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Abstract. Denial of Service (DoS) attacks attempt to consume a
server’s resources (network bandwidth, computing power, main mem-
ory, disk bandwidth etc) to near exhaustion so that there are no re-
sources left to handle requests from legitimate clients. An effective
solution to defend against DoS attacks is to filter DoS attack requests
at the earliest point (say, the web site’s firewall), before they con-
sume much of the server’s resources. Most defenses against DoS at-
tacks attempt to filter requests from inauthentic clients before they
consume much of the server’s resources. Client authentication us-
ing techniques like IPSec or SSL may often require changes to the
client-side software and may additionally require superuser privileges
at the client for deployment. Further, using digital signatures (as in
SSL) makes verification very expensive, thereby making the verifi-
cation process itself a viable DoS target for the adversary. In this
paper, we propose a light-weight client transparent technique to de-
fend against DoS attacks with two unique features: (i) Our technique
can be implemented entirely using JavaScript support provided by a
standard client-side browser like Mozilla FireFox or Microsoft Inter-
net Explorer. Client transparency follows from the fact that: (i) no
changes to client-side software are required, (ii) no client-side supe-
ruser privileges are required, and (iii) clients (human beings or auto-
mated clients) can browse a DoS protected website in the same man-
ner that they browse other websites. (ii) Although we operate using
the client-side browser (HTTP layer), our technique enables fast IP
level packet filtering at the server’s firewall and requires no changes to
the application(s) hosted by the web server. In this paper we present a
detailed design of our technique along with a detailed security analy-
sis. We also describe a concrete implementation of our proposal on the
Linux kernel and present an evaluation using two applications: band-
width intensive Apache HTTPD and database intensive TPCW. Our
experiments show that our approach incurs a low performance over-
head and is resilient to DoS attacks.

Keywords. Authentication, Availability, Client Transparency, De-
nial of Service (DoS) attacks, Web Servers

1 Introduction
Recently we have seen increasing numbers of denial of ser-
vice (DoS) attacks against online services and web applica-
tions either for extortion reasons, or for impairing and even
disabling the competition [6, 21, 25]. DoS attacks attempt to
consume a server’s resources (network bandwidth, computing
power, main memory, disk bandwidth etc) to near exhaustion

so that there are no resources left to handle requests from le-
gitimate clients. These DoS attacks are increasingly mounted
by professional attackers using huge zombie nets consisting of
thousands of compromised machines on the Internet [16, 30,
27]. An FBI affidavit [6] describes a DoS attack on an e-
Commerce website using a 5,000 node zombie net that caused
a loss of several millions of dollars in revenue.

Countering DoS attacks on web servers has become a very
challenging problem. An effective solution to defend against
DoS attacks is to filter attack requests at the earliest point (say,
the web site’s firewall), before it consumes much of the server’s
resources. The attack requests arrive from a large number of
geographically distributed machines, and thus cannot be fil-
tered on their source IP prefix. Some websites require pass-
word and login information before a client can access the web-
site. However, checking the site-specific password requires es-
tablishing a connection and allowing unauthenticated clients to
access socket buffers and worker processes, making it easy to
mount an attack on the authentication mechanism itself. Some
sites use strong digital signature based transport level authenti-
cation mechanisms [8]; however, the complex server-side com-
putations required for verifying a digital certificate allow an
adversary to target the handshake protocol for launching DoS
attacks [23].

In general, authentication mechanisms that operate at a higher
layer in the networking stack allow an attacker to target lower
layers. Some websites may use message authentication codes
(MAC) based IP level authentication mechanisms like IPSec
[20]. IPSec with preconfigured keys allows packets from unau-
thenticated clients to be dropped by the firewall. Hence, unau-
thenticated clients cannot access even low level server resources
like socket buffers and transmission control blocks (TCBs).
However, IPSec breaks client transparency in several ways: (i)
Installing IPSec requires changes to the client-side networking
stack, (ii) Installing IPSec requires superuser privileges at the
client, (iii) IPSec permits both manual key set up and key ex-
change using the Internet key exchange protocol (IKE) [15].
The IKE protocol uses the Diffie-Hellman key exchange pro-
tocol. Similar to digital signatures this protocol imposes heavy
computational load on the server, thereby allowing an adver-
sary to target the IKE protocol for launching DoS attacks. (iv)
Manually setting up shared keys circumvents the expensive IKE
protocol. However, manual IPSec key set up requires superuser



Figure 1: DoS Protection Architecture
Figure 2: Port Hiding Architecture

Figure 3: Port Hiding Control Flow

privileges at the client.
We observe an inherent conflict between using client au-

thentication for defending against DoS attacks and client trans-
parency. It appears that an effective defense against DoS at-
tacks must operate at lower layers in the networking stack so
that the firewall can filter a packet before it can consume much
resources at the server. On the other hand, introducing an au-
thentication header at lower layers in the networking stack an-
nuls client transparency, usually by requiring changes to the
client-side network stack and by requiring superuser privileges
at the client.
Our Approach. In this paper we exploit client-side computa-
tions made possible by JavaScripts to embed a weak authenti-
cation code into the TCP/IP layer of the networking stack in
a client transparent manner. Unlike most authentication proto-
cols that operate between peer layers in the networking stack,
our protocol is asymmetric: it operates between the HTTP layer
on the client and the IP layer on the server. HTTP level opera-
tion at the client permits our implementation to be client trans-
parent, while IP level operation at the server allows packets to
be filtered at the server’s firewall.

In particular, we embed a 16-bit authenticator in the port
number field of TCP packets. This is accomplished at the client’s
HTTP layer (web browser) using client transparent techniques
such as JavaScripts [22]. The server filters IP packets at the
firewall based on the authentication code embedded in the des-
tination port field of the packet. If the authentication code were
valid, the server uses network address translation (NAT) port
forwarding to forward the packet to the actual destination port
(say, port 80 for HTTPD). Hence, an unmodified server-side
application can seamlessly operate on our DoS protected web
server. Although a 16-bit authentication code may not provide
strong client authentication, we show that using weak authen-
ticators can significantly alleviate the damage caused by a DoS
attack. Our protocol is designed in a way that permits the web
server to control the rate at which an attacker can guess the au-
thentication code. This ensures that the web server can tolerate

DoS attacks from several thousands of unauthorized malicious
clients.
Our Contributions.
IP-layer Filtering. We embed a 16-bit authentication code in
the destination port field of a TCP packet. Hence, a firewall at
the edge of the server’s network can filter unauthenticated IP
packets before they enter the network. Filtering packets at the
firewall saves a lot of computing, networking, memory and disk
resources which would otherwise been expended on processing
the packet as it traverses up the server’s networking stack.
Client Transparency. Our proposed solution is client transpar-
ent, that is, a human being or an automated client-side script
can browse a DoS protected website in the same way it browsed
an unprotected website. Our DoS protection mechanism does
not require any changes to the client-side software or require
superuser privileges at the client. All instrumentation required
for implementing our proposal can be incorporated on the server
side, thereby making our proposal easily deployable.
Application Server Transparency. Our proposed solution is
transparent to TCP and higher layers at the web server. Our
instrumentation only modifies the IP layer at the firewall to in-
corporate the authentication check on the destination port field.
This permits the web server to layer password and login or
digital signatures based authentication protocols atop of our
mechanism to achieve strong authentication and resilience to
DoS attacks. The applications hosted by the web server can be
oblivious to our DoS protection mechanism.
Security Analysis. Using weak authenticators makes it hard
but not infeasible for an adversary to guess an authentication
code. We present a qualitative analysis of our proposal and
present several enhancements to improve its resilience against
DoS attacks. Our enhancements largely limit the rate at which
the adversary can guess a valid authentication code, thereby
making the web server resilient to a DoS attack from several
thousands of malicious clients.
Implementation. We describe a detailed implementation of our



proposed solution on the Linux kernel and a concrete evalua-
tion using two applications: bandwidth intensive Apache HTTPD
benchmark [3] and database intensive TPCW benchmark [31]
(running on Apache Tomcat [2] and IBM DB2 [17]). Our ex-
periments show that our proposed solution incurs a low perfor-
mance overhead and is resilient to DoS attacks.

The remaining sections of this paper are organized as fol-
lows. We present our threat model in Section 2 followed by
a detailed description of our proposed solution along with a
client transparent implementation of our proposal on the Linux
kernel in Sections 3 and 4. We describe a detailed evalua-
tion (including performance overhead and resilience to DoS at-
tacks) of our technique in Section 5. We discuss related work
in Section 6 and finally conclude in Section 7.

2 Threat Model
In this section, we present a detailed threat model on the web
server and the clients. We assume that the web server(s) is hon-
est. All web pages served by a web server are assumed to be
valid and correct. However, one could build a feedback mecha-
nism wherein the clients rate the service providers periodically
[36]. Over a period of time, clients would access only high
quality service providers and the low quality service providers
would eventually run out of business.

We assume that the clients may be dishonest. A dishonest
client could reveal its authorization information to other unau-
thorized clients. We assume that the adversary controls a set
of IP addresses. If an IP address is controlled by an adversary,
then the adversary can receive packets sent to that address. On
the other hand, if an IP address is not controlled by an adver-
sary, then the adversary can neither observe nor modify pack-
ets sent to that address. Nonetheless, the adversary can always
spoof the source IP address on a packet with any IP address
that is not essentially controlled by the adversary. We assume a
bounded strength adversary model. We assume that the adver-
sary has a large but bounded amount of resources at its disposal
and thus cannot inject arbitrarily large numbers of packets into
the IP network. We assume that the adversary can coordinate
activities perfectly to take maximum advantage of its resources;
for example, all the compromised zombie computers appearing
like a single large computer to the system.

Finally, we do not consider application layer DoS attacks
in this paper. For instance an application layer DoS attack
may exploit a bug in the application running on the web server
to launch DoS attacks. In this paper, we focus on DoS and
DDoS attacks that aim at depleting computing and networking
resources available at the web server.

3 Port Hiding
3.1 Overview
Figure 1 shows a high level architecture of our proposed so-
lution. We achieve resilience to DoS attacks using admission
control. Admission control primarily limits the number of con-
current clients accessing the web server. We implement admis-

sion control using two components: challenge server and the
server firewall (see Figure 1). The challenge server limits the
number of active port keys issued to clients. A client can effi-
ciently generate a correct authentication code only if it knows
its port key. The client-side browser then embeds the authen-
tication code in all TCP packets’ destination port field using
JavaScript.

We use the server-side firewall to filter IP packets from un-
admitted clients. The packet filter at the server drops all non-
TCP traffic. Further, it drops all TCP packets that do not have
the correct destination port number. Hence, most of the pack-
ets sent by clients that do not know their port key would be
dropped by the firewall since the authentication check on the
packet’s destination port number fails. Filtering packets at the
firewall significantly reduces the amount of processing, mem-
ory, network, and disk resources expended on it. Processing
power is saved because the packet does not have to traverse
the server’s networking stack; additionally, sending an illegal
packet to the application layer involves an expensive kernel-to-
user context switch (typically, the application runs as a regular
user). Memory is saved because the dropped packet does not
have to be allocated any space in the memory. Further, if the
packet were a TCP ACK packet from an inauthentic client then
the web server neither opens a TCP connection nor allocates
TCBs. If the incoming packet is from an inauthentic client,
network bandwidth is saved because the web server neither re-
ceives nor responds to the packet. Finally, by not storing illegal
packets in the main memory, the web server may not have to
swap pages in/out of the main memory and the hard disk.

A client browsing a DoS protected website has to be capa-
ble of: (i) interacting with the challenge server, and (ii) em-
bedding an authentication code in the TCP packet’s destination
port number field. We achieve both these functionalities in a
client transparent manner using JavaScripts at the HTTP layer
(web browser). Although we operate at the HTTP layer on
the client side, our protocol allows IP layer packet filtering on
the server-side firewall. All our instrumentation is done at the
server side thereby making the deployment very easy. The in-
strumentation at the server side includes the challenge server
and the firewall.
Challenge Server. The challenge server is used to bootstrap
our system by delivering the port keys to admitted clients. A
port key is used by a client to compute the authentication code
that would be embedded in the destination port number field of
the TCP packets. Note that the challenge server itself cannot be
protected against DoS attackers using port hiding. Hence, we
use a cryptographic challenge [32, 29] based defense mecha-
nism to protect the challenge server. We make the challenge
server client transparent by providing a JavaScript to the client
that is capable of solving the cryptographic challenge. When
the client solves a cryptographic challenge correctly and if the
system is capable of handling more clients, then the challenge
server would provide the client with a port key. We ensure that
solving a cryptographic challenge is several orders of magni-
tude costlier than the cost of generating the same.
Server Firewall. The server-side firewall is modified to per-



Figure 4: Challenge Server Control Flow

notation description default value
N authentication code size in bits 16 bits
nb time interval between change in authentication code is 2nb seconds 6
G number of good clients 100
A number of bad clients 104

r number of ACK packets per second 1

Table 1: Notation
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Figure 5: DoS Attack on HTTPD

form two operations on incoming TCP/IP packets: (i) filter
packets based on the target port number, and (ii) use probabilis-
tic fair queuing [28] to limit the rate at which packets are sent
by a client. The firewall is additionally instrumented to per-
form port forwarding: the firewall modifies the destination port
number on legitimate incoming packets to the application’s real
port number. Hence, the application layer on the server side can
be agnostic to the underlying DoS protection mechanism.

In Section 3.2 we describe a detailed design of our port hid-
ing architecture. We present a client transparent implementa-
tion for port hiding in Section 4 and the challenge server. We
enhance our technique to handle client-side proxies in Section
6.1. We present a detailed qualitative analysis and several re-
finements on our proposal in Section 3.3.

3.2 Basic Design
In this section, we present a detailed design for port hiding.
Figure 2 shows our architecture for port hiding and Figure 3
shows the operational control flow for port hiding.

The actual destination port (dest port) is transformed to an
authenticated port (hide port) using a keyed pseudo-random
function (PRF) H of the server IP address (SIP ), and current
time (t) (t is measured as the number of seconds that have
elapsed since 1st Jan 1970 GMT) using the port key K as:
hide port = dest port ⊕ HK(SIP, tnb). To account for loose
time synchronization between the client and the server, we use
tnb = t >> nb (instead of t); this allows a maximum clock
drift of 2nb seconds. We describe our techniques to handle ini-
tial clock skew and clock drifts between the client and server
in Section 4.

Observe that the authentication code (and thus hide port)
changes every tnb seconds. Hence, any adversary attempting
to guess the authentication code has tnb seconds to do so. At
the end of this time interval, the authentication code changes.
Even if an adversary guesses the authentication code for one

time period it has no useful information about the authentica-
tion code for its next period. We further make the authentica-
tion code non-transferable by ensuring that no two clients get
the same port key. We construct a client specific port key as K

= HSK(t)(CIP ), where the key K is derived from the client’s
IP-address (CIP ) using a PRF H and a time varying server
key SK(t). The time varying key SK(t) is derived from the
server’s master key MK as SK(t) = HMK( t

T
), where T is the

time period for which a port key is valid. The master key MK

is maintained a secret by the web server. The admitted clients
who possess the key K can send packets to the appropriate
destination TCP port. Note that if hide port were incorrectly
computed, then the reconstructed dest port′ = hide port ⊕

HK(SIP, tnb) at the server would be some random port num-
ber between (0, 216

− 1). Hence, one can filter out illegitimate
packets using standard firewall rules based on the reconstructed
destination port number dest port′ (say using IP-Tables [1]).

Note that port hiding only prevents unadmitted clients from
accessing the service. However, an admitted client may attempt
to use a disproportionate amount of resources at the server.
We use fair queuing [28] techniques to ensure that an admitted
client would not be able to consume disproportionate amount
of resources at the server. We add a fair queuing filter imme-
diately above the port hiding filter, that is, all packets com-
ing to this filter had the correct port number on it. Fair queu-
ing ensures that as long as the client’s packet arrival rate is
smaller than the permissible or the fair packet rate, the prob-
ability of dropping the client’s packet is zero. Hence, only
packets from clients who attempt to use more than their fair
share are dropped. It is particularly important not to drop traf-
fic from honest clients, because honest clients use TCP and
dropped packets may cause TCP to decrease its window size
and consequently affect its throughput. On the other hand, an
adversary may be masquerading TCP packets (say, using raw
sockets); hence, a dropped packet would not affect an adver-



workload no DoS port hiding IPSec
protection

Mix 1 (WIPs) 4.68 4.64 (0.80%) 4.63 (1.0%)
Mix 2 (WIPs) 12.43 12.41 (0.16%) 12.41 (0.18%)
Mix 3 (WIPs) 10.04 10.01 (0.30%) 10.00 (0.37%)

HTTPD (WPPs) 128.00 125.44 (2.06%) 125.40 (2.05%)

Table 2: Port Hiding: Overhead

nb HTTP (WPPs) Mix 1 (WIPs) Mix 2 (WIPs) Mix 3 (WIPs)
0 94.4 (26.32%) 4.60 (1.80%) 12.33 (0.80%) 9.92 (1.20%)
1 112.32 (12.35%) 4.62 (1.30%) 12.37 (0.48%) 9.96 (0.76%)
2 121.28 (5.37%) 4.63 (1.00%) 12.40 (0.27%) 9.99 (0.52%)
3 125.44 (2.06%) 4.64 (0.80%) 12.41 (0.16%) 10.01 (0.30%)
∞ 128.00 (0%) 4.68 (0%) 12.43 (0%) 10.04 (0%)

Table 3: Port Hiding: Varying nb

sary as much it affects an honest client.

3.3 Analysis and Enhancements
In this section, we present a qualitative analysis of our basic
port hiding design. We then refine our basic design based on
this qualitative analysis to arrive at our final design.
Attacking Weak Authenticators. Since the size of our au-
thentication code is limited to N = 16 bits, a malicious client
may be able to discover the destination port corresponding to
its IP address with non-trivial probability. Assuming an ideal
pseudo-random function (PRF) H , all possible N -bit integers
appear to be a candidate hide port for a malicious client. For
any non-interactive adversarial algorithm, it is computationally
infeasible to guess a correct hide port with probability greater
than 2−N .

Hence, a malicious client is forced to use an interactive ad-
versarial algorithm to guess the value of hide port. The ma-
licious client may choose a random N -bit integer rand port

as the destination port number. The client can construct a TCP
packet with destination port rand port and send the packet to
the web server. If the client has some means of knowing that
the packet is accepted by the filter, then the client has a valid
hide port = rand port. One should note that even if a mali-
cious client successfully guesses the value of hide port, that
value of hide port is valid only for the current time epoch.
At the end of the time epoch, the malicious client has to try
afresh to guess the new value of hide port. Also observe that
using the valid hide port value for one epoch does not give
any advantage to a malicious client that attempts to guess the
hide port value for the next epoch.
A Practical Attack. Assuming that the client cannot directly
observe the server, the only way for the client to know whether
or not the packet was accepted by the firewall is to hope for
the web server to respond to its packet. Sending a random
TCP packet does not help since the web server’s TCP layer
would drop the packet in the absence of an active connection.
Hence, the malicious client has to send TCP SYN packets with
its guess for hide port. If the web server responds with a TCP
SYN-ACK packet then the client has a valid hide port.
Port Hiding Refinement I. Note that since all N -bit integers
appear equally likely to the valid hide port, the malicious client
does not have any intelligent strategy to enumerate the port
number space, other than choosing some random enumeration.
Clearly, a randomly chosen hide port has a 1 in 2N chance in
succeeding thereby reducing the adversarial strength by a huge
order of magnitude. Cryptographically, a probability of one in
65,536 (N = 16) is not considered trivially small; however, our
techniques can control the rate at which an adversary can break
into our system. Observe that the only way a malicious client
can possibly infer a valid hide port is by probing the server

with multiple SYN packets and hoping to receive a SYN-ACK
packet from the web server. Now the server could flag a client
malicious if it received more than a threshold r number of SYN
packets per unit time with an incorrect destination port from the
client. Note that one can use our fair queuing filter to rate limit
the number of SYN packets per client. This ensures that an
adversary has limited to r guesses for hide port per second.
Hence, the total number of guesses in 2nb seconds is 2nb

∗ r.
Therefore, the probability that a malicious client could guess
its authentication code is min(1, 2nb

∗r

2N . Clearly, using a short
time interval between changes to authentication code (nb), a
smaller permissible rate for SYN packets (r), and a larger au-
thentication code (N ) lowers the probability that a malicious
client guesses its authentication code.
Attack on Refinement I. However, the technique described
above suffers from a drawback. Let us suppose that a mali-
cious client knew the IP address of some legitimate client C.
The malicious client could flood the web server with more than
r SYN packets per unit time (with randomly chosen destination
port numbers) with the packet’s source IP address spoofed as
CIP , where CIP is the IP address of client C. Now, the fire-
wall would flag the client with IP address CIP as malicious.
Hence, all packets sent from the legitimate client C in the fu-
ture could be dropped by the firewall.
Port Hiding Refinement II. One can circumvent the prob-
lem described above using SYN cookies [5] as follows. The
web server now responds to all SYN packets (irrespective of
whether or not they match the destination port number) with
a SYN-ACK packet. The web server encodes a cryptographi-
cally verifiable cookie in the TCP sequence number field. When
the client sends a TCP ACK packet, the server verifies the
cookie embedded in the TCP sequence number field before
opening a TCP connection to the client. In addition, the fire-
wall checks the destination port number for all packets except
the TCP SYN packet. If a malicious client were to spoof its
source IP address in the TCP SYN packet then it would not be
able to send a TCP ACK packet with the matching cookie (se-
quence number) if the IP address CIP is not controlled by the
adversary. Recall that our threat model assumes that an adver-
sary would not be able to observe or corrupt any packets sent
to an IP address that is not controlled by the adversary. Hence,
using SYN cookies eliminates all ACK packets that contain a
spoofed source address that is not controlled by the adversary.
Now the web server instead of limiting the number of SYN
packets per unit time would limit the number of ACK packets
per unit time to r. Clearly, the modified technique ensures that
an adversary cannot coerce the firewall into dropping packets
sent from a legitimate client C.

The rate parameter r cannot be set arbitrarily small in or-
der to accommodate packet losses on the IP network. Typical



time out for retransmitting a SYN and ACK packet is about
3000ms. Setting r = 1

3 ACK packets per second would ensure
that a retransmitted packet from a legitimate client would not
be dropped by our DoS filter. In our implementation we use a
more conservative setting r = 1.

4 Client Transparent Implementation
In this section, we present a sketch of our implementation of
port hiding. Our implementation operates on both the client
and the server. The client-side implementation uses common
functionality built into most web browsers and thus does not
require any additional software installation. The server-side
implementation consists of a loadable kernel module that mod-
ifies the IP layer packet processing in the Linux kernel.
Client Side. Port hiding on the client side is implemented en-
tirely using standard JavaScript support available in standard
web browsers and does not require any changes to the underly-
ing kernel. In fact, it appears that the destination port number is
the only field in the underlying TCP packet that can be directly
manipulated using the web browser. We use simple JavaScripts
to redirect a request to protocol://domain:hide port/
path name instead of protocol://domain/path name (usu-
ally port numbers are implicit given the protocol: for example,
HTTP uses port 80). The port key is made available to the
JavaScript by storing it as a standard HTTP cookie on the client
browser. We compute hide port from dest port on the client
side using a JavaScript method for MAC (message authentica-
tion code) computation. Later in this section, we present tech-
niques to handle the initial clock skew and clock drifts between
the client and server. Using JavaScripts makes this approach in-
dependent of the underlying OS; also, JavaScripts are available
as a part of most web browsers (Microsoft Internet Explorer,
Mozilla FireFox).
Server Side. The server-side implementation of port hiding
works as follows. The port hiding filter at the server operates
at the IP layer in the kernel. The server-side filter uses (Net-
work Address Translation) NAT port forwarding to forward the
request from hide port to the dest port. Note that the client-
side TCP layer believes that it is connected to hide port on the
server. Hence, in all server responses we replace the source
port from dest port to hide port so as to make the client be-
lieve that the packets are emerging from hide port. We also
appropriately change the TCP checksum when we change the
packet’s source or destination port. Note that updating the TCP
checksum does not require us to scan the entire packet. We can
compute the new checksum using the old checksum, dest port

and hide port using simple 16-bit integer arithmetic [9]. We
implement these IP-layer filters using NetFilters [1], a frame-
work inside the Linux kernel that enables packet filtering, net-
work address translation and other packet mangling operations.

Additionally, we need every web page served by the server
to include a call to the JavaScript that implements port hiding
at the client side. One option would be to change all static
web pages and the scripts that generate dynamic web pages to
embed calls to the port hiding JavaScript. However, we believe

that such an implementation would not be feasible. We dynam-
ically modify the HTTP response from the web server to insert
calls to JavaScripts using server-side include (SSI [4]). SSI
permits us to efficiently inject small additions (function calls to
port hiding JavaScript) to the actual HTTP response generated
by the web server.
Time Synchronization. We tolerate clock skew and clock drift
between clients and the server as follows. First, when the client
contacts the challenge server to get the port key, we compute
the initial time difference between the client’s clock and the
server’s clock. We include this initial clock skew as a cookie
in the HTTP response that includes the client’s port key. The
client-side JavaScript that updates the authentication code pe-
riodically uses the initial clock skew to synchronize the client’s
local time with that of the server. Assuming that clock drifts
are negligibly small, accounting for the initial clock skew is
sufficient.

One can additionally tolerate small amounts of clock drifts
as follows. The server can update the clock skew cookie each
time it sends a HTTP response to the client. Assuming that
the clock drift between the client and server does not grow sig-
nificantly between two successive HTTP responses from the
client, an authentic client would be able to compute the correct
authentication code. However if the client’s think time between
successive HTTP requests is very large, then it might be possi-
ble that the client’s clock drifts more than the permissible level.
Even in that case, a client sending IP packets with incorrect
authentication headers (destination port number) would be au-
tomatically redirected to the challenge server. On solving the
challenge, the challenge server would update the cookie that
contains the clock skew between the client and the server.

5 Evaluation
In this section, we present three sets of experiments on our
proposal. The first set of experiments studies the performance
overhead due to the port filter and the fair queue filter. The sec-
ond set of experiments studies the effectiveness of port hiding
against DoS attacks. The third set of experiments studies sev-
eral attacks on our port hiding filter. All our experiments have
been performed on a 1.7GHz Intel Pentium 4 processor running
Debian Linux 3.0. We used two types of application servers
in our experiments. The first service is a bandwidth intensive
Apache HTTPD service [3] running on the standard HTTP port
80. The HTTPD server was used to serve 10K randomly gen-
erated static web pages each of size 4 KB. The client-side soft-
ware was a regular web browser from Mozilla FireFox [11]
running on Linux. The web browser was instrumented to pro-
grammatically send requests to the server using JavaScripts
[22]. The client-side load generator measures the number of
web pages downloaded per second (WPPs) as the performance
metric. We have also conducted experiments using Microsoft
Internet Explorer running on Microsoft Windows XP. The re-
sults obtained were qualitatively similar to that obtained using
FireFox on Linux and amply demonstrates the portability of
our approach and its compatibility across multiple platforms.
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The second service is a database intensive web transaction
processing benchmark TPCW 1.0 [31]. We used a Java based
workload generator from PHARM [24]. We modified the work-
load generator to handle HTTP cookies. We used Apache Tom-
cat 5.5 [2] as our web server and IBM DB2 8.1 [17] as the
DBMS. We performed three experiments using TPCW. Each of
these experiments included a 100 second ramp-up time, 1,000
seconds of execution, and 100 seconds of ramp-down time.
There were 144,000 customers, 10,000 items in the database,
30 entity beans (EBs) and the think time was set to zero (to
generate maximum load). The three experiments correspond to
three workload mixes built into the client load generator: the
browsing mix, the shopping mix and the ordering mix. The
TPCW workload generator outputs the number of website in-
teractions per second (WIPs) as the performance metric. In
the following portions of this section, we present three sets
of experiment on port hiding: (i) measuring its operational
overhead, (ii) measuring its resilience to DoS attacks, and (iii)
studying attacks on port hiding filter.

5.1 Performance Overhead
Table 2 shows the throughput with and without port hiding us-
ing nb = 3. Recall from Section 3.2 that 2nb denotes the time
interval between changes to the authentication code. The num-
bers in table 2 are the absolute values and the numbers in brack-
ets show the percentage drop in throughput. The percentage
overhead for TPCW is smaller than for HTTP. TPCW being a
web transactional processing workload incurs lot of comput-
ing and database costs other than simple networking cost. The
average traffic between the client load generator and the web
server was about 400-600 Kbps; while that for a HTTPD server
was about 40-60 Mbps. Table 2 also shows that our approach
incurs comparable overhead to that of IPSec. A key advantage
of our approach over IPSec is that our approach preserves client
transparency.

Table 3 shows the average throughput when we vary nb.
Note that with port hiding we vary the hide port at time pe-
riod of 2nb seconds. The numbers in table 3 are the absolute
value and the number in brackets show the percentage drop in
throughput for different values of nb. We observed that the
drop in throughput due to JavaScripts accounted for less than
12% of the total overhead. The biggest overhead in port hiding
is due to TCP slow-start [7]. Note that each time the hide port

changes the client has to open a new TCP connection. Hence, a
high bandwidth application like HTTPD suffers from a higher

loss in throughput; however, for low bandwidth applications
like TPCW the overhead due to TCP slow start is very small.

5.2 Resilience to DoS Attacks
We perform two sets of experiments to study the effective-
ness of port hiding in defending against DoS attacks. We de-
scribe these experiments below. We have simulated two types
of clients: up to 100 good clients and up to 104 DoS attackers
connected via a 100 Mbps LAN to the server’s firewall. The
web server is isolated from the LAN connecting the clients; all
interactions between the clients and the web server go through
the firewall. All the clients compete for the 100 Mbps band-
width available to the firewall. The good clients were used to
measure the throughput of the web server under a DoS attack.
The intensity of a DoS attack is characterized by the rate at
which attack requests are sent out by the DoS attackers. We
measure the performance of the server under the same DoS at-
tack intensity for various DoS filters. Our experiments were run
till the breakdown point. The breakdown point for a DoS filter
is defined as the attack intensity beyond which the throughput
of the server (as measured by the good client) drops below 10%
of its throughput under no attack. Our experiments show that
the breakdown point for the port hiding filter is comparable to
that of non client-transparent approaches like IPSec. In fact,
we observed that the breakdown for port hiding filters in most
cases equals the request rate that almost exhausts all the net-
work bandwidth available to the server. Under such bandwidth
exhaustion based DoS attacks, the server needs to use network
level DoS protection mechanisms like IP trace back [26, 37]
and ingress filtering [10].

Figure 5 and Figure 6 show the effect of DoS attack by ma-
licious clients on the web server. We measured the throughput
of the web server as we increase the attack traffic rate. We
compare port hiding with other techniques such as IPSec and
SYN-cookie. For SYN cookies we measured the effect of per-
forming both SYN flooding and SYN+ACK flooding attack. In
a SYN flooding attack the attacker floods the server with many
SYN packets. SYN cookies defend the server from SYN flood-
ing attack by embedded authentication information in the TCP
sequence number field. In a SYN+ACK flooding attack, the
attackers flood the server with SYN packets; wait for the SYN-
ACK packet from the server, and respond with an ACK-packet.
Hence, the TCP connection is completed at the server, causing
the server to construct the state for that connection.

Note that IPSec and port hiding are resilient to SYN+ACK
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Figure 11: Application Level Throughput
under DoS Attacks for HTTPD

floods since an ACK packet with an incorrect authentication
code is dropped by the firewall. Observe that the throughput
for HTTPD drops almost linearly with the attack traffic rate
since HTTPD is a bandwidth intensive application. This is be-
cause the incoming attack traffic and the web server response
traffic share the 100 Mbps network bandwidth available to the
web server. On the other hand, for a less bandwidth intensive
application like TPCW, the drop in throughput is very grad-
ual. Observe from the figures that the throughput of the server
does not drop to zero unless the adversary soaks up most of the
network bandwidth available to the web server. Also the break-
down point for TPCW (9.5 MBps) is much higher than that for
HTTPD (7.2 MBps) since TPCW being a database intensive
application can operate at high throughput even when most of
the network bandwidth is soaked up by the adversary.

Observe that the ability of port hiding and IPSec to defend
against DoS attacks is significantly better than SYN cookies.
One should also note that IPSec requires changes to the client-
side kernel and may require superuser privileges for turning
on IPSec and setting up keys at the client. Port hiding on the
other hand neither requires changes to the client-side kernel
nor requires superuser privileges at the client. This experiment
assumes that the adversary uses a randomly chosen authentica-
tion code for each IP packet. We study a clever port discovery
attack wherein the adversary attempts to guess the hide port

for bad clients in the next section.
We have also studied the resilience of our challenge server

against DoS attacks. The challenge server is largely resilient to
TCP layer attacks since we have implemented directly at the IP
layer. The challenge server serves three web pages: the chal-
lenge page, a JavaScript challenge solver, and the solution ver-
ify page directly from the IP layer on the server side. Challenge
generation takes 1µs of computing power and generates a 280
Byte web page that contains the challenge parameters. Chal-
lenge verification takes 1µs of computing power and generates
a 212 Byte web page that sets the port key cookie and the clock
skew cookie and redirects the client to the web server (using
HTTP redirect). The size of the JavaScript to solve the chal-
lenge is about 2 KB. We limit the rate of challenge requests
per client to one challenge per second. We limit the down-
load rate for the JavaScript challenge solver per client to one
in 64 seconds. This ensures that an attacker cannot throttle
the throughput of the challenge server by frequently requesting
the JavaScript challenge solver. Note that since the JavaScript
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TPCW

challenge solver is a static file and can be cached on the client
side for improved performance. Our experiments show the
challenge server with 100 Mbps network bandwidth can serve
about 44K challenges per second, 59K challenge verifications
per second and 6K JavaScript challenge solvers per second.

5.3 Attacks on DoS Filter
As described in Section 3.3, an attack on our DoS filter could
proceed in three steps. First, an unauthorized malicious client
would attempt to guess its hide port. Second, those malicious
clients that could successfully guess their authentication code
could send packets that are accepted by the server-side firewall.
Hence, these malicious clients may consume some low level
OS resources on the server side including TCP buffers and open
TCP connections. This may result in some packets from the le-
gitimate clients being dropped by an overloaded server (at the
fair queuing filter). Third, packet loss rate has different effects
on the application’s overall throughput. For instance, a band-
width intensive application like HTTPD is affected more due to
packet losses (that may result in a TCP window size reduction),
as against a database intensive application like TPCW.

Figures 7 and 8 show the number of malicious clients that
may potentially guess their authentication codes for different
values of nb (time interval between changing authentication
codes), N (size of the authentication code), and r (maximum
permissible rate for ACK packets per client). Note that the de-
fault values of these parameters are specified in Table 1. Even
using a weak 16-bit authentication code, the number of attack-
ers who can guess their authentication code (amongst A = 104

attackers) is very small. This largely restricts the number of
unauthorized malicious clients whose packets pass our DoS fil-
ter.

Figures 9 and 10 show the fraction of legitimate packets



dropped by the fair queuing filter at the firewall for different
values of nb, N and r. If we have 10 good clients and A′ =
10 bad clients have guessed their authentication code, then the
bad clients may potentially use 10

10+10 = 50% of the server’s
low level resources such as TCP buffers and open TCP con-
nections. This may consequentially result in some legitimate
packets being dropped by the firewall of an overloaded server.
Observe that even with several thousand attackers (A = 104)
the fraction of dropped packets is very small.

These dropped packets have different impacts on the appli-
cation level throughput. Figures 11 and 12 show the applica-
tion level throughput for HTTPD and TPCW for different val-
ues of A : G (ratio of the number of attackers to the number
of legitimate clients) and nb. For the HTTPD benchmark the
throughput first increases with nb since changing the authenti-
cation code infrequently reduces the TCP slow start overhead.
However, as nb increases, more attackers may be able to guess
their authentication code. This consequently results in dropped
packets for legitimate clients resulting in potential reduction in
TCP window size (and thus the application level throughput).
Even with several thousands (A = 1.2*104 in A : G = 120)
of attackers, our DoS filter ensures that the throughput of the
legitimate clients for both HTTPD and TPCW (as measured
under the default settings in Table 1) is about 82% and 94%
respectively of its maximum throughput (throughput is maxi-
mum when A = 0).

6 Discussion
6.1 Limitations and Open Issues
Client-Side NAT router and HTTP Proxy. In this paper, we
have so far assumed that one client IP address corresponds to
one client. However, such an assumption may not hold when
several clients are multiplexed behind a network address trans-
lation (NAT) router or a HTTP proxy. In the absence of a DoS
attack there is no impact on the legitimate clients behind a NAT
router or a HTTP proxy. However, a DoS attack from a few ma-
licious clients may result in the blockage of all requests from
the NAT router’s or the HTTP proxy’s IP address.

A closer look at the client-side RFC 1631 for the IP NAT [9]
shows that client-side NAT routers use port address translation
(PAT) to multiplex multiple clients on the same IP address. PAT
works by replacing the client’s private IP address and original
source port number by the NAT router’s public IP address and
a uniquely identifying source port number. We modify the per
client key generation to include the client’s IP address and port
number as: K = HSK(t)(CIP , CPN ), where CIP denotes
the IP address of the proxy and CPN refers to the client’s
translated port number as assigned by the proxy. The client
uses key K to derive hide port from dest port.

However, HTTP proxies do not operate using port address
translation (PAT). One potential solution is to allow requests
only from cooperative HTTP proxies that identify a client using
some pseudo identifier. While such a solution retains client
anonymity from the web server, it requires cooperation from
the HTTP proxies. An efficient proxy transparent solution to

handle DoS attacks is an open problem.
Bandwidth Exhaustion Attack. Our approach to client trans-
parent DoS protection protects server-side resources including
low level OS resources (TCP buffers, number of open TCP
connections) to higher level resources (web server computa-
tion & communication, database) from unauthorized malicious
clients. However, our approach is vulnerable to bandwidth ex-
haustion attacks, wherein an adversary throttles all the incom-
ing network bandwidth to the web site using a SYN flooding
attack. Wang and Reiter [33] have proposed a technique to
mitigate bandwidth exhaustion attacks using congestion puz-
zles. However, their technique is not client transparent (re-
quires changes to the client-side TCP/IP stack in the kernel).
An efficient client transparent solution to mitigate bandwidth
exhaustion attacks is an open problem.

6.2 Related Work
One way to defend from DoS attacks is to permit only preau-
thorized clients to access the web server. Preauthorization can
be implemented using TLS/SSL [8] or IPSec [20, 38] with an
out of band mechanism to establish a shared key between a
preauthorized client and the web server. Now, any packets
from a non-preauthorized client can be filtered at the firewall.
However, current authorization mechanisms like SSL are im-
plemented on higher layers in the networking stack that permits
an attacker to attack lower layers in the networking stack. Fur-
ther, PKI based authentication mechanisms are computation in-
tensive; this permits an attacker to launch a DoS attack on the
authentication engine at the web server. On the other hand,
IPSec based authentication is very light weight but requires
changes to the client-side kernel and requires superuser priv-
ileges at the client. Our proposal simultaneously satisfies client
transparency, and yet presents a light weight IP level (weak)
authentication mechanism.

Challenge based mechanisms provide an alternative solu-
tion for DoS protection without requiring preauthorization. A
challenge is an elegant way to throttle the intensity of a DoS at-
tack. For example, an image based challenge (Turing test) [19]
may be used to determine whether the client is a real human
being or an automated script. Several cryptographic challenges
[33, 18, 29, 34] may be used to ensure that the client pays for
the service using its computing power. However, most chal-
lenge mechanisms make both the good and the bad clients pay
for the service, thereby reducing the throughput and introduc-
ing inconvenience for the good clients as well. For instance,
an image based challenge does not distinguish between a le-
gitimate automated client script and a DoS attack script. In
comparison, our proposal is client transparent that neither re-
quires changes to the client-side software nor the presence of a
human being on the client side.

Recently, several web applications (including Google Maps
[13] and Google Mail [12]) have adopted the Asynchronous
JavaScript and XML (AJAX) model [35]. The AJAX model
aims at shifting a great deal of computation to the Web surfer’s
computer, so as to improve the Web page’s interactivity, speed,
and usability. The AJAX model heavily relies on JavaScripts to



perform client-side computations. Similar to the AJAX model
we use JavaScripts to perform client-side computations for cal-
culating hide port and solving cryptographic challenges. How-
ever, our paper focuses on using an AJAX like model to build
a client-transparent defense against DoS attacks.

There are several network level DoS protection mechanisms
including IP trace back [26], ingress filtering [10], SYN cook-
ies [5] and stateless TCP server [14] to counter bandwidth ex-
haustion attacks and low level OS resource (number of open
TCP connections) utilization attacks. Yang et al.[37] proposes
a cryptographic capability based packet marking mechanism to
filter out network flows from DoS attackers. These techniques
are complementary to our proposal and could be used in con-
junction with our solution to enhance the resilience of a web
server against DoS attacks.

7 Conclusion
In this paper we have presented a client transparent technique
to defend against DoS attacks. We have presented a practical
implementation of our proposed solution by embedding an au-
thentication code in the 16-bit destination port number field of a
TCP packet. Our proposed solution is client-transparent, appli-
cation server transparent, and yet permits IP packet level filter-
ing at the web server’s firewall. We have also described our im-
plementation using JavaScripts on the client side (HTTP layer)
and a pluggable kernel module on the server-side firewall (IP
layer). We have qualitatively analyzed our proposal and devel-
oped enhancements to achieve higher resilience to DoS attacks
by controlling the rate at which an adversary can break the
authentication code. A trace based evaluation shows that our
technique incurs very low overhead − <12% for a bandwidth
intensive HTTPD benchmark and <1% for a non-bandwidth
intensive TPCW benchmark. Our evaluation also demonstrates
the resilience of our proposal against DoS attacks from 104

malicious clients − < 18% drop in throughput for the HTTPD
benchmark and <6% drop in throughput for the TPCW bench-
mark.
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