
RC23996 (W0607-005) July 5, 2006
Computer Science

IBM Research Report

Automatic Composition of Secure Workflows

Marc Lelarge, Zhen Liu, Anton Riabov
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Automatic Composition of Secure Workflows

Marc Lelarge, Zhen Liu and Anton Riabov

IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, New York, 10598

marc.lelarge@ens.fr, zhenl@us.ibm.com, riabov@us.ibm.com

Abstract

Automatic goal-driven composition of information processing workflows, or workflow planning,

has become an active area of research in recent years. Various workflow planning methods have been

proposed for automatic application development in systems like Web services, stream processing and

grid computing based on compositional architectures. Significant progress has been made on the de-

velopment of composition methods and on the definition of composition rules. The composition rules

can be specified based on the schema, interface and semantics-driven compatibility of processes and

data. More importantly, in many practical applications the workflows must be executed under access

control policies. In this paper we introduce and study the problem of workflow planning under the

constraints of MLS and the Bell-LaPadula model. This problem arises in the context of our implemen-

tation of a large-scale stream processing system that can process a wide variety of different inquiries

submitted by end users. Extending well-known results from AI planning literature, we first show that

under certain simplifying assumptions the workflows satisfying Bell-LaPadula model constraints can

be constructed in linear time. Further we show that the problem becomes NP-complete once the use

of trusted downgraders for data declassification is allowed. Next, we identify a number of special con-

ditions under which the workflows can still be constructed in polynomial time, even when the use of

downgraders is allowed. Finally, we analyze the impact of Chinese Wall constraints on the complex-

ity of the composition problem, and describe an efficient algorithm for composing workflows under

these constraints. The proposed approach can be used with any lattice-based access control policies,

including Biba integrity model.

1 Introduction

Automatic composition of information processing workflows, or workflow planning, has become an active

area of research in recent years. Growing need of reliable and efficeint application development together

with the progress in modular software design and reusable software component frameworks have fueled

the interest of researchers in this area. Automatic workflow planning tools can give end users the power to

interconnect the components and create new processing workflows for their tasks on demand, based solely

on the specification of requirements. Workflow planning systems such as Pegasus [GDB+04] and Sekitei

[KIK03] can ensure that the workflows use available resources as efficiently as possible. Furthermore,

the systems that implement automatic workflow planning are more resilient than those that rely on manual

composition: the automatic planning systems can easily adapt to changes by replanning existing workflows

under the changed conditions.

The literature on workflow planning is extensive and spans diverse application areas where com-

positional architectures are used, including Web services [DGAV04, KS03, PTB05], grid computing

[BDG+03, GDB+04], and stream processing [RL05]. CHAMPS project [BKH05] is an example of suc-

cessful practical use of planning techniques for composition of change management workflows.

In previous work on planning, however, the practically important issue of access control constraints

on the automatically constructed workflows has not received enough attention. In various business appli-

cations security policies place restrictions on the information flow. These restrictions naturally constrain

1

the set of valid workflows that can be executed in the system. The workflow planning methods designed

for these environment, in addition to resource, quality, semantic and other constraints, must support access

control constraints imposed by the security policies.

In this paper we focus on access constraints defined by lattice-based access control models [San93].

One example of lattice-based access control is Bell-LaPadula policy [BL76] commonly implemented in

MLS (multi-level secure) systems. MLS systems can process and store information at a variety of different

sensitivity levels without disclosing sensitive information to an unauthorized entity. The MLS model is

based on the following principle: 1) clearance is determined for each user; 2) information is marked with

a sensitivity label; and 3) access control decisions are made based upon the clearance of the user and

the sensitivity of the information. Bell-LaPadula policy requires that no high level information should be

allowed to pass to lower level users/processes and that lower level information should be available to higher

level users/processes [BL76]. The latter restriction is often considered too rigid, and can be relaxed. In

that case the use of trusted components called downgraders are allowed for declassification of data objects.

We discuss the downgraders and associated planning complexity issues in Section 3.4.

The implementation of automatic workflow planning techniques in MLS or other systems with access

controls can result in significant benefits. These techniques are used in many fields to improve efficiency,

ease of use and reduce the time of reaction to changes. In addition to these benefits, in systems where

the use of downgraders is possible and allowed by policy, workflow planning has an important additional

advantage. Without automatic planning, the users with limited access rights would not be able to construct

workflows that include downgraders, since these users do not have access to the components that precede

the downgraders in the workflow. The workflow planner, however, can be implemented as a trusted com-

ponent, and can construct workflows that include any number of sensitive components and sources, as long

as the output of the workflow is accessible for the users who initiated the planning request. In this case the

users may not be allowed to see the complete structure of the created workflow, but the workflow can still

be automatically executed and deliver the results to the users in full compliance with security policy.

1.1 System Architecture Assumptions

Our work on automatic planning is carried out in the framework of a new large-scale distributed stream

processing system, that we refer to as System S, which allows the automatic deployment of automatically

built stream processing plans in the distributed system. In order to describe the role of planning in MLS

access control more generally, we will now outline a general system architecture within which our ap-

proach can be applied. Our target system consists of multiple machines connected to a network. Each of

these machines can host one or more software components. The functionality of the components is not

restricted in any way, and can range from database management to computation; however, the components

must expose and describe all input and output data interfaces in a format that is recognized by a common

compositional framework.

The compositional framework provides all functionality necessary to establish links between the input

and output ports of components. When an output port of one component is linked to an input port of

another, all data produced at the output port of the first component will arrive at the input port of the

second component. One output port may be linked to multiple input ports, and in that case each input port

will receive a copy of the data sent via the output port. The communication can take place both between

the components running on the same machine, as well as on different machines. Components can also be

linked to external sources or send data to external recipients.

To remain consistent with the existing literature on the subject, we will refer to the composition of

interlinked components as workflow, or composite application. The procedure of workflow composition is

commonly referred to as planning.

In the context of this system, the Bell-LaPadula model with downgraders require the assignment read

and write labels to each of the components. Access control policy states that the read label of the com-

ponent should be higher or equal to the label of each incoming stream; similarly, the label of each output

2

stream should be the same or higher than the write label. The write labels are permitted to be lower than

the read labels only for the trusted components, i.e. downgraders.

In our architecture we make the distinction between access control in run time and during planning.

The workflows can be composed of already deployed components, or using abstract component descriptors

with subsequent instantiation and deployment to the machines. However, in both of these cases run-time

information assurance infrastructure, including secure communication channels, secure operating systems,

prevention of covert channels, etc., will be necessary to prevent unauthorized access. We will assume that

such an infrastructure is in place, and focus our attention on the assignment of the labels to streams and

components and on access policy compliance verification during workflow planning.

1.2 Contribution and Paper Organization

The approaches proposed for automatic workflow composition, including [BDG+03, DGAV04, GDB+04,

KIK03, KS03], use the techniques developed in the area of AI planning. Planning literature describes

methods for the composition of series of operations that transform the world of the problem domain from

the initial state to the goal state (see survey [RH01]).

In this paper we show that planning techniques can be used to compose workflows that are compli-

ant with MLS security policy constraints. The basic planning framework compliant with Bell-LaPadula

(BLP) model can be extended to perform automatic workflow composition in systems with other lattice-

based models, with trusted downgraders and with Chinese Wall policy. The workflows satisfying the BLP

constraints can be constructed by the planner very efficiently. The number of operations performed by our

algorithm grows linearly in the number of components. And, although the general problem of planning

BLP-compliant workflows with the inclusion of downgraders is NP-complete in the worst case, efficient

solutions can be given if the system configuration and the security policy have certain structural properties.

The structure of the paper is the following: in Section 2, we formally define the workflow planning

problem. In Section 3, we extend the model to include the constraints of the BLP model. In particu-

lar, if trusted downgraders for data declassification are allowed, the problem becomes much harder (NP-

complete). Further in Section 4 we describe several special conditions that enable efficient planning of

secure workflows with downgraders. In Section 5 we show how the constraints of the Chinese Wall policy

can be added to our planning framework, and provide an efficient solution algorithm. Concentrating on

the presentation of the main results, we defer the technical proofs to the Appendices A, B, C and D.

2 Basic Workflow Planning Model

In this section we will formally define the elements of the workflow planning problem studied in this

paper. The expressivity of the proposed model is limited so that only the workflow composition constraints

that are independent of the context can be modeled. This basic model yields a simple solution: as we

show below, a feasible workflow (if one exists) can be constructed in time polynomial in the size of the

problem. Despite the seeming over-simplicity and even impracticality of the model, it captures a large

family of composition constraints arising in practice. More importantly, this model allows us to make a

clear distinction between the class of easily solvable planning problems in the absence of access controls,

and the corresponding class of NP-complete problems under access control constraints.

2.1 Modeling Considerations and Limitations

Before describing our model in detail we will briefly review the previous work on modeling. Many alterna-

tive models have been proposed for this problem in the literature, concentrating on various aspects of this

complex problem. For example, numerical resource constraints were studied in [KIK03]. Furthermore,

to create meaningful workflows in many scenarios that arise in practice it is important to ensure that the

planner can understand the semantics of workflows in the context of the application domain. The efforts

3

in this direction have resulted in a standard called OWL-S [MPM+04] (formerly DAML-S) for semantic

descriptions of the capabilities of web services via ontologies. One of the goals of OWL-S standard is to

provide the support for automatic semantics-based composition of web services. Initial investigation of

planning algorithms and planning models that can take into account the semantic constraints are described,

for example, in [WPS+03] and [AVMM04]. The detailed process models for modeling individual services

in Web Services domain are considered in [PTB05].

In a general model of data flow, the workflows are composed of components which are also referred to

as operators or actions. Each operator can receive input from other operators or from the primal sources,

i.e. from the sources of data that are available before any parts of the workflow are executed. The workflow

composition constraints discussed in the literature can be divided into two mutually exclusive categories:

context-dependent constraints and context-independent constraints. Under the context-independent con-

straints model each operator is associated with 1) the descriptions of the input data that are required for

applying the operator; and 2) the descriptions of the output data that are produced by the operator. The

context-dependent constraints are the restrictions on workflows that are not solely defined by the data com-

patibility between the data and input requirements of an operator. For example, if the description of output

data produced by an operator significantly changes when the operator is applied to different sets of input

data, therefore causing changes in the set of operators that can be applied further, the context-dependent

model must be used. Many numerical constraints, such as resource constraints limiting total resource

usage for a workflow, also fall within the category of context-dependent constraints.

The basic model described below supports only the context-independent constraints. Constraints of

this type are very common in practice, and appear in virtually every workflow planning scenario described

in the literature. Various constraints originating from the requirements on semantic compatibility or format

compatibility between the inputs and the outputs of the components belong to the context-independent cat-

egory. Further in the paper we will use this basic model to study the additional computational complexity

associated with the introduction of security constraints, as well as the methods for reducing that complex-

ity. We note here that security constraints that we will add to this basic model in Section 3 are a form of

context-dependent constraints.

2.2 Formulation of the Basic Workflow Planning Model

To describe the context-independent constraints we will use the concept of data type for expressing the

compatibility between the inputs and the outputs of the operators. In particular, we will assume that all

data flowing through the system are described by a type or by a set of types. We will further assume that

there are a total of n distinct data types used in formulating the problem. In the initial state, before any

operators are included into the workflow (i.e, applied), only those types that are produced by the primal

sources are available. Each operator has a set of types that must be available at the time when the operator

is applied, i.e., the precondition of the operator, and a set of new types that become available after the

operator is applied, i.e., the effect of the operator. The workflow planning problem then is to construct

a sequence (or a partial ordering) of operators, application of which in that order will make available all

types that are included into a given goal set of types.

Throughout the paper we will follow the notation defined below. Let vector x ∈ {0, 1}n be the state

vector, describing the set of currently available types. Each non-zero component, i.e. xj 6= 0, of this vector

corresponds to a currently available type. For any two vectors x and y, the ordering x ≤ y is interpreted

componentwise and is thus equivalent to xj ≤ yj for all 1 ≤ j ≤ n.

Each operator θ ∈ O is described by a pair of the precondition p(θ) ∈ {0, 1}n and the effect a(θ) ∈
{0, 1}n, i.e. θ := 〈p(θ), a(θ)〉, with vector components denoted by pi(θ) and ai(θ). Let m := |O| be the

number of operators. When the operator θ is applied in state x, it causes the transition to state θ(x):

θ(x):=

{

max(x, a(θ)), if x ≥ p(θ);
x, otherwise;

(1)

4

According to the definition of the state transition above, if the precondition of an operator θ is not

satisfied, i.e. if x 6≥ p(θ), the operator can still be applied (with our way of writing). However, applying

such an operator will not change the state.

A plan π is defined as a sequence of operators. If π = (θ1, . . . , θk), we will say that the length of the

plan π is k. The effect of the plan π on state x is expressed by the following composition:

π(x) := θk · θk−1 · · · · · θ1(x),

where we first apply the operator θ1, then θ2 and so on.

Given two plans α = (a1, . . . , ak) and β = (b1, . . . , bl), we denote by π = α ⊙ β the plan obtained

by concatenation of the two plans, namely π = (a1, . . . , ak, b1, . . . , bl). We define the concatenation of

a plan with a set of operators similarly, assuming that the operators in the set are applied in an arbitrary

order. Note that with this notation for all operators θ and plans π, π ⊙ θ(x) = θ · π(x).
Given an initial condition x0 ∈ {0, 1}n and a goal g ∈ {0, 1}n, we will say that the plan π achieves

the goal g with the initial condition x0 if π(x0) ≥ g. We will say that π solves (or is a solution of) the

planning problem. We denote the set of all planning problem solutions by P(x0, g), i.e., π ∈ P(x0, g).
The planning problem described above is equivalent to the propositional STRIPS problem with empty

delete lists. STRIPS is a well-known planning domain model described, for example, in [FHN72]. Next,

we will make several additional assumptions about the data structures that will be used by the planning

algorithm. These assumptions do not significantly change the model, but are helpful in complexity analysis

of algorithms. Figure 1 below shows a graphical representation of an operator.

u1(θ)

P (θ) A(θ)u2(θ)

u3(θ)

v1(θ)

v2(θ)

θ

Figure 1: Operator

We will assume that for all operators the maximum number of nonzeros in the precondition and effect

vectors is bounded. Namely, all operators are stored in a table of size m, where the i-th entry corresponds

to the operator θi and points to two lists of variables: P (θi) := {u | pu(θi) = 1} corresponds to the

operator precondition and A(θi) := {v | av(θi) = 1} corresponds to the operator effect. We assume that

|P (θ)| ≤ C and |A(θ)| ≤ C for all operators θ ∈ O and for some constant C ≥ 1, which in particular is

independent of n and m.

Without loss of generality the following inequality can be assumed to hold in all problem instances:

n ≤ 2mC. (2)

This bound on n is derived from the fact that there are at most 2C nonzeros in the precondition and effect

vectors of each operator, and therefore at most 2C types are listed in operator description. If in some

formulation inequality (2) is violated, the types that are not used in any of the operator descriptions can be

removed without changing the problem, and n can be reduced.

For convenience we introduce the following notation. For any x ∈ {0, 1}n, let

T (x) := {i | xi = 1} ⊆ {1, 2, . . . , n},

be the set of types available in state x, defined by the set of non-zeros in the vector x.

Figure 2 shows a graphical representation of a plan. The black dots on the left side represent the data

types available in the initial state, T (x0), and the black boxes on the right side represent the goal set of data

types, T (g). The links between the operator rectangles corresponds to the types required (on the left of the

5

θ1

θ2

θ3

θ4

θ5

T (x0)
T (g)

Figure 2: Plan π = (θ1, θ2, θ3, θ4, θ5) ∈ P(x0, g).

operator) and produced (on the right) by the operator. The figure shows that the plan π = (θ1, θ2, θ3, θ4, θ5)
is in P(x0, g). Note that the plan (θ4, θ1, θ2, θ3, θ5) is also a feasible solution, and therefore is in P(x0, g).

It is known that STRIPS planning problem without deletion can be solved in polynomial time [Byl94].

In fact, planners can solve this problem in time linear in n and m. The following proposition states this

result in our framework and describes a basic linear time planning algorithm.

Proposition 1 Given a set of m operators satisfying previous conditions, for any initial condition x0 and

a goal g, in O(m) operations an element of P(x0, g) can be found if P(x0, g) 6= ∅. If such an element is

not found by this procedure, then necessarily P(x0, g) = ∅.

Below we define the algorithm FAST GREEDY that finds a solution in linear time, or proves that

no solutions exist. While similar algorithms have been designed for STRIPS planners before, we describe

this particular implementation because it will be useful in future analysis of more complex formulations.

We include the complete complexity analysis of the algorithm in Appendix A. In this appendix we also

identify the sufficient conditions on the operators for this proposition (see Lemma 1 in the Appendix).

These conditions, in addition to being of interest in themselves, will simplify the analysis of the planning

problem with security constraints discussed in the next section.

FAST GREEDY(x) :

1 π := ∅;

2 W := T (x); D := 0;

3 while W 6= ∅ do

4 take (and delete) i from W ;

5 D := D + ei;

6 for each operator θ ∈ O such that pi(θ) = 1 do

7 pi(θ) := 0;

8 if p(θ) = 0 then do

W := W ∪ {i, ai(θ) − Di = 1};

π := π ⊙ θ; od

9 od

10 od

11 Return π;

Above, for all 1 ≤ i ≤ n, ei ∈ {0, 1}n is an i-th unit vector, defined as ei
j = 0 for j 6= i and ei

i = 1.

In what follows we will denote FG(x0) = πFG(x0) where πFG is the plan returned by the algo-

rithm with initial condition x0, πFG = FAST GREEDY(x0). The set of planning problem solutions

P(x0, g) is not empty if and only if FG(x0) ≥ g and in this case, FAST GREEDY(x0) is an element

of this set. As shown by Proposition 1, solving the basic planning problem is easy, thanks to the mono-

tonicity property: as long as possible we can produce new types and stop when all operators have been

6

applied. Note that the problem of finding an optimal plan (i.e. a plan with minimal length) in P(x0, g) is a

much harder task. It has been shown that it is an NP-hard problem (see [Byl94]). We will not deal with this

optimality criterium here since the main purpose of our work is first to show that the introduction of the

security constraints increases the complexity of the basic planning problem and second to give conditions

that enable efficient efficient planning of secure workflows.

3 Workflow Planning with Security Constraints

In this section we add the constraints of the Bell-LaPadula security model to our basic workflow planning

model, and describe an efficient algorithm for planning with these constraints. We further show that if the

use of trusted downgraders is allowed, finding a feasible plan under security constraints is an NP-complete

problem. Due to our general approach to modeling the constraints using a label lattice, the results of this

section are applicable not only to the Bell-LaPadula model, but to other lattice-based models, such as the

Biba integrity model [Bib77, San93].

3.1 The Bell-LaPadula Model

First, we briefly review the basics of the Bell-LaPadula (BLP) model [BL76]. BLP is a lattice-based

access control model for information flows [San93, Den76]. A lattice (L,≺) is a partially ordered set with

dominance relation ≺, in which an upper bound and a lower bound are defined for each pair of elements.

Let a ∨ b (resp. a ∧ b) denote the upper (respectively, lower) bound of a and b. Under the BLP model,

all users (i.e., subjects) and all data (i.e., objects) are assigned security labels, which are elements of the

lattice. A particular user is allowed access only to the data with labels that are dominated by the label (i.e.,

access class) of that user.

The following is a classic example:

• Let H be a totally ordered set of sensitivity levels:

H = {Public ≤H Classified ≤H Secret ≤H Top-Secret}.

• Let C be a set of categories: C = {PERSONNEL, ENGINEERING}.

• A security label is a pair ℓ = (h, c) with h ∈ H and c ⊂ C.

The dominance relation ≺ is defined as a componentwise order, i.e.

ℓ1 = (h1, c1) ≺ ℓ2 = (h2, c2) if and only if h1 ≤H h2 and c1 ⊆ c2.

For example, (Pub., {PERS.}) ≺ (Sec., {PERS., ENG.}), but (Pub., {PERS.}) 6≺ (Pub., {ENG.}).
The upper and the lower bound in this example are defined as follows:

ℓ1 ∧ ℓ2 := (min {h1, h2} , c1 ∩ c2)

ℓ1 ∨ ℓ2 := (max {h1, h2} , c1 ∪ c2)

The BLP model defines two rules for making access control decisions based on the object label of the

data and the access class label of the user. The rules, also called properties, are defined as follows:

• The simple security (ss-)property of the BLP model allows read access to the data, only if the access

class label of the user dominates the correspond object label (no read up rule).

• The star (*-)property of the BLP model allows write access to the data only if the corresponding

object label dominates the access class label of the user (no write down rule).

7

3.2 Workflow Planning Model with Bell-LaPadula Security Constraints

Our objective in representing the BLP constraints in the workflow planning model is to define a problem

of composing a workflow such that the output, i.e. the goal types, of the workflow can be accessed by a

specified access class. Data coming into the system from primal sources, i.e. the types of the initial state,

can be labeled with arbitrary object labels, which are provided as input to the planner. In the process of

planning the planner will also assign subject labels to the operators processing the data, as well as object

labels to all produced types, and do that such that the BLP policy is satisfied over the entire workflow.

The objects in the basic workflow planning model correspond to the data types, and therefore we

extend the model by assigning a security label variable to each data type. As a result, the state space is

extended from {0, 1}n in the basic formulation to a subset S of {0, 1}n × Ln, where (L,≺) is a lattice

corresponding to the set of security labels. We will denote the state by a pair (x, ℓ). With each type

i ∈ {1, . . . , n} represented by the zero-one indicator xi, we associate a label ℓi ∈ L. If type i is not

available in state (x, ℓ), i.e. if xi = 0, then the corresponding label ℓi is set to a default value. More

precisely, we define the set S as follows

S = {(x, ℓ) ∈ {0, 1}n × Ln, if xi = 0 then ℓi = ⊤} , (3)

where ⊤ ∈ L is the top element of the lattice, defined as following: for any ℓ ∈ L, the following holds:

ℓ ≺ ⊤, ℓ ∧ ⊤ = ℓ and ℓ ∨ ⊤ = ⊤.

In the extended workflow planning model the operators act on the pair (x, ℓ) and produce another pair

θ(x, ℓ) = (x′, ℓ′). The value of x′ is determined using (1) as before. We will discuss the computation of ℓ′

separately below. We denote θ(x, ℓ) ≡ θ(x) := x′, where we suppress the ℓ in θ(x) to stress that x′ does

not depend on the security label ℓ. Similarly, we denote θ(x, ℓ) := ℓ′.

To enforce the *-property we must ensure that when a new type is made available by the operator θ, the

label corresponding to this new type dominates all labels of the input types. In practice the upper bound

of the input labels is taken and we have formally:

if [xj = 0 and aj(θ) = 1] then
∨

k, pk(θ)=1

ℓk = θ(x, ℓ)j = ℓ′j . (4)

Note that an operator produces several data types, all with the same security label.

Equation (4) corresponds to the case when an operator produces a new type j. But it may happen that

an operator produces a type that is already in x, namely xj = 1 and aj(θ) = 1. In this case, the same type

j can be obtained with two potentially different security labels, namely ℓj (already associated with xj) and

ℓ′j (defined as in equation (4)). If we have ℓj ≺ ℓ′j (or ℓ′j ≺ ℓj), it is clear the lowest label ℓj (resp. ℓ′j)

should be chosen as the new value of the label.

In workflow planning this corresponds to the case where the same information has been produced by

two different methods and has two different security labels. For example one is Top-Secret because the

information has been extracted from a Top-Secret document and the other is Public because the information

appears in an unclassified document. In this case, the information should clearly be labeled Public, since a

user does not need to have a Top-Secret access class to access the same data. We defer further discussion

of related issues to the next section.

However, if we do not assume total order on L (and we refer to Section 4.1 for the special case of total

order), it can happen that none of the two conflicting labels dominates the other. Hence for each type all

encountered labels for which domination cannot be determined must be stored. In the example above, we

add the new label ℓ′j to the list:

if xj = 1 and, aj(θ) = 1 then θ(x, ℓ)j =
{

ℓ′j , ℓj

}

,

where ℓ′j is defined as in equation (4). Consequently, if the data type j is used as a precondition of

another operator at a later stage, one of the possible labels from that list must be chosen to be used in new

8

computation (4). Therefore the plan in this extended model must be described as follows:

π =
(

(θ1, L1 = {ℓi}i∈P (θ1)), (θ2, L2 = {ℓi}i∈P (θ2))
)

, (5)

where each Lk contains the choice of labels that are used as input labels by the operator θk. For example,

suppose that at some stage in the plan the same data type i is produced by operators u and v with two

different labels ℓ and ℓ′ as shown in Figure 3. We must distinguish between the two different plans that can

be constructed with the operator θ taking as input (i, ℓ) or (i, ℓ′). This choice is shown by the double-arrow

in the figure. Using our definition of a plan, the security labels produced by θk are
∨

i∈Lk
ℓi. We denote by

{π(x0, ℓ0)ij} the set of security labels obtained for type j by plan π. To summarize, plan π produces data

types j if π(x0)j = 1 and in this case, the plan may produce different copies of this data with respective

security labels {π(x0, ℓ0)1j
, π(x0, ℓ0)2j

, . . . }.

(i, ℓ)

θ

u

v
(i, ℓ′) i

Figure 3: A conflict between labels ℓ and ℓ′ for the same type i.

To enforce the ss-property, we must ensure that security level of the user ℓUSER dominates the label

of the output data produced by the workflow. The output data corresponds to the data types included in

the goal vector g. As we discussed above, each data type may be produced with different security labels

and it can be disclosed to the user only if among these security labels, at least one is dominated by ℓUSER.

Hence the condition that must be enforced is:

if π(x0)j = gj = 1 then, there exists ij such that π(x0, ℓ0)ij ≺ ℓUSER. (6)

The workflow planning problem is now to find a plan that will achieve the goal g and satisfy equa-

tion (6). In other words, the plan π must produce all data types requested in the goal g, i.e. π ∈ P(x0, g),
and each data type of the result matched to the goal must have a security label less or equal to ℓUSER.

3.3 Planning Algorithm for Workflows with Bell-LaPadula Security Constraints

Despite the seeming complexity of the extended workflow planning model, a minor modification of the

planning algorithm for basic model can provide an efficient solution. Note that given Equation (4), the

maximum security label of all the types within a plan is the maximum of the input type labels used in the

plan. Hence the algorithm to solve the planning problem with security constraints is quite simple. First,

we must select all types in x0 with security labels that are dominated by ℓUSER and remove all other

types. Then starting with this new initial state y0 we must solve the workflow planning problem without

the security constraints. In particular, it is no longer required to take into consideration the sets Lk defined

in (5) for solving the problem, and the algorithm FAST GREEDY described in the previous section

can be used without modification. If FG(y0) ≥ g, then there exists a plan that solves the planning problem

with security constraints and one solution is given by our previous algorithm, FAST GREEDY(y0).
Otherwise there are no solutions satisfying the BLP policy. We now define our algorithm that takes as

inputs the initial state x0, the initial security labels ℓ0, the goal g and the security label ℓUSER:

FAST GREEDY SEC(x0, ℓ0, g, ℓUSER) :

1 y0 := Reduction(x0, ℓ0, ℓUSER);

2 if FG(y0) ≥ g then FAST GREEDY(y0);

else Return(“no plan′′);

9

The Reduction is the data type selection procedure explained above. It is clear that this reduction

from x0 to y0 is linear in n. Using inequality (2) and Proposition 1, we can reach the following conclusion.

Proposition 2 In O(m) operations the FAST GREEDY SEC algorithm can find a solution to the

workflow planning problem with the Bell-LaPadula access constraints, or prove that no solutions exist.

This result implies that the problem with Bell-LaPadula constraints is not more difficult than the orig-

inal workflow planning problem without security constraints. However, the extended workflow planning

model with multiple labels for each data type that we developed earlier will come into play in the much

more complex case where the use of downgraders is allowed.

3.4 Secure Workflows with Downgraders

It has been recognized that the *-property can be overly restrictive in practice. Consequently, a class

of trusted processes has been included in the model [Bel74]. These processes are trusted not to violate

security policy even though they may violate the *-property. More precisely, a trusted process can have

simultaneous read access to the objects of classification ℓ1 and write access to the objects of classification

ℓ2, even if the label ℓ2 is not dominating the label ℓ1 in the lattice.

We define new operators to model the trusted processes that we call downgraders. Let ωi be a map

from L to Ln defined by: for δ ∈ L, we have ωi(δ) = (ωi(δ)1, . . . , ω
i(δ)n) with ωi(δ)j = ⊤ for j 6= i

and ωi(δ)i = δ. Downgrader di ∈ D acts only on the type i ∈ {1, . . . , n} and is defined as follows:

di(x, ℓ) :=

{

(x, ℓ ∧ ωi(δi)) if xi = 1
(x, ℓ) otherwise,

(7)

where δi ∈ L is a constant label associated with the downgrader di. By convention, if there is no down-

grader that can act on the data of type i, we define δi := ⊤. We consider the vector of downgrader labels

δ = (δ1, . . . , δn) ∈ Ln to be a part of the extended planning problem formulation.

Note that in this model there can exist at most one downgrader per type. However this restriction does

not limit the generality of the model: if there are defined several downgraders for the same data type, we

can consider the composition of all downgraders for this type as a single downgrader for the purpose of

our model.

Proposition 3 The workflow planning problem under the constraints of the Bell-LaPadula policy with the

inclusion of trusted processes (downgraders) is NP-complete.

The proof of Proposition 3 by reduction to SAT can be found in Appendix B.

4 Conditions For The Existence of Efficient Solutions

Although in this general formulation the secure workflow planning problem is provably hard, we have

discovered several special cases in which the problem can be solved efficiently. We dedicate this section

to the description of the sufficient conditions for the existence of polynomial time planning algorithms.

4.1 Total Order Condition

We assume in this section that the set of security labels is totally ordered.

For x ∈ {0, 1}n, we define

S(x) :=
{

ℓ ∈ L
∣

∣

∣ such that (x, ℓ) ∈ S
}

⊂ L,

10

the subset of all possible labels associated to x. Recall that S 6= {0, 1}n × Ln since if (x, ℓ) ∈ S and

type i is not available in x, then we have automatically ℓi = ⊤.

Following (4) and the subsequent discussion, we assume that the action of an operator on the security

labels is given now by

∀j ∈ A(θ), ∀ℓ ∈ S(x), θ(x, ℓ)j :=
∨

k, pk(θ)=1

ℓk ∧ ℓj . (8)

Note the presence of ∧ in the right-hand part. By this operation, we take into account the total order

assumption on the security labels, i.e. for each type we keep only the lowest security label. Note that the

total order assumption allows for some simplifications: in particular, a plan is still well described by a

sequence of operators as in Section 2.2 and the generalization given in (5) does not apply here.

In this case the planning problem is significantly simplified since we have the following proposition.

Proposition 4 For any initial state x0 and goal g such that P(x0, g) is not empty, we can find in time

O(m) a plan π∗ such that π∗ ∈ P(x0, g) and ∀π ∈ P(x0, g), π(x0, ℓ) ≻ π∗(x0, ℓ).

Proposition 4 implies that it is possible to find a plan that will achieve our goal g while producing

data types with the lowest possible security label. Hence once we have π∗(x0, ℓ0) ≺ ℓUSER, we have a

solution to the planning problem that satisfies the Bell-LaPadula policy with downgraders. On the other

hand if π∗(x0, ℓ0) ⊀ ℓUSER, then we know that there is no plan that can solve the planning problem while

satisfying the Bell-LaPadula policy. Hence we proved the following proposition:

Proposition 5 Under the assumption that the lattice of security labels is totally ordered, a workflow that

satisfies Bell-LaPadula access policy with downgraders can be composed in linear time O(m).

In Appendix C we show that the following plan satisfies the conditions of the Proposition:

πS−OPTI = FAST GREEDY(x0) ⊙ D ⊙ FAST GREEDY(x0), (9)

Recall that D is the set of downgraders and ⊙ is the concatenation sign.

We would like to make a few comments on this solution. It is sufficient to apply each downgrader

only once, if the position of the downgrader is chosen appropriately. Indeed there are three steps in the

algorithm: 1) produce all the possible types (without taking into account the labels); 2) downgrade all the

possible labels; 3) produce the optimal labels using regular (non-downgrader) operators.

Another important implication of this proposition is that given the initial types x0 and the goal g such

that P(x0, g) is not empty, there exists a plan which achieves the goal g and which will give the minimal

possible label of the final state, and this plan does NOT depend on the initial labels ℓ0. We call this

property secure-optimality or s-optimality for short to distinguish it from the standard optimality of plans

for STRIPS problems. Indeed the s-optimality of this plan is ensured even if the action of the downgraders

is not exactly known a priori. At the planning stage, we do not need to know the values of the δi’s. Once

the plan is deployed, the final value of the labels will depend on these quantities but we know in advance

that this plan is s-optimal.

In the case (8), we can compute the label of each type given by any optimal plan. More precisely, as

noted at the beginning of this section, we have at most one downgrader di for data type i. Then, we have

Proposition 6 Let π∗ be defined as in Proposition 4 and ℓ := π∗(x0, ℓ0). We denote ℓ̃ := ℓ ∧ δ. Then,

ℓi =
∧

θ, p(θ)≤FG(x0)

∨

k, pk(θ)=1

ℓ̃0
k

 ∧ ℓ̃0
i .

11

Proof.

It follows directly from Proposition 4 that for any plan π∗ defined as in Proposition 4, we have

π∗(x0, ℓ0) = πS−OPTI(x
0, ℓ0). Hence the claim follows from the description of πS−OPTI given in (9)

and the use of (8) and the following distributivity property:

∀a, b, c, a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (10)

¤

4.2 Total Order of Downgrader Labels

Above we proved that if all labels given in the formulation of the planning problem, as well as those

obtained after downgrading and combining input labels, are in total order, then a feasible plan can be

found in linear time. The simplest special case of this condition is the case where the entire lattice L of

security labels is totally ordered. In this subsection we show that having only a totally ordered set of the

downgrader labels ∆ = {δi, i ∈ [1, n]} is sufficient to guarantee the existence of an efficient planning

algorithm.

We assume now that the set of downgrader labels is totally ordered. In this case, we can number the

types in such a way that:

δ1 ≻ δ2 ≻ . . . ≻ δn (11)

In the most general scenario condition (11) may not hold, since downgrader labels are not necessarily

comparable. However this assumption is less strict than that of totally ordered lattice, and it yields an

efficient planning algorithm. We prove the following proposition Appendix D.1.

Proposition 7 If the set of downgrader labels is totally ordered, a workflow that satisfies Bell-LaPadula

access policy with downgraders can be composed in linear time O(m).

Similarly to what is shown in Section 4.1, in the case of ordered downgraders the solution can also be

computed independently of input label values, provided that operator input selection in the implementation

of (8) can be performed after the plan is created. However, unlike in Section 4.1 the plan will depend on

the user label ℓUSER. The security-optimal plan can be constructed by applying the algorithm described

in the proof above to the planning problem with all initial labels equal to ⊤.

4.3 Limited Number of Alternative Labels

In many practical cases, the types are not symmetric. For most of the types there exists only one operator

producing the type. If this condition holds for every type in the formulation, the plan described above in

(9) constitutes the optimal solution.

What happens if several operators produce the same type? Suppose that we run an algorithm that

performs an exhaustive search. At some point, it will reach a type that can be produced by at least 2

different operators, and it will have to explore the different possibilities corresponding to these operators.

It reached a branching point and the hardness of the problem comes from the number of these branching

points. In fact, it can be shown that if the set of branching points does not grow faster than log(m), then

the planning problem can be solved in polynomial time.

Let us now formalize now the idea explained above. Let Bj := {θ ∈ O
∣

∣ aj(θ) = 1} be the set of

operators that produce the type j. We assume that for all j, we have |Bj | ≤ K for some fixed constant K.

Let B := {j
∣

∣ |Bj | ≥ 2} be the set of types that are produced by more than one operator.

Proposition 8 Assume that |B| ≤ B(m), then the search cost for the optimal plan is of order O(m2KB(m));
if B(m) = O(log(m)) then this cost is polynomial in m.

12

4.4 Downgrader Label Set of Bounded Size

To start, we state the following proposition, the proof of which is given in Appendix D.2.

Proposition 9 A workflow satisfying Bell-LaPadula access policy with downgraders can be composed in

O
(

|L|2m2
)

operations.

In practice the size of the label set L is exponential in the number of security categories C and is linear

in the number of levels H. When written in these terms, the complexity of the algorithm described in

Proposition 9 is O(22|C||H|2m2). Even if the number of categories remains constant, in practical applica-

tions of MLS the set of categories is typically large.

To avoid the dependence on the size of category set, the complexity bound can be expressed in terms

of the number of different downgrader classes. Within each class all downgrader share the same value

of the downgrader label, and the total number of downgrader classes is equal to the number of distinct

downgrader labels. If there are at least two downgraders in the set of downgraders D that have equal

downgrader labels, the number of classes will be less than the number of downgraders. The proof of the

following proposition is included in the Appendix D.3.

Proposition 10 The number of operations required to compose a workflow satisfying Bell-LaPadula ac-

cess policy with downgraders does not exceed O(22b+1

|H|2m2), where b is the cardinality of the set of

distinct downgrader labels:

b := |∆| = |{δi, i ∈ {1, . . . , n}}|.

We note that in practice the approach described in Proposition 10 can be implemented more efficiently,

storing bits only for the subsets that are selected during transformation of at least one of ℓ0
i . The resulting

size of the bit vectors can be significantly less than 2b, which is a highly conservative bound.

Proposition 10 implies that a polynomial solution exists if the number of distinct downgrader labels is

limited by a constant. This assumption will often hold in practice, since the number of trusted components

in the system tends to be much smaller than the total number of the components due to the high cost of

implementing trusted components. The comparatively high implementation costs of downgraders are due

to very strict procedural requirements imposed on the development and certification process for trusted

components.

5 Workflow Planning with Chinese Wall Constraints

In Section 3 we stated that the workflow planning model we developed is not limited to the Bell-LaPadula

MLS policy, and can be applied with any lattice-based security model. The results presented in this section

can be seen as an example of such application. We develop a model that can simultaneously represent

both the security constraints of the Bell-LaPadula model, and the constraints of so-called Chinese Wall

(CW) policy. This model can be also used for workflow planning under only the CW constraints in the

applications where the Bell-LaPadula access controls are not enforced. We show that the complexity

results derived in previous sections still apply for the extended model under the assumption that the total

number of conflict-of-interest classes of the CW policy is bounded by a constant.

5.1 The Chinese Wall Security Policy

The Chinese Wall security policy is a well known information control policy used in the commercial

applications and described by Brewer and Nash in [BN89]. It is used to specify control over information

when conflicts of interests arise. Information in the computer system is grouped into single objects of

the system. These objects are then grouped into datasets, where every object belongs to a single dataset,

representing all the information about a single company. The datasets are then classified into conflict of

13

interest classes. For example, a conflict-of-interest set may contain all of the datasets of oil-companies that

employ a certain consultancy firm. Employees of the firm can work with many clients, but cannot work

with more than one oil-company without exhibiting a conflict-of-interest.

A user is in violation of the Chinese Wall security policy if she holds information that conflicts with

any other information that she already holds. Under this policy, a user who knows nothing is permitted

access to any dataset. Once she has obtained information related to a particular dataset, A, a Chinese Wall

is built around all datasets that conflict with A. She can still access other information in A and in any other

dataset B which is not in conflict with A. After accessing dataset B, the Chinese Wall will be modified to

include all datasets in conflict with B.

This policy differs greatly from traditional computer security policies as described in Section 3. How-

ever Sandhu has presented in his works [San92], [San93] a Lattice-Based access control model for the

Chinese Wall policy which can be represented within the Bell-LaPadula framework. Following this direc-

tion, we show now that our framework can address the Chinese Wall policy.

We first recall the framework of [San92]. We begin by distinguishing public information from com-

pany information. There are no mandatory controls on reading public information. Reading company

information on the other hand is subjected to mandatory controls. Company information is categorized

into mutually disjoint conflict of interest classes as shown in Figure 4. Each company belongs to exactly

Company information

Conflict-of-interest-class 1 Conflict-of-interest-class k

.

. . .

Company 1.1 Company 1.m1 Company k.1 Company k.mk

Figure 4: Company information in the Chinese Wall policy.

one conflict of interest (COI) class. The Chinese Wall policy requires that a consultant should not be

able to read information for more than one company in any given COI class. The policy for writing

public or company information is derived from its potential consequences resulting in indirect read access

contrary to mandatory read controls. The policy for writing is essentially the same as the Bell-LaPadula

(*-)property with the lattice of labels described below.

Say there are k COI classes: COI1, . . . COIk each with mj companies. So that COIj = {1, 2, . . . , mj},

for j = 1, . . . , k. We define a security label as an n− element vector [i1, i2, . . . , ik] where each ij ∈ COIj

or ij =⊥ for j = 1, . . . k. The symbol ⊥ is read as null. A data labeled [i1, i2, . . . , ik] is interpreted as

(possibly) containing information from company i1 of COI1, company i2 of COI2 and so on. When an

element of the label is ⊥ rather than an integer, the data cannot contain any information from any company

in the corresponding COI class.

The dominance relation among labels is defined as follows: s1 ≺ s2 provided s1 and s2 agree wherever

s1 6=⊥. To be precise, let s(ij) denote the ij−th element of label s. Then s1 ≺ s2 if s1(ij) = s2(ij) or

s1(ij) =⊥, for all j = 1, . . . k.

Public data is labeled [⊥, . . . ,⊥]. Moreover we introduce a special label ⊤ (called Syshigh in [San92])

that dominates all other labels. This label is contrary to the Chinese Wall policy, which we will explain

later on. We define now the upper bound in our lattice. First we say that two labels s1 and s2 are compatible

if wherever they disagree at least one of them is ⊥, that is, s1(ij) = s2(ij) or s1(ij) =⊥ or s2(ij) =⊥
for all j = 1, . . . , k. Incompatible labels cannot be legitimately combined under the Chinese Wall policy.

This is expressed by the requirement that if s1 is incompatible with s2, then s1 ∨ s2 = ⊤. For compatible

labels, we have

(s1 ∨ s2)(ik) = if s1(ik) 6=⊥ then s1(ik) else s2(ik).

For example [1,⊥, 2] ∨ [1, 2,⊥] = [1, 2, 2]. Finally, the upper bound of any label with ⊤ is ⊤.

14

Given this lattice structure, Sandhu introduces the concepts of users, principals and subjects in order

to describe how the Chinese Wall policy can be enforced. Each human being known to the system is

recognized as an unique user. Every time a user logs into the system it is as a particular principal. For

example, there is an unique user John, cleared to top-secret, independent of the level at which John logs in.

John can log in at every level dominated by top-secret. At each of these levels there is a separate principal

associated with John. A subject is a process in the system, i.e. a program in execution. Each subject is

associated with a single principal on behalf of whom the subject executes. In general a principal may have

many subjects associated with it concurrently running in the system. We refer to [San92] for more details

on these concepts.

To describe how the Chinese Wall policy is enforced, we follow the example presented in [San92] in

the context of the specific lattice of Figure 5, which contains two COI classes with two companies in each

class.

Objects labeled ⊤ violate the Chinese Wall policy by combining information from more than one

company in the same COI class. These objects are inaccessible in the system, since no user will be

cleared to ⊤. Now let us consider the labels on users, principals and subjects. We treat the label of a user

as a high-water mark which can float up in the lattice, but not down. A newly enrolled user in the system

is assigned the label [⊥,⊥]. As the user accesses various company information, the user’s label floats up

in the lattice. For example, by accessing information about company 1 in COI class 1 the user’s label is

modified to [1,⊥]. reading information about company 2 in COI class 2 further modifies the user’s label

to [1, 2]. This floating up of a user’s label is allowed, as long as the label does not float up to ⊤. Operations

which would force the user’s label to ⊤ are thereby prohibited.

With each user we associate a set of principals, one at each label dominated by the user’s label. Thus

if Jane as a user has the label [1, 1], she has the following principals associated with her: Jane.[1, 1],
Jane.[1,⊥], Jane.[⊥, 1] and Jane.[⊥,⊥]. Each of these corresponds to the label with which she wishes to

log in on a given session. Each principal has a fixed label which does not change. Every subject created

by that principal inherits that label. All read and write operations in the system are carried out by subjects.

These subjects are constrained by the (ss-) and (*-)properties of the Bell-LaPadula model. For example,

suppose that Jane logs in as the principal [1,⊥]. All subjects created during that session will inherit the

label [1,⊥]. This will allow theses subjects to read public data labeled [⊥,⊥], to read and write company

objects labeled [1,⊥] and write objects with labels [1, 1], [1, 2] and ⊤.

5.2 Planning Secure Workflows for The Chinese Wall Policy

In our discussion of the planning approach we will use the example lattice shown on Figure 5. However

the solution we develop is general and will be scalable in the sense that all the algorithms will run in a

linear time in m as soon as the number of COI classes and the number of companies in each of these

classes is bounded by a constant C that is independent of m.

The framework of Section 2 is still valid here, but we have now to modify the one of Section 3. First

note that the security label of a user ℓUSER is not fixed anymore. We will assume that the security label of

a new user is [⊥,⊥], and we will update it as needed during planning.

We still consider the state space S defined in (3) where (L,≺) is now the Chinese Wall lattice of Figure

5. The action of an operator is still given by (4) that we recall here:

∀j ∈ A(θ), ∀ℓ ∈ S(x), θ(x, ℓ)j :=
∨

k, pk(θ)=1

ℓk.

Note in particular that if two labels of the input are not compatible, then the output label is ⊤.

For any variable (x, ℓ) ∈ S and any security label s, we define x[s] as follows

xi[s] = if ℓi ≺ s then xi else 0.

For example x[⊥,⊥] corresponds to the data that are present in the state x and is public.

15

⊤

[⊥,⊥]

[1,⊥] [⊥, 1] [2,⊥][⊥, 2]

[2, 1][1, 2][1, 1] [2, 2]

Figure 5: Example of a Chinese Wall lattice (Hasse diagram).

Suppose now that a new user logs into the system and asks for a plan in P(x0, g). We assume that

P(x0, g) 6= ∅, the question addressed here is whether there exists a secure plan or not. We define the

following variables associated to the labels of Figure 5,

x0[⊥,⊥], x0[1,⊥], x0[⊥, 1], x0[⊥, 2] . . .

Note that we have for example x0[1, 2] = x0[1,⊥] ∨ x0[⊥, 2].
If FG(x0[⊥,⊥]) ≥ g, then FAST GREEDY(x0[⊥,⊥]) is a solution that uses only public infor-

mation. Hence this solution satisfies clearly the Chinese Wall policy and it should be given to the user.

Suppose now that FG(x0[⊥,⊥]) ¤ g, this means that the goal cannot be attained with the public infor-

mation of this user.

If FG(x0[1,⊥]) ≥ g, then FAST GREEDY(x0[1,⊥]) is a solution that is valid for the user since

her label is [⊥,⊥]. But her label has to be updated to ℓUSER = [1,⊥]. Note in particular that the data used

by this plan will have the label [⊥,⊥] or [1,⊥], hence the Chinese Wall policy is satisfied once we update

the user’s label. The situation is similar for x0[2,⊥] or x0[⊥, i] with i = 1, 2.

If none of the FAST GREEDY(x0[i, j]) where either i or j is set to ⊥ gives a solution, then we

have to go one step further and test if FG(x0[i, j]) ≥ g where i, j = 1, 2. Suppose that for example

FG(x0[1, 2]) ≥ g, then we can give the corresponding plan to the user and update her security label to

ℓUSER = [1, 2]. In this case, the data used by the plan will have the labels [⊥,⊥], [1,⊥], [⊥, 2], [1, 2].
Hence the Chinese Wall policy is still enforced.

If none of the FAST GREEDY(x0[i, j]) gives a solution, this implies that any plan in P(x0, g)
uses data from two companies within the same COI class. Hence we conclude that there exists no secure

plan.

Now assume that the user already has been assigned a security label ℓUSER 6= [⊥,⊥]. The same

algorithm as above will work but we have now to consider the x0[s] for s compatible with ℓUSER and

s 6= ⊤. For example, if ℓUSER = [1,⊥], then we have to consider:

x0[⊥,⊥], x0[1,⊥], x0[1, 1], x0[1, 2].

16

We can now write our algorithm in a compact way:

CHINESE WALL(x, g, ℓUSER) :

1 if FG(x) ¤ g then Return(“no plan′′);

2 for s compatible with ℓUSER do

3 if FG(x[s]) ≥ g then

Return(FAST GREEDY(x[s]), ℓUSER ∨ s);

od

4 Return(“no secure plan′′);

Since the number of security labels is bounded, thanks to Proposition 1 we have:

Proposition 11 A workflow that satisfies the Chinese Wall policy can be composed in linear time O(m).

Note that the algorithm CHINESE WALL will give a plan that satisfies the Chinese Wall policy

and the updated security label of the user. If this security label is not updated to the value returned by this

algorithm, the Chinese Wall policy will not be enforced at the next query of the user. The exact manner

in which a user’s clearance is allowed to float up is not specified in our model, since there are numerous

alternatives. For example, assume that FG(x[s]) ≥ g and FG(x[s′]) ≥ g for two distinct labels s, s′

compatible with ℓUSER. Then if the algorithm return the plan corresponding to s (resp. s′) then the user’s

clearance has to be updated to ℓUSER ∨ s (resp. to ℓUSER ∨ s′). It seems clear that if s ≺ s′, then the

solution corresponding to s is better in the sense that the user is exposed to less conflicting information. In

particular note that if FG(x[1,⊥]) ≥ g then we have automatically FG(x[1, 1]) ≥ g but we will prefer

the solution associated to [1,⊥] since it leaves the freedom for the user to access any information from

COI 2 in the future. Hence the loop for of step 2 should be done such that the successive value of s are

non-decreasing.

5.3 Extension

In this section, we describe an extension of the Chinese Wall policy for the case when each company has

a security policy based on the Bell-LaPadula model. We call this security policy the CW-BLP policy.

We assume now that there is a category associated to each user. For example any user of the system is

known as a systems analyst (category A) or a security analyst (category B).

The structure of the tree depicted in Figure 4 gives the COI between each company. But now, in

addition to it, each company applies on its own data, its own security policy based on a totally ordered set

of hierarchical levels. For simplicity we will assume that all the companies have the same set of labels (but

the general case can be handled in the same way):

H = {Public ≤H Classified ≤H Secret ≤H Top − Secret}.

For each category, the company allows the corresponding user to be cleared at a certain level. For example

the company i of COIj will clear any user of category A to Top − Secret and any user of category B to

Secret. We will denote it by A[j.i] = Top − Secret and B[j.i] = Secret.

Now each company applies the Bell-LaPadula policy as described in Section 3:

• a user is allowed to read data only if the label of the user dominates the label of the data;

• a user is allowed to write data only if the label of the data dominates the label of the user.

Following what we did in Section 3, data κ has now a security label of the following form:

ℓκ = (ℓκ(L), Λκ) := ([i1, i2, . . . , ik], [λ1, λ2, . . . , λk]),

17

where each ij ∈ COIj or ij =⊥ and each λj ∈ H. We still denote the Chinese Wall lattice by (L,≺)
and Λκ belongs to Hk. We assume moreover that ij =⊥ implies λj = Public. The interpretation of

[i1, i2, . . . , ik] is the same as in Section 5.1. For example the raw input data of company i in COI2 will

have a label of the form

([⊥, i,⊥, . . . ,⊥], [Pub., Secret, Pub., . . . , Pub.]).

In order to model the Bell-LaPadula security inside each company, we use for each operator the same

rules as described in Section 3. First note that the security label of a user is completely determined by

ℓUSER(L) ∈ L (with the same interpretation as in previous section) and her category. We assume that the

action of an operator is still given by Equation (4). Given a state variable (x, ℓ) and a label s ∈ L, we

define now:

(xκ[s], ℓκ[s]) = if ℓκ(L) ≺ s then (xκ, ℓκ)

else (0, (⊤, [Pub.]).

To enforce the Chinese Wall policy, we will ensure as in previous section that each time we search for

a plan, the search is restricted to (x[s], ℓ[s]) for a certain s ∈ L.

Assume for simplicity that the Chinese Wall lattice is the one shown on Figure 5 and there are two

categories A and B. Suppose now that a new user of category A is logging in the system and asking for

a plan in P(x0, g) 6= ∅. As in previous case, if FG(x0[⊥,⊥]) ≥ g, then FAST GREEDY(x0[⊥,⊥])
is a solution that uses only public information and this solution should be given to the user. Suppose now

that FG(x0[⊥,⊥]) ¤ g and FG(x0[1,⊥]) ≥ g. It gives a solution that satisfies the Chinese Wall policy.

However, before presenting this plan to the user, we have to check if the plan uses data that should not be

exposed to the user. Indeed we should check if the algorithm FAST GREEDY SEC(x0[1,⊥], ℓ0[1,⊥
], g, [A[1.1], Pub.]) returns a plan. If it does, we can return this plan to the user and update her security

label to ([1,⊥], [A[1.1], Pub.]). It may happen that we have to go one step further, and in general we have

to follow the algorithm given below:

CW BLP(x, ℓ0, g, ℓUSER(L), C) :

1 if FG(x) ¤ g then Return(“no plan′′);

2 for s compatible with ℓUSER(L) do

π := FAST GREEDY SEC(x[s], ℓ0[s], g, C(s));

3 if π is a plan then

Return(π, ℓUSER(L) ∨ s);

od

4 Return(“no secure plan′′);

The inputs of the algorithm are x the initial sate, g the goal, ℓUSER the current security label of the

user and C her category (i.e. A or B). We used the following notation:

C([i1, i2, . . . , ik]) = [C[1.i1], . . . C[k.ik]],

with the convention that C[j. ⊥] = Public.

Hence, we have thanks to Proposition 2:

Proposition 12 A workflow that satisfies the CW-BLP policy can be composed in linear time O(m).

18

Note that the same kind of remarks as in previous section applies here too. Note further that the concept

of a downgrader in this framework is not clear in general. However, each company may have downgraders

that act only on labels of the following type

([⊥, . . . , i, . . . ,⊥], [Pub., . . . , T op − Secret, . . . , Pub.])

to give the same data but with the following label

([⊥, . . . , i, . . . ,⊥], [Pub., . . . , Secret, . . . , Pub.]).

In this case, one can use the results of Section 4.1 to see that Proposition 12 still holds with that kind of

downgraders.

6 Conclusion

In this paper we have analyzed the computational complexity of problems arising in workflow planning

under security constraints. These results were developed for the automatic building and deployment of

applications in System S, a large scale distributed stream processing system. We have shown that in many

practical scenarios the planning problem can be solved efficiently. Our analysis framework and a set of

basic results can be easily extended for many lattice-based access control policies. In this paper we use the

framework to analyze workflow planning problem under the Bell-LaPadula and the Chinese Wall policies.

We describe an efficient (linear time) algorithm for planning under these constraints. We also show that

if the planning problem becomes much harder (NP-complete) if the use of downgraders is allowed. Nev-

ertheless, under certain assumptions planning can be performed efficiently even with downgraders. We

identify several classes of assumptions, and describe corresponding efficient planning algorithms.

The results we present in this paper show that the use of automatic planning techniques within com-

positional environments with lattice-based access controls constitutes not only an attractive, but also a

practically feasible approach.

In this work we have explored only one dimension of context-dependent constraints on workflows.

This allowed us to identify and describe the classes of security constraints that correspond to different

complexity classes of planning problems. However, in practical systems the security constraints must be

used together with other types of context-dependent constraints, such as semantic or resource constraints.

All these constraints further increase the complexity. For example, adding simple resource utilization

constraints based on an additive resource metric immediately makes the problem NP-hard by reduction to

SET COVER. The work in this area currently focuses, and in the near future will continue to focus, on the

design of efficient planning algorithms that can support a wide range of composition constraints.

Acknowledgements

We thank our colleagues Pankaj Rohatgi and Pau-Chen Cheng for very helpful discussions at the beginning

of this work.

References

[AVMM04] R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor. Constraint driven web service compo-

sition in METEOR-S. In Proceedings of SCC-04, 2004.

[BDG+03] J. Blythe, E. Deelman, Y. Gil, K. Kesselman, A. Agarwal, G. Mehta, and K. Vahi. The role

of planning in grid computing. In Proceedings of ICAPS-03, 2003.

19

[Bel74] D.E. Bell. Secure computer systems: A refinement of the mathematical model. MTR-2547,

Vol. III, MITRE Corp., 1974.

[Bib77] K.J. Biba. Integrity considerations for secure computer systems. MTR-3153, MITRE Corp.,

1977.

[BKH05] A. Brown, A. Keller, and J. Hellerstein. A model of configuration complexity and its appli-

cation to a change management system. In Proceedings IM-05, 2005.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer system: Unified exposition and Multics inter-

pretation. MTR-2997, MITRE Corp., 1976.

[BN89] D. F. C. Brewer and M. J. Nash. The Chinese Wall security policy. Proc. IEEE Symposium

on research in security and privacy, pages 206–214, 1989.

[Byl94] T. Bylander. The computational complexity of propositional STRIPS planning. Artificial

Intelligence, 69(1-2):165–204, 1994.

[CM97] S. A. Cook and D. G. Mitchell. Finding hard instances of the satisfiability problem: a survey.

In Satisfiability problem: theory and applications (Piscataway, NJ, 1996), volume 35 of DI-

MACS Ser. Discrete Math. Theoret. Comput. Sci., pages 1–17. Amer. Math. Soc., Providence,

RI, 1997.

[Den76] D.E. Denning. A lattice model of secure information flow. Communications of the ACM,

19(5):236–243, May 1976.

[DGAV04] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic workflow composition using

Markov decision processes. In Proceedings of ICWS-04, 2004.

[FHN72] R. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized robot plans.

Artificial Intelligence, 3(1-3):251–288, 1972.

[GDB+04] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmurarunkit. Artificial intelligence

and grids: Workflow planning and beyond. IEEE Intelligent Systems, January 2004.

[KIK03] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide-area

networks using AI planning techniques. In Proceedings of IPDPS-03, 2003.

[KS03] J. Koehler and B. Srivastava. Web service composition: Current solutions and open problems.

In Proceedings of ICAPS-03, Workshop on Planning for Web Services, pages 28–35, 2003.

[MPM+04] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Parsia,

T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing semantics to Web

Services: The OWL-S approach. In Proceedings of SWSWPC-04, 2004.

[PTB05] M. Pistore, P. Traverso, and P. Bertoli. Automated composition of web services by planning

in asynchronous domains. In Proceedings of ICAPS-05, 2005.

[RH01] J. Rintanen and J. Hoffmann. An overview of recent algorithms for AI planning. Künstliche

Intelligenz, (2):5–11, May 2001.

[RL05] A. Riabov and Z. Liu. Planning for stream processing systems. In Proceedings of AAAI-05,

2005.

[San92] R. Sandhu. A lattice interpretation of the Chinese Wall policy. Proc. of the 15th NIST-NCSC

National Computer Security Conference, pages 221–235, 1992.

20

[San93] R. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19, 1993.

[WPS+03] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services

composition using SHOP2. In Proceedings of ISWC2003, 2003.

A Proof of Proposition 1

Proposition 1. Given a set of m operators, for any initial condition x0 and a goal g, in O(m) operations

an element of P(x0, g) can be found if P(x0, g) 6= ∅. If such an element is not found by this procedure,

then necessarily P(x0, g) = ∅.

We assume that we have a table of size n such that the i-th entry points to the set of operators that have

i as precondition, namely

Pre(i) = {θ ∈ O | pi(θ) = 1} ⊂ O.

We first show that the algorithm FAST GREEDY runs in linear time. As we store the preconditions

of each operator P (θ) as a list of C variables at most, Step 7 can be performed in O(1) time. The set W

will hold a worklist and all operations on W can be made in O(1) time. Each type enters the worklist

at most once and each iteration of the while loop removes one type from the worklist. Consequently, the

number of iterations of the while loop is at most the number of types and so the total number of executions

of Steps 4-5 is at most O(n). Each operator is examined at most C times in Steps 7-8, hence the total

number of executions of Steps 7-8 is at most O(m) with a careful updating of the sets Pre(i). Adding up

all the costs, we see that the total running time of FAST GREEDY is O(m + n), where m is the number

of operators and n the number of types.

Intuitively the state FG(x0) describes all the types that can be produced from the initial state x0.

Hence we must have that

∀π, π(x0) ≤ πFG(x0) = FG(x0), (12)

which would imply the claim since it implies that FG(x0) ≥ g ⇔ P(x0, g) 6= ∅ and in this case,

πFG ∈ P(x0, g).
Indeed, as it turns out, to prove Proposition 1 only the following basic properties of the operators are

required:

Lemma 1

1. ∀θ ∈ O, θ · θ = θ (idempotency);

2. ∀x, x ≤ θ(x) (non-decreasingness);

3. ∀θ1, θ2, such that x ≥ max(p(θ1), p(θ2)),
θ1 · θ2(x) = θ2 · θ1(x) (local commutativity).

Note that we have not in general commutativity, and that the last property depends on the state of the

system x.

We now prove (12). We denote by π1(= ∅), π2, . . . the successive values of π before the first, second,

... while loops and ui = πi(x
0). Note that we have u1 ≤ u2 ≤ · · · ≤ FG(x0).

Idempotency and local commutativity imply that for all operators θ,

θ(FG(x0)) = θ · πFG(x0) = πFG(x0)

= FG(x0),

21

this is clear on the event ¬{FG(x0) ≥ p(θ)}, where ¬ stands for negation. If FG(x0) ≥ p(θ), then let i

be the minimal j such that uj ≥ p(θ). We have

θ · πFG(x0) = θ · θα1 · · · · · θ · θβ1 · · · · πi−1(x
0)

= θα1 · · · · · θ · θ · θβ1 · · · · πi−1(x
0)

= θα1 · · · · · θ · θβ1 · · · · πi−1(x
0)

= πFG(x0).

Now we have

x0 ≤ πFG(x0)

π(x0) ≤ π · πFG(x0) = πFG(x0),

which is (12).

B Proof of Proposition 3

Proposition 3. The workflow planning problem under the constraints of the Bell-LaPadula policy with the

inclusion of trusted processes (downgraders) is NP-complete.

Proof. We will show that given an instance of NP-complete SATISFIABILITY problem (SAT, see

[CM97] for details) we can construct an instance of workflow planning problem with downgraders, the

optimal solution to which can be used to construct a solution for SAT. All transformations involve polyno-

mially many steps and size of the planning problem is polynomial in the size of the SAT instance.

Given a set of Boolean variables {x1, x2, . . . , xn}, satisfiability problem is to find values for these

variables that makes true a given Boolean formula

F (x) :=

q
∧

i=1

mi
∨

j=1

xI(i,j)

 ∨

pi
∨

j=1

xJ(i,j)

,

written in conjunctive normal form. We will denote

I(i) :=

mi
⋃

j=1

I(i, j), J(i) =

pi
⋃

j=1

J(i, j).

We define the state space S as in (3) such that S ⊂ {0, 1}3n+1 × L3n+1, with L := {0, 1}q ∪ {⊤}.

For each type 2i and 3i with i ∈ {1, n}, we define a downgrader as described in equation (7) where the

corresponding δ’s are defined for all 1 ≤ j ≤ q as

δ2i
j := 1 − 11{j∈I(i)}, δ3i

j := 1 − 11{j∈J(i)}.

Above, 11{}() is an indicator function that is equal to 1 in the condition in the subscript is true, and 0

otherwise. Recall that for i ∈ {1, 3n + 1}, ei ∈ {0, 1}3n+1 is defined by ei
j = 0 for j 6= i and ei

i = 1.

We now define the operators that from ei produce e2i and e3i for i ∈ [1, n], namely operators ti and f i

respectively are defined as follows:

p(ti) = ei, a(ti) = e2i, p(f i) = ei, a(f i) = e3i.

We define now for each i ∈ [1, n], two other operators oti and of i as follows:

p(oti) = e2i, a(oti) = ei+1, p(of i) = e3i, a(of i) = ei+1.

22

ei

ti

f i

e2ie2i

e3ie3i

ei+1

ei+1

d2i

d3i

oti

of i

Figure 6: Reduction to SAT.

We consider the following planning problem with the initial condition e1 and with the goal en+1. We

assume that the initial security label is ℓ = (1, . . . , 1) and that the security level of the user is ℓUSER =
(0, . . . , 0).

In total, we defined 4n operators and 2n downgraders where n is the number of types and the size of

x in the SAT instance F (x) (see Figure 6).

It is easy to see that if SAT has a solution, there will exist a plan solving the planning problem with

security constraints: for each variable we will either apply tk or fk, but not both, which corresponds to

setting variable xk to either “true” or “false”. On the other hand, if a plan solves the planning problem, we

can construct a solution to SAT. Hence, the workflow planning problem is NP-complete.

¤

C Proof of Proposition 4

Proposition 4. For any initial state x0 and goal g such that P(x0, g) is not empty, we can find in time

O(m) a plan π∗ such that π∗ ∈ P(x0, g) and ∀π ∈ P(x0, g), π(x0, ℓ) ≻ π∗(x0, ℓ).

We first describe the properties that are satisfied by each operator, and that guarantee the correctness

of our algorithm.

Lemma 2 The action of an operator θ on the labels is such that

1. Idempotency: for all operators θ,

∀ℓ ∈ S(x), θ · θ(x, ℓ) = θ(x, ℓ). (13)

2. Local commutativity: for any x and θ1, θ2 such that x ≥ p(oi), we have

∀ℓ ∈ S(x), θ1 · θ2(x, ℓ) = θ2 · θ1(x, ℓ); (14)

3. Monotonicity: for all x,

∀ℓ1, ℓ2 ∈ S(x), ℓ1 ≺ ℓ2 ⇒ θ(x, ℓ1) ≺ θ(x, ℓ2); (15)

4. Non-increasingness: for all x,

∀ℓ ∈ S(x), θ(x, ℓ) ≺ ℓ; (16)

Proof.

The only non-trivial assumption to check is the commutativity condition (14). But in this case, thanks

to distributivity (10), we have

θ1 · θ2(ℓ)j =

∨

k, p(θ1)k=1

ℓk

 ∧

∨

i, p(θ2)i=1

ℓi

 ∧ ℓj

= θ2 · θ1(ℓ)j ,

23

from which the condition (14) follows. ¤

It is clear that the set of downgraders satisfies the properties (15), (16), (14) and (13). But in general

we have

θ · d(x, ℓ) 6= d · θ(x, ℓ).

Since downgraders do not affect the type, we have

θ · d(x, ℓ) = θ(x, ℓ).

Moreover thanks to (15) we have

θ · d(x, ℓ) ≺ θ(x, ℓ).

Note that if x is such that θ(x) = x, we have for all d ∈ D,

d · θ · d = θ · d. (17)

We now show that πS−OPTI as defined in (9) satisfies the condition of Proposition 4. Thanks to

Proposition 1, we have

πS−OPTI(x
0) ≥ g ⇔ P(x0, g) 6= ∅.

For simplicity, we denote u = πS−OPTI(x
0).

Thanks to properties (14) and (13), we see that for all operators such that u ≥ p(θ), we have,

θ · πS−OPTI(x
0, ℓ) = πS−OPTI(x

0, ℓ).

Thanks to property (17), we have for d ∈ D,

d · πS−OPTI(x
0, ℓ) = πS−OPTI(x

0, ℓ).

Hence for any plan π ∈ P(x0, g), we have

π · πS−OPTI(x
0, ℓ) = πS−OPTI(x

0, ℓ). (18)

Moreover thanks to (16), we have

∀ℓ ∈ S(u), πS−OPTI(x
0, ℓ) ≺ ℓ,

hence thanks to (15), we have

π
(

x0, πS−OPTI(x
0, ℓ)

)

≺ π(x0, ℓ).

Now it is easy to see that

π
(

x0, πS−OPTI(x
0, ℓ)

)

= π
(

πS−OPTI(x
0, ℓ)

)

= πS−OPTI(x
0, ℓ),

thanks to (18). Hence we proved that for any π ∈ P(x0, g), we have

π(x0, ℓ) ≻ πS−OPTI(x
0, ℓ),

and the proposition follows.

24

D Proofs and Algorithms for Special Cases

D.1 Proof of Proposition 7

Proposition 7. If the set of downgrader labels is totally ordered, a workflow that satisfies Bell-LaPadula

access policy with downgraders can be composed in linear time O(m).

Proof.

Combining (11) and (7) it is easy to see that if in some state (x, ℓ) the labels are such that ℓi = ℓj

for some i ≤ j, then after applying the downgraders di and dj in the new state (x′, ℓ′) we will have

ℓ′i ≻ ℓ′j . Therefore if ℓ′i ≺ ℓUSER, then ℓ′j ≺ ℓUSER as well. This property allows us to define a new

order relation E on the labels, under which the entire set of labels will become totally ordered. To compare

arbitrary labels ℓ′i and ℓ′′i obtained for the same type, we will compute a scalar downgrader index I(ℓ) for

each label, and compare the indices. Formally, the precedence ℓ′i E ℓ′′i holds if and only if I(ℓ′) ≤ I(ℓ′′),
where I(ℓ′) is the smallest index of the downgrader that makes the label accessible to the user:

I(ℓ):=

0, ℓ ≺ ℓUSER;
(k + 1), ℓ∧δk 6≺ ℓUSER;
mini

{

i : ℓ∧δi ≺ ℓUSER

}

, otherwise.

(19)

In this partial order it is possible to define the label transformation formula for operators similarly

to (8). If alternative labels for the same type are computed, the smallest label now must be chosen according

to the new order relation E. Since the union operation ∨ is well defined for the elements of partially ordered

lattice L, we only need to define the minimum operation ∧. In the following formula ∧̃ computes the lower

bound of two labels in E order.

∀j ∈ A(θ), ∀ℓ ∈ S(x), θ(x, ℓ)j :=

∨

k, pk(θ)=1

ℓk

 ∧̃ℓj . (20)

With this revision of label transformation, Lemma 2 still holds and πS−OPTI algorithm can now be

applied, as specified in (9).

The union operation ∨, as defined in the lattice L, directly corresponds to the upper bound in E lattice,

and therefore the correctness of this algorithm follows immediately from the correctness of πS−OPTI . As

shown in Section 4.1, the algorithm will find a plan π∗ that will produce the minimum output label. Due

to modification (20), the label that it finds for each type will be the smallest possible with respect to the

order E.

According to the definition of E in (19), the label ℓ in E is the smallest in the order if and only if

I(ℓ) = 0, which can hold if and only if goal condition ℓ ≺ ℓUSER is satisfied for ℓ. Therefore, the πS−OPTI

algorithm (9) with a modified order relation as specified in (20) will find a plan that satisfies the goal or

show that no such plans exist. ¤

D.2 An Algorithm Polynomial in the Size of the Label Set

In Section 4.3 we showed that restricting the set of branching points to grow at most as a logarithm of

the number of operators m results in polynomial complexity of exhaustive search. Here we will describe

a dynamic programming algorithm, complexity of which does not depend on the number of branching

points defined above, but is at most quadratic in the cardinality of the label lattice L and in the number of

operators m. We will prove the following proposition.

Proposition 9. A workflow satisfying Bell-LaPadula access policy with downgraders can be composed

in O
(

|L|2m2
)

operations.

25

Let Fi be the set of alternative labels for type i, Fi ⊆ L. The algorithm maintains the set Fi such

that at any iteration of the algorithm for each label in the set there is a plan that produces type i with

that label. The algorithm proceeds in iterations attempting to apply each operator and update {Fi}, and

terminates at a state {F∗
i } when none of the operators can create a new label, or when for every goal type

the corresponding set of possible labels contains a label dominated by the user’s label:

∀i ∈ T (g) ∃ℓ ∈ F∗
i : ℓ ≺ ℓUSER (21)

When new labels are created for types which can be downgraded, the downgraders are applied au-

tomatically before updating the corresponding set Fi. Then the following invariant will be preserved at

every iteration of the algorithm:

∀i = 1, . . . , n, ∀ℓ ∈ Fi ⇒ ℓ ≺ δi (22)

For clarity of presentation in our description of the algorithm we omit the bookkeeping necessary for

restoring and returning the plan after the algorithm successfully terminates. The bookkeeping results in a

trivial modification to the algorithm, which will require storing a record of the last operator together with

the information about the labels used as inputs at every iteration when Fi is updated. This modification

does not change the complexity of the algorithm, since a record of constant size is stored at every iteration.

DP(x0, ℓ0) :

1 Let Fi :=

{ {

ℓ0
i

}

, for i ∈ T (x0),
∅, otherwise.

2 for each θ ∈ O : ∀i ∈ T (p (θ)) ⇒ Fi 6= ∅ do

3 for each ℓ ∈ L :

∀i ∈ T (p (θ)) ⇒ ∃ℓ′ ∈ Fi : ℓ′ ≺ ℓ do

4 for each j ∈ T (a(θ)) do

5 ℓ̂ := ℓ ∧ δj ;

6 if ℓ̂ 6∈ Fj then Fj := Fj ∪ {ℓ̂};

7 od

8 od

9 od

10 repeat 2 while (21) is not satisfied by {Fi}

and the last iteration has updated any Fi in step 6.

The correctness of this algorithm follows from the observation that it will repeatedly evaluate every

operator to create every possible label for every possible type, until the solution is found, or until all

choices have been exhausted and no new labels can be created. The algorithm performs at most O(|L|m)
iterations of the repeat loop at line 10, since it terminates when no elements can be added to any Fi, each

of the sets Fi can contain at most |L| elements, and i in Fi is in the range 1 ≤ i ≤ n, where the number

of types n ≤ O(m). At each iteration, the body of the for loop at line 2 is repeated O(m) times, the for

loop at line 3 is repeated O(|L|) times, and the loop at line 4 is repeated O(1) times, since we assume that

|T (a(θ))| ≤ C, where C is a constant. Note that condition (6) translates here exactly in (21), therefore

Proposition 9 holds.

D.3 Proof of Proposition 10

Proposition 10. The number of operations required to compose a workflow satisfying Bell-LaPadula

access policy with downgraders does not exceed O(22b+1

|H|2m2), where b is the cardinality of the set of

26

distinct downgrader labels:

b := |∆| = |{δi, i ∈ {1, . . . , n}}|.

Proof.

This result is achieved by applying DP after a simple transformation of the labels to bit vectors of size

2b, where each bit corresponds to a unique subset of ∆. The initial label ℓ0
i = (hi, ci) for each type i is

mapped to a bit vector which describes the subsets of downgraders that must be applied to make the label

accessible for ℓUSER = (huser, cuser). To perform the mapping, for each category c such that c ∈ ci and

c 6∈ cuser the bit corresponding to the subset of labels in ∆ that contain category c must be set to 1, and

all other bits must be set to 0. The downgrader labels are mapped to bit vectors that set to 0 the bits for

every subset of ∆ in which the downgrader label participates, and have all other bits equal to 1. Under this

mapping the goal is to construct a label vector equal to 0. It is easy to see that the workflow satisfying this

requirement will be accessible for ℓUSER, when mapped back to the original labels, and therefore DP will

compose a valid workflow in at most O(22b+1

|H|2m2) operations, where 22b+1

is the square of the number

of labels in the lattice after the transformation.

¤

27

