
RC23999 (W0607-024) July 12, 2006
Computer Science

IBM Research Report

Augmentation-Based Learning

Vittorio Castelli1, Daniel Oblinger2, Lawrence D. Bergman3

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2Currently with DARPA/IPTO
3701 Fairfax Drive

Arlington, VA 22203

3IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Augmentation-Based Learning

Vittorio Castelli
IBM T.J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10520
vittorio@us.ibm.com

Daniel Oblinger∗
DARPA / IPTO

3701 Fairfax Drive
Arlington, VA 22203

aniel.Oblinger@DARPA.MIL

Lawrence D. Bergman
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

bergmanl@us.ibm.com

Abstract

We describe Augmentation-Based Learning, a new
learning algorithm for Programming-by-Demonstration
that allows the user to explicitly edit the procedure
model even while demonstrating a task. We discuss
the problems faced by learning algorithms that support
seamless alternation of editing and demonstrations, and
show how Augmentation-Based Learning solves them,
while at the same time capturing complex procedure
models with no additional user intervention.

Introduction
We describe Augmentation-Based Learning (ABL), a
new learning algorithm for programming-by-demonstration
(PBD) that infers computer-based task models from obser-
vations of the users’ interactions with software applications,
while also supporting direct user edits of the models.

PBD systems allow users to create, maintain, and cus-
tomize task models by demonstrating how computer-based
tasks should be performed. These task models are used
for automating procedures, guiding users through unfamil-
iar tasks, and providing in-context documentation. For PBD
to be effective, the learning algorithm that creates the task
model must be able to rely on a small number of examples;
ideally, the user should obtain benefits even from the task
model created with the first demonstration.

This small data-sample requirement poses interesting
challenges: typical ML algorithms are not fine-tuned for
such small training sets. Handling these small samples by
restricting the bias of the learner will impose too many re-
strictions on the types of task models that the induction algo-
rithms can produce. Conversely, relaxing the bias will regu-
larly produce models that are unacceptable to most users.

In the PBD literature the problem is solved by partially re-
laxing the bias restrictions and relying on user input besides
demonstrations. There is a trade-off between requiring more
user intervention (and therefore allowing the learner to use
a larger hypothesis spaces) and constructing a usable PBD
system, that is, one that relies mostly on demonstrations.

∗This work was done while the author was with the IBM
T.J. Watson Research Center.

Manual editing of the induced model is an ideal solution
to this trade off: by editing, the user effectively and con-
cisely interacts with the learning algorithm, which therefore
does not require strong bias restrictions. Editing is more ex-
pressive than all other feedback mechanisms encountered in
PBD, and hence it minimizes the costs of the feedback in-
teractions between user and learning algorithm. We believe
that ABL is the first algorithm to support seamless interleav-
ing of editing with induction. Existing PBD systems only
allow editing as a post-processing step of induction.

In the rest of the paper we first formalize the notion of
a procedure model and introduce our notation. Then, we
describe different types of bias restrictions and of user feed-
back mechanisms encountered in PBD. In the main section
we describe ABL, discuss its bias, and show how it sup-
ports manual edits by solving two fundamental problems,
the precedence and consistency problems. Readers inter-
ested in bibliographic references and in a discussion of re-
lated work are referred to the full version of the present pa-
per (Oblinger, Castelli, & Bergman 2006), and to (Bergman
et al. 2005; Prabaker, Bergman, & Castelli 2006), which
describe DocWizards, a PBD system based on ABL.

Background and Preliminaries
Procedure model and procedure demonstrations

A procedure model (S, E ,P) is an extension of a directed
graph, defined as follows.S = {s} is a set ofprocedure
steps; these are a pairs(n, α), wheren is a node inN (the
collection of nodes in the graph) andα, theaction skeleton,
is a generalized action that, evaluated in a particular context
(defined later in this section), yields a completely specified
executable action.E = {e} is a set ofdirected edges that
denote sequential ordering of steps.P is a set containing
a predicate p for every edge inE . Evaluated during play-
back, p denotes whether the corresponding edge must be
followed (among the predicates of the outgoing edges of
a node, one and only one must evaluate totrue for every
context). Theprocedure structure of a procedure model is
the directed graph(N , E) obtained by discarding the action
skeletons and the predicates.

Inducing a procedure model means using data to identify
a structure andinstantiating the model. Instantiation con-
sists of inducing a step for each node, and inferring the edge

predicates. The data is a collectionT of procedure demon-
strations, called atraining set. A procedure demonstra-
tion, or trace t, is a sequence ofstate-action pairs (SAPs)
{(xi,yi)}m

i=1, recorded while a user performs a task. Asub-
trace is any contiguous subsequence of a trace. Astate x is
a representation of the content of the GUI just prior to the
execution of an action. Anaction y is a detailed representa-
tion of a user’s interaction with an application, for example,
pressing the “Ok” button in a file-selection dialog.

The state contains the attributes for inferring edge predi-
cates, and, during playback, provides the context for instan-
tiating executable actions from action skeletons. For exam-
ple, the action skeleton “Select the first item in the ‘Package
Explorer’ list” is instantiated to “Select project1” when the
state shows that the first item in that list is called “project1”.

Definition 1 The alignment of a subtrace (x1,y1), . . . ,
(xm,ym) with a sequence of nodes n1, . . . ,nm in (N , E)
is a one-to-one correspondence that maps (xi,yi) to ni for
i = 1, . . . , n. We say that the subtrace is alignedwith the
procedure structure.

Thus, aligning means assigning steps as labels to SAPs.

Definition 2 A subtrace (x1,y1), . . . , (xn,ym) is consis-
tent with a model if:
• the subtrace is aligned with a sequence of nodes

n1, . . . ,nm, where ni corresponds to step si.
• Sequentially instantiating the action skeletons

α1, . . . , αm using x1, . . . ,xm yields y1, . . . ,ym.
• For each i = 2 to m, there exists an edge i from ni−1 to

ni such that evaluating the associated predicate pi using
xi yields true.

• If (x1,y1) is the first SAP in a full procedure demonstra-
tion, s1 must be an initial step, namely, a step without
incoming edges.

We say thata model is consistent with a collection of sub-
traces if each subtrace is consistent with the model.

Related Work: Biasing the Learner in PBD
In this section, we describe some common bias restrictions
for learning algorithms used in PBD. In general, we distin-
guish two classes of problems solved by these algorithms:
the generalization problem and the combined alignment-
and-generalization problem.

Thegeneralization problem is the problem of inducing a
procedure model given a procedure structure and an align-
ment of the training data. Many existing PBD systems solve
only the generalization problem, and the user must provide
the structure and the alignment either directly (e.g., by la-
beling actions) or indirectly (via feedback mechanisms). For
example, algorithms that produce procedure models consist-
ing of an outer loop containing a fixed sequence of steps hav-
ing user-specified length solve the generalization problem.

When the alignment is not given, the learning algorithm
must build a procedure structure using a collection of traces
and align these traces to the procedure structure before solv-
ing the generalization problem. We call this thealignment
problem. A learner that builds a procedure structure, aligns
it with the training data, and induces the model based on

the alignment is said to solve thecombined alignment-and-
generalization problem.

Different bias restrictions are encountered in systems that
solve the combined alignment-and-generalization problem.
At one end of the spectrum, the learner is constrained to a
hypothesis space containing a very restricted class of pro-
cedure structures. For example, there are algorithms that
induce an outer loop enclosing a fixed sequence of steps of
unspecified length. At the other end of the spectrum, al-
gorithms are allowed to use a very large hypothesis space.
For example, SimIOHMM solves a probabilistic version of
the general combined alignment-and-generalization prob-
lem, but is by its nature a batch algorithm. ABL solves
the general combined alignment-and-generalization prob-
lem, relies on a hypothesis space that contains arbitrarily
complex procedure models, and operates on-line.

Related Work: User In The Loop
In this section, we briefly describe some of the common
methods used in PBD to leverage user feedback.

The most common feedback mechanism is the explicit
identification of the beginning and the end of each task
demonstration. Another simple mechanism consists of noti-
fying the learning algorithm when a suggestion offered dur-
ing playback is not appropriate; in this case, the learning
algorithm produces a different suggestion until the user is
satisfied or no additional alternative exists. In a related ap-
proach, the learner maintains a collection of alternative pro-
cedure models and allows the user to select the most ap-
propriate. This mechanism is commonly used as a post-
processing step, but it has also been proposed to control the
induction of individual steps during recording. User-in-the-
loop techniques have also found application in support of
predicate inference. Some systems, for example, allow the
user to highlight UI widgets that contain information rele-
vant to the inference of decision predicates. Active learning
has also been used, where the algorithm prompts the user for
additional information when unsure.

Direct editing of the procedure model provides the user
with better control over the learning process than any of the
mechanisms described above, but is also difficult to integrate
with the induction process. PBD systems that allow the user
to edit the script produced by the learning algorithm restrict
editing to be a post-processing step. We believe that ABL
is the first learning algorithm to support the interleaving of
editing operations with demonstrations, and to use user edits
to constrain subsequent induction.

The ABL Algorithm
ABL solves the combined aligned-and-generalization prob-
lem by incrementally constructing a procedure model while
simultaneously ensuring the alignment of the data with the
model. Editing operations, allowed at any point, destroy
this alignment, making the data and the procedure structure
inconsistent. ABL solves the inconsistencies by carefully
tracking the parts of the alignment that are not affected by
editing. ABL also gives precedence to the edits over previ-
ous examples and ensures that data observed before an edit is

not used to undo the edit effects. In this section, we first for-
malize the notion of editing operations and define the prob-
lems that a learning algorithm that allows edits must solve.
Then we describe in detail how ABL attains the behavior
described above.

Definition 3 An editing operation is a manual transforma-
tion of a procedure structure (N , E) into a different proce-
dure structure (N ′

, E ′
) through moving, copying, adding, or

deleting nodes and edges.

To support edits, a learning algorithm must produce a
human-readable representation of the procedure model.
More importantly, it has to solve theprecedence problem
and theconsistency problem. The precedence problem
arises when the learning algorithm inadvertently counteracts
a manual edit using data observed before that edit. This
problem is solved by just discarding all the data observed
before the edit, as one can easily see by constructing simple
examples. The consistency problem arises because user ed-
its can produce procedure structures that are not consistent
with previous demonstrations, and the learner is then asked
to induce predicates with inconsistent data.

Incremental Procedure Induction in ABL
We now describe the three main components of ABL: the
incremental construction of the procedure structure, the in-
duction of steps, and the inference of predicates.
Procedure Structure Construction. ABL starts with an
empty procedure and incrementally modifies it in real-time
as new examples are observed. When presented a new SAP,
ABL modifies the existing procedure structure using trans-
formations calledaugmentations. Intuitively, an augmenta-
tion is any transformation that modifies the structure of a
procedure only by adding nodes and edges; more precisely:

Definition 4 An augmentation associated with a SAP σ is
a transformation from a procedure structure (N , E) to a pro-
cedure structure (N ′

, E ′
) satisfying N ⊆ N ′

and E ⊆ E ′
.

Hence, applying an augmentation produces a new procedure
structure that contains all the nodes and the edges of the orig-
inal one. Examples of augmentations are the introduction of
a branch, the conversion of a sequence of steps into a loop,
and the extension of an unterminated block by a new step.

ABL maintains a collectionM of procedure models con-
sistent with the observed demonstrations (and therefore the
training traces are aligned with each model inM). When
a new SAPσ is observed, ABL updatesM by finding all
the augmentations that produce new models consistent with
the past observations and withσ. More specifically, letµ
be a model inM, let n0 be its (unique) node aligned with
the last SAP observed beforeσ. Givenσ, ABL determines
the set of steps inµ that are consistent withσ, constructs the
setN (σ) containing the corresponding nodes, and adds to
N (σ) a brand new node. Then, for eachn ∈ N (σ) ABL
identifies the collectionAµ(n) of augmentations that would
create inµ an edge fromn0 to n.

Different augmentations have differentcosts: for exam-
ple, if an edge fromn0 to n already exists inµ, no change
to the structure ofµ is needed, and the corresponding “null”

augmentation has small cost. Conversely, creating a branch-
ing edge fromn0 to a brand new node has a high cost. Each
augmentation inAµ(n) yields both a new model and a new
alignment of the training set. In this alignment, each pre-
vious observation retains its existing correspondence with
a node inµ, while the new observation is aligned withn.
Given the alignment produced by an augmentationA, ABL
tries to produce a new model, by inducing steps and infer-
ring predicates. This operation can fail, in which caseA is
discarded, or succeed, in which case an instantiation cost is
computed that captures the difficulty of inducing the steps
and inferring the predicates. The surviving augmentations
applied to the corresponding models yield a new collection
of modelsM′

(σ). Each model inM′
(σ) has an overall

cost, which captures the complexity of the model, computed
by combining the cost of augmentations and the cost of in-
stantiation. The model inM′

(σ) with the smallest cost is
presented to the user.
Step Induction. Inducing a step means constructing a gen-
eralized actionα, which can be represented as a quadruple
(y, S, D, t). Here,y is an action type (e.g., “uncheck a check
box”), S is a set of source widgets,D is a set of destination
widgets, andt is a text entry. For example, the action of
dragging a set of files from one directory and dropping them
in another is described as follows:y is “drag-and-drop”,
S is the collection of icons in the source directory that are
dragged,D is the destination directory, andt is empty. The
induction of a steps in a modelµ ∈ M is the process of con-
structing (generalizing) the relevant elements of the quadru-
ple using the SAPs aligned withs. ABL can generalize steps
using any generalization grammar described in earlier PBD
work.
Predicate Inference. The predicates of the edges leav-
ing a noden (denoted byP(n)) are induced using data
X̃(n) selected as follows. Consider first the collec-
tion {(SAP

(1)
i , SAP

(2)
i)} = T(n) of length-2 subtraces

whereSAP
(1)
i is aligned with noden and SAP

(2)
i with

a node inN (n), the set of destinations of edges origi-
nating from n. Then X̃(n) is defined as the collection
{SAP

(2)
i |(SAP

(1)
i , SAP

(2)
i) ∈ T(n)}. Each state iñX(s)

is labeled with the corresponding aligned step. This labeled
data is used to learn a decision tree classifier, which is then
translated into a disjunction ofrules. Here, a rule is a con-
junction of terms having the formattribute.value ∈ valueSet,
whereattribute is a specification of a property of a widget on
the screen, andvalueSet is a list of strings. Different terms in
a rule use different attributes. The reason for the translation
is that the disjunction of rules can be presented to the user
in an easily readable format, while inspecting a decision tree
classifier is typically difficult.

Solving the alignment-and-generalization problem.
From the description of the incremental model induction,
we conclude that ABL solves the combined alignment-and-
generalization problem by:
• Incrementally constructing a correspondence between

each new SAP and a node in the procedure structure (this

solves the alignment problem).
• Solving the generalization problem by constructing steps

and inducing predicates as described above, using the data
aligned with the procedure structure.

ABL Support of Edits
To effectively support manual editing, the learning algo-
rithm must produce a human-readable, easily understand-
able representation of the procedure model, such as the
script-like models yielded by ABL. A short ABL procedure
example, which resets the properties of all the projects in an
Eclipse workspace to their default values, is the following:

ForEach item in “Package Explorer”
Right-click on item
Select popup menu item “Properties”
Click “Restore Defaults”
Click “OK”

Here, control structures and action types are in boldface,
constants are between quotes, and variables are in italics.
The language of the script contains actions, “if-then-elseif-
else” conditional statements, and loops, which can be ap-
propriately nested and combined. As a consequence, the
language can represent the structure of complex tasks.

ABL solves the precedence problem by incrementally
learning using augmentations. When a new SAP is ob-
served, ABL modifies the procedure structure using only this
new SAP. When the user performs an editing operation, the
resulting procedure structure becomes the starting point for
the next augmentation. Since ABL does not use previous
SAPs to modify the procedure structure, it satisfies the re-
quirement that data observed before an edit cannot be used
to “undo” the structural effects of the edit.

ABL solves the consistency problem by carefully select-
ing the data for induction. More specifically, since ABL uses
the alignment correspondence to select the data for step in-
duction and predicate inference, we have solved the consis-
tency problem by redefining the concepts of alignment of
SAPs with nodes and of consistency of subtraces in the pres-
ence of edits. The following conventions ensure that data
observed before the edit and that could confuse the learning
algorithm are not used for induction.
• SAPs aligned with a node before an editing operation are
also aligned with the same node after the editing operation.
When a copy operation on a node occurs, SAPs aligned with
the original node are also aligned with its copy.
• The setTε

i of subtraces that ABL considers consistent
with the ith user editεi is defined as follows: letTi be the
collection of (complete and partial) traces observed before
εi; thenTε

i is defined as the collection of the longest sub-
traces inTi that are consistent with the procedure model
produced byεi according to Definition 2 (in other words, if
t̃ ∈ Tε

i , andt̃ ⊆ t, any subset oft strictly containing̃t is
not consistent with the model).

Some Remarks
ABL easily supports other user control mechanisms that
substantially simplify PBD. The first is a special case of edit-
ing: the ability to discard the most recently observed action.

We have observed that, in practice, the user occasionally in-
teracts with the wrong control, quickly recovers from the
mistake, removes the irrelevant scripts from the procedure
model, and continues executing.

ABL also supports learning from partial demonstrations.
This particular mechanism is very useful to capture the lo-
calized variability of a task due to different environment set-
tings; it is also useful to maintain scripts in conjunction with
editing: if a subtask within a model becomes obsolete, the
user can remove it manually and demonstrate the current
way of performing the subtask.

Since ABL maintains a collection of alternative procedure
models ranked by an appropriate score, it automatically pro-
vides the user with the ability of visually inspecting the dif-
ferent alternatives, and, if desired, select a model other than
the one with the highest score.

Experiments described in (Prabaker, Bergman, & Castelli
2006) have shown that even inexperienced users can effec-
tively leverage ABL’s features to construct models of non-
trivial software installation and configuration tasks.

Conclusions
We have described Augmentation-Based Learning, a new
learning algorithm for PBD that supports seamless alter-
nation of procedure demonstrations and explicit user edits.
ABL incrementally combines data from multiple demon-
strations into complex procedure structures that are repre-
sented to the user as scripts in a simple programming lan-
guage. This programming language supports blocks, condi-
tionals, and loops, which can be induced using demonstra-
tions alone. Editing provide the user with very precise and
direct control on the products of the learning algorithm. To
support edits, ABL solves the precedence problem by using
only data observed after the edit to modify the procedure
structure obtained via the edit. ABL solves the consistency
problem by judiciously selecting data for induction, and dis-
regarding data that is inconsistent with subsequent edits.

Laboratory experiments (Prabaker, Bergman, & Castelli
2006) have shown that ABL is effective even for inexperi-
enced authors users, who easily leveraged editing to create
models of complex installation and configuration tasks.

References
Bergman, L.; Castelli, V.; Lau, T.; and Oblinger, D. 2005.
Docwizards: a system for authoring follow-me documen-
tation wizards. InProc. 18th annual ACM Symp. on User
Interface Software and Technology, UIST2005, 191–200.
ACM Press.
Oblinger, D.; Castelli, V.; and Bergman, L. 2006.
Augmentation-based learning, combining observations and
user edits for programming-by-demonstration. InProc.
2006 Int. Conf. on Intelligent User Interfaces, 202–209,
runner–up for best paper award.
Prabaker, M.; Bergman, L.; and Castelli, V. 2006. An eval-
uation of using programming by demonstration and guided
walkthrough techniques for authoring and following docu-
mentation. InProc, of CHI, Best of CHI Nominee.

