12:00 (start of business for most)

has high activity, 12:00-14:00 (lunch time) has low activity, 14:00-16:00 has high activity,

16:00-19:00 (end of day) has moderate activity, 19:00-24:00 is the end-of-day period of low

activity.

Users in different classes have different sensitivities to prices and service qualities. Given

the three user types and the 7 ERP modules, there are a total of 21 demand classes. The

customer arrival rates of each are given by:

τ t
1 = xt

Hψ
t
Hhν

t
H , τ t

2 = xt
Hψ

t
Hmν

t
H , τ t

3 = xt
Hψ

t
Hlν

t
H ,

...

τ t
19 = xt

Pψ
t
Phν

t
P , τ t

20 = xt
Pψ

t
Pmν

t
P , τ t

21 = xt
Pψ

t
P lν

t
P .
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The job workloads are given by:

w1 = w2 = w3 = wH , . . . , w19 = w20 = w21 = wP .

5.2 Analysis of computational results

It is well-known that, in general, increasing the number of service classes increases the

revenue that can be gained, but with a decreasing marginal gain; i.e. that the optimal

revenue is concave increasing in the number of price-service classes. The experimental

results of this section confirm that theoretical result. In particular, from having a single

price-service class to a maximum of four, the revenue increased up to 25% when capacity

is high, and 23% when capacity is low. The greatest jump in revenue is when the service

provider goes from 1 to 2 price-service classes open, which ranged from 12-14% in the three

capacity scenarios, high to low. The jump in revenue was 3–8% when a third class was

added, and a further increase of 4-6% in revenue could be obtained by going from three to

four price-service classes open.

In the figures 5–7, one can see the effect of permitting an increasing number of price-

service classes to be made available. In these experiments, the average competitor’s price

is set to $50 and maximum delay bound set to 5, i.e., 5 times the minimum CPU time

needed to execute the job. These values can be interpreted as a medium to low quality of

service and a relatively low price. Note that the left-hand y-axis in units of price, while

the right-hand y-axis is in units of the maximum delay bound. In this set of figures, the

provider’s total capacity is quite high.

In Figure 5, up to two service classes can be opened, and indeed at all but the nighttime

low period (the 7th time period), two distinct classes are open in the optimal solution. The

optimal price for class 1 is considerably higher than the average competitor’s price and the

corresponding service quality is significantly better. Clearly, then the optimization model

selects class 1 to offer to the high-end customer, i.e. the customer with important and

time-sensitive functions. On the other hand, the price of class 2 is some of the time also

above that of the competitor, and the service quality mirrors the price trend, either above or

below that offered by the competitor. It is of interest to note how the optimal price-service

offering varies with the demand and time of day. In particular, during the 5th and 6th time

periods, the promised service level of the high-priced class degrades; this can be explained

by the fact that the 5th time period is one of heavy demand, but also that it is towards the

end of the day. Since jobs can be processed after their arrival time into the system, there

is an accumulation of jobs towards the end of the day, which includes those submitted at

earlier times. Hence, even though time period 16:00-19:00 has only moderate arrivals, the

jobs sent earlier and processed in that time slot make it another heavily-subscribed time

period.

In Figure 6, the scenario is the same, with the exception that K = 3, i.e., the model

allows up to three price-service classes to be opened. From the figure, one observes that

18



Revenue as a function of number of price-service classes
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Figure 4: The revenue (less expected penalty costs) is concave increasing in number of
classes that can be opened, with little difference across the three total capacity levels: high,
medium, and low
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A High-Capacity 2-Class Scenario
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Figure 5: Scenario in which a maximum of two price-service classes can be opened, i.e.,
K = 2. In this case capacity is high.
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A High-Capacity 3-Class Scenario
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Figure 6: Scenario in which a maximum of three price-service classes can be opened, i.e.,
K = 3. In this case capacity is high.

three distinct classes are opened in only two time periods: the first high demand early

morning period, and the last period. The first class is again the high-end price-service

class, with less variation across time periods than what was seen in the previous example

with two price-service classes. The second class now has some variation of the course of the

day, with once again average price and service level values over the day approaching that

of the competitor. The third price-service class takes the role of a class very close to the

competitor’s in the time slots for which the second class offers significantly better service,

at a higher price.

Figure 7 shows now the same scenario with a maximum of five price-service classes that

the service provider may open. We see that the model chooses not more than three distinct

classes. In fact, because of the form of the model, all classes are open but the additional

classes reduce to a maximum of three. The third class plays the same role as in the previous
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A High-Capacity 5-Class Scenario
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Figure 7: Scenario in which a maximum of five price-service classes can be opened, i.e.,
K = 5. In this case capacity is high.

example; it offers an option close to that of the competitor when the second class is set closer

to the high-end class.

The total capacity of the service provider has an impact on the price-service classes

offered in the optimal solution. Figure 8 illustrates a scenario with a maximum of four open

classes, K = 4. As before, only three distinct classes are proposed by the optimal solution;

however, their structure is somewhat different than was the case with a high total capacity.

Recall that when the total capacity of the service provider is low relative to the market

demand, the service provider benefits by satisfying high-paying customers rather than by

increasing market share through offering more classes; at the same time, in order to offer

low delay bounds to those customers, fewer customers will be admitted into the system. In

particular, observe from Figure 8 that at the second peak period, 14-16:00, only a single
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A Low-Capacity 4-Class Scenario

0

20

40

60

80

100

120

0-7:00, Low 7-9:00, Mod 9-12:00
High

12-14:00
Mod

14-16:00
High

16-19:00
Mod

19-24:00
Low

Time periods over a day

P
ri

ce

0

1

2

3

4

5

6

M
ax

im
u

m
 d

el
ay

 p
ar

am
et

er

Price 1 Price 2 Price 3
Maximum Delay Parameter 1 Maximum Delay Parameter 2 Maximum Delay Parameter 3

Figure 8: Scenario in which a maximum of four price-service classes can be opened, i.e.,
K = 4. In this case capacity is low.

class is opened; note though that the price is set very high–to $100, which is, in fact is the

upper bound on price. Service quality is still reasonably good, at 3.78. In other words,

because of scarce capacity at a high-demand time slot, the solution suggested by the model

is to go with a single high-price offering and maximize revenue on the price, rather than by

offering a palette of service levels. This result is typical of the results obtained in the low

capacity scenarios.

It is also important to examine the effect of a revenue management framework on the

demand captured by the service provider, as a fraction of the total market demand. In

Figure 9, two curves are presented: in one the service provider’s capacity is quite high, and

in the other the capacity is insufficient to handle the customer load that would like to be

served.
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Percent Demand Captured as the Number of Classes Increases, for 
High and Low Capacity
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Figure 9: Fraction of market share captured by the service provider, as a function of the
number of classes that can be opened and the time of day. Capacity is sufficient to accom-
modate as much demand as can be captured by judicious price-service level offerings.
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When the service provider’s total capacity is insufficient to handle all the demand that

would otherwise patronize the provider, the optimal solution favors, in some cases, reducing

the number of price-service classes and offering primarily those with a better quality-of-

service and a higher price. Since capacity is linked to service quality through the explicit

queueing relations, offering a better quality-of-service amounts to admitting less customers

when total capacity is low. This is what we observe in Figure 9: whereas the market share

increases in general with increasing number of service classes, as expected in the absence

of capacity constraints from, e.g. Proposition 3, when capacity constraints are active, this

need no longer be the case. Indeed, the market share obtained when capacity is low actually

decreases from 4 to 5 price-service classes, although as we saw in Figure 4, revenue continues

to increase.

What one can take away from this suite of computational experiments is, on the one

hand, that optimal price variation across the time horizon is significant, i.e., dynamic pricing

does appear to be advantageous to the service provider. There are clearly demand patterns

and available capacity levels for which more than one price class significantly improves

revenue, and the prices themselves vary considerably. It is also important to observe,

on the other hand, that service level guarantees are a critical element to optimal market

segmentation. Price variation alone would impact demand for the e-services, but in the

absence of taking into account its effect on service quality, the market would re-adjust and

the benefits of the price segmentation would not be achieved. One can observe from this

suite of experiments that limited capacity impacts considerably the optimal structure of

price-service level segmentation; in particular, when capacity was low it was advantageous

to offer fewer, higher-quality classes. This result would not have been visible were the

explicit relation between demand, capacity and service level not included in the model.

6 Conclusions and Future Research Directions

In this paper, we presented a revenue management framework for e-services provision, also

known as IT on demand, e-business hosting, software as a service, etc. An important

property of the framework is that it includes joint pricing and quality-of-service (QoS)

decisions along with multiple demand classes, and the QoS is dependent explicitly on the

number and types of customers served. Indeed, while it is usual in revenue management

models to explicitly relate customer behavior to price, we argue that going forward it

is equally important to treat more than just the price decisions; in treating service-level

decisions for resource allocation, for example, one must model the dependences explicitly

as well.

Properties of the model discussed in the paper include its non-convexity, but at the

same time the empirical observation shows that the objective function surface appears to

be changing shape rather slowly and in a limited range. In other words, the model appeared

to be relatively insensitive to starting point. A more thorough theoretical assessment of this
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appearance of epsilon-optimality would be of great use for this class of models.

With respect to the use of the revenue management framework presented here for e-

services, or IT on demand, a thorough set of experimental tests confirmed what theory

and intuition had put forth. Namely, that an increasing number of price-service classes

available increases revenue significantly (up to 25% from one to four service classes open),

but the jump in revenue decreases as the number of such classes increases; i.e., marginal

benefits are concave increasing in the number of price-service classes. Furthermore, it was

shown that the number of distinct classes tended to three in most instances, while up to

five distinct price-service classes could be opened. While explicit monetary costs of opening

classes were not included here, its effect of accommodating a large market share on a finite

service capacity was modeled, and the effect was to limit the number of open classes, and

focus on pricing and serving the high-end customers.

In this paper, we assumed that the service capacity is given and fixed, and we did not

consider the option of capacity expansion. However, capacity is the most costly investment

in the IT service industry, and it should be carefully considered. An IT service provider

may also lease contingent capacity itself, when facing dramatic increase of demand; hence,

in that case the service provider itself would be an occasional customer of a different service

provider. There would be a few ways of taking into account these interactions, one being

a bi-level framework with the two service providers each at its own level, and another

would be a peer-to-peer structure in which service providers share capacity as needed. In

summary, two potentially valuable extensions of this work are to (i) incorporate explicit

capacity provision decisions into the model, and (ii) to consider that the service provider

itself may be a customer of additional capacity, as needed.
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