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Abstract— In this paper, we present FastPlace 3.0 – an effi-
cient and scalable multilevel quadratic placement algorithm for
large-scale mixed-size designs. The main contributions ofour
work are: (1) A multilevel global placement framework, by incor-
porating a two-level clustering scheme within the flat analytical
placer FastPlace [26, 27]. (2) An efficient and improved Iterative
Local Refinement technique that can handle placement blockages
as well as placement congestion constraints. (3) A placement con-
gestion aware standard-cell legalization technique in thepresence
of placement blockages.
On the ISPD-2005 placement benchmarks [19], our algorithm
is 14.9X and 4.4X faster than state-of-the-art academic placers
APlace2.0 and mPL6 respectively. In terms of wirelength, we are
on average,3% better than APlace 2.0 and 4% higher as com-
pared to mPL6. We also achieve competitive results compared to
a number of academic placers on the placement congestion con-
strained ISPD-2006 placement benchmarks [20].

I. I NTRODUCTION

As semiconductor technology advances into the nanometer
regime, there has been a tremendous increase in the size of
integrated circuits. Designs today often contain over a million
objects and this number is steadily increasing. Hence, it is
necessary to have efficient and scalable placement algorithms
that can handle this ever increasing placement problem size.

Existing placement algorithms employ various approaches
includingsimulated annealing [23,24],paritioning [1,2,7,28]
andanalytical placement [4,9–11,16,17,21,26,27]

Analytical placement algorithms based on the quadratic ob-
jective funtion (also called quadratic placers) are very popu-
lar as they are quite efficient and also give good quality of
results. They typically employ a flat placement methodol-
ogy [9–11, 17, 26, 27] so as to maintain a global view of the
placement problem.

But, with circuit sizes steadily increasing towards tens of
millions of placeable objects, a flat placement methodology
may not be effective in handling the large placement prob-
lem size in a reasonable amount of runtime. Hence, for ef-
ficient and scalable placement algorithm design, a hierarchi-
cal approach is beneficial. To this effect many modern plac-
ers follow a hierarchical or multilevel approach for placement
[3,4,13,15,21,25]

Also, an important placement constraint that needs to be
handled by current placers is that of placement congestion.
Designers often run placement algorithms with specificplace-
ment target density values. To determine the placement den-
sity, a pre-defined grid is imposed over the placement region.

Usually, the grid is square with the height being a multiple of
the standard-cell row height. This gridding divides the place-
ment region into bins. Thedensity of a bin is then defined
as the ratio of the the total area of movable objects within the
bin to the total available free space within the bin. Theplace-
ment target density basically specifies the maximum possible
occupation for any bin in the placement region. Satisfying the
placement target density constraint means that thedensity of
all the bins in the placement region should be less than or equal
to theplacement target density value.

The purpose of theplacement target density is to allow for
more room within a bin for the subsequent routing step. It
also allows for more space within a bin for buffer insertion,
gate-sizing and other timing optimization transformations that
might be performed after the placement step.

In this paper we address the two issues of scalability and
placement congestion. We present an efficient multilevel
quadratic placement algorithm with placement congestion con-
trol for large-scale standard-cell and mixed-size designs. The
main contributions of our work are:

• Incorporating a multilevel framework within the global
placement stage of the flat quadratic placerFastPlace
[26]. This is done by employing two levels of clustering:
an intial netlist based fine-grain clustering followed by a
netlist and physical based coarse-grain clustering. Where
the physical information for the second level is obtained
from an initial placement of the fine-grain clusters.

• An improved Iterative Local Refinement Technique to re-
duce the wirelength based on the half-perimeter measure.
This technique is very effective in simultaneously reduc-
ing the wirelength while spreading the cells around the
placement region. It can also effectively deal with place-
ment blockages and placement congestion constraints.

• A density-based standard-cell legalization technique.
This technique operates on the segments created in the
placement region due to the presence of placment block-
ages. It satisfies segment capacities as well as place-
ment congestion constraints and legalizes the standard-
cells within segments.

The rest of this paper is organized as follows: Section II
gives an overview of the multilevel global placement frame-
work and an outline of our algorithm. Section III describes
the two-level clustering scheme used during global placement.
Section IV describes the improved Iterative Local Refinement
technique and its use in placement congestion control. Section
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Fig. 1. Multilevel Global Placement Framework.

V describes the density aware legalization and detailed place-
ment techniques. Experimental results are provided in Section
VI followed by the conclusions in Section VII.

II. OVERVIEW OF THE ALGORITHM

In this section, we give an overview of the multilevel global
placement framework and the outline of our placement algo-
rithm.

Our multilevel framework is summarized in Figure 1 and
follows the classical hierarchical flow that has been used in
many existing placement algorithms [3,4,6,13,15,21].

In Step 1 of the multilevel flow, we create fine-grain clus-
ters of about 2-3 objects per cluster based on the connectivity
information of the original flat netlist. In Step 2 we perform
an initial placement of the fine-grain clusters. This step isex-
tremely fast and its purpose is to have some placement infor-
mation for the subsequent physical clustering step. In Step3
we create coarse-grain clusters by performing a second level
of clustering. This step not only considers the connectivity in-
formation between the objects (based on the clustered netlist
previously obtained) but also uses the physical locations of the
clusters obtained from the inital placement of Step 2. This
creates a good-quality clustering solution for the subsequent
global placement step. In Step 4 we perform global placement
on the coarse-grain clustered netlist until the clusters are evenly
distributed over the placement region. Since the number of
placeable objects at this level are significantly less as compared
to the original flat netlist, this step is extremely fast and signif-
icantly contributes to the overall efficiency of the placement
algorithm. After the placement of the coarse-grain clusters, we
perform a series of un-clustering and placement refinementsin
Steps 5 and 6, finally yielding a global placement solution of
the original flat netlist.

The entire flow of our placement algorithm is summarized
in Figure 2. The key components of our placement flow are:
global placement using a multilevel framework, legalization
of macro blocks using the Iterative Clustering Algorithm [27]
followed by a density based standard-cell legalization scheme
and an efficient detailed placement algorithm [22]. The indi-
vidual components of the flow are described in more detail in
the subsequent sections.
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Fig. 2. Outline of Our Placement Flow.

III. C LUSTERING FORPLACEMENT

Circuit clustering is an attractive method to reduce the place-
ment problem size for large- scale VLSI designs. If clustering
is performed in a careful manner, it can also yield better wire-
length along with faster runtime as compared to flat placement
approaches.

In our multilevel framework we use clustering in apersis-
tent context as defined by [21]. As in, we use clustering at the
beginning of placement to pre-process the flat netlist so as to
reduce the placement problem size. We then perform global
placement on the coarse-grain clustered netlist. Once the clus-
ters have been evenly spread out over the placement region, we
execute a series of unclustering and ”refinement” steps to fur-
ther optimize the wirelength and improve the placement con-
gestion.

In our multilevel framework, we follow a two-level cluster-
ing scheme as shown in Figure 1. In the first level of clustering
we create fine-grain clusters of about 2-3 objects per cluster.
This clustering is solely based on the connectivity information
between the objects in the original flat netlist. Since this clus-
tering is performed at the beginning of placement, we restrict
it to fine-grain clustering to minimize any loss in placement
quality due to incorrect clustering. In fact, it was demonstrated
in [12] that fine-grain clustering can improve placement effi-
ciency with negligible loss in placement quality.

We then perform a fast, initial placement of the fine-grain
clusters. The purpose of this step is to get some placement
information for the next clustering level. Since each cluster
in the first level has only around 2-3 objects, the initial place-
ment of the clusters closely resembles an initial placementof
the original flat netlist. We then create coarse-grain clusters
by performing a second level of clustering. In this level, we
consider both, the connectivity information between the clus-
ters and their physical locations as obtained from the initial
placement. We believe that generating coarse-grain clusters



 
Algorithm Clustering 
 
Phase 1: Construct Initial Priority-queue (PQ) 
      For each object j 

         1.  Find closest object k and clustering score s(j, k) 

         2.  Insert triple (j, k, s) into PQ with s as the key 
 
Phase 2: Form Clusters 
      while (number_of_objects > target_number_of_objects) 

         1.  Pick top triple (j, k, s) from PQ 

         2.  if j is marked invalid 

     3.  Re-calculate closest object k′ and clustering score s′(j, k′) 

          4.  Insert triple (j, k′, s′) into PQ 

         5.  else 

     6.  if fine-grain clustering 

                                  7.  if (a(j) + a(k) < max_cluster_size) cluster j and k into new object j′ 

                             8.  if netlist + physical clustering 

                                  9.  Calculate d(j, k) the distance between j and k 

                                 10. if (d(j, k) < distance_threshold and a(j) + a(k) < max_cluster_size)  

                                          cluster j and k into new object j′ 

    11. Update netlist based on the clustering 

    12. For object j′ find closest object k′ and clustering score s′(j′, k′) 

    13. Insert triple (j′, k′, s′) into PQ with s′ as the key 

    14. Mark neighbours of j′ as invalid 

 

Fig. 3. Best-Choice Clustering Algorithm with Placement Information.

based on actual placement information, is better than generat-
ing them by a solely netlist based approach; and such an ap-
proach would further minimize any loss in (or even improve)
the final placement wirelength.

The key difference between our clustering scheme and the
ones followed in [3, 5, 15, 21] is that we use actual placement
information while forming coarse-grain clusters, whereasthe
other approaches generate coarse-grain clusters solely based
on netlist information. Our approach closely resembles that
of [13]. The difference being that [13] uses two-levels of netlist
based clustering followed by physical clustering, whereaswe
only use one level of fine-grain netlist based clustering.

For both levels of clustering, we use theBest-Choice cluster-
ing algorithm described in [21]. In Figure 3 we summarize the
modified version of theBest-Choice clustering algorithm us-
ing Lazy-Update speed-up technique to consider our two-level
clustering scheme.

IV. CONGESTIONAWARE ITERATIVE LOCAL REFINEMENT

The Iterative Local Refinement (ILR) technique is a key
component of our placement flow. This technique is highly ef-
fective in minimizing the wirelength of the placement whilesi-
multaneously distributing the cells over the placement region.
This section describes the improved ILR technique and its ap-
plication in placement congestion control.

We separate the ILR technique into two components. A
density-based ILRd-ILR and the regular ILRr-ILR. The core
algorithm used to move the cells, within both the components
is the same and hence we only describe it in the context of the
r-ILR. In the subsequent subsections, we first give an overview
of the ILR technique of [26], followed by the enhancements
made to the technique. We then describe the top level flow for
ILR based placement congestion control.

A. Description of the Technique

During ILR the placement region is binned and the utiliza-
tion of all the bins is determined. After this step, the respective
source bins of all the cells is determined. For every cell present
in a bin,8 scores are computed that correspond to moving the
cell to its nearest8 neighboring bins. For calculating the score,
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Fig. 4. Initial Contour Map Depicting Placement Blockages.
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Fig. 5. Contour Map after Smoothing Transform.

it is assumed that a cell is moving from its current position in
a source bin to the same relative position in thetarget bin. The
score for each move is a weighted sum of two components:
The first component is the half-perimeter wirelength reduction
for the move and the second is a function of the utilization of
the source and target bins.

For a celli currently in binm, if we define:

• α: Weight for the wirelength component.

• β: Weight for the utilization component.

• wli(m): Half-perimeter wirelength wheni is in binm

• wli(n): Half-perimeter wirelength wheni is in binn

• U(m): Utilization function for binm

• U(n): Utilization function for binn

Then the score for the move from binm to binn is given by:

si(m, n) = α(wli(m) − wli(n)) + β(U(m) − U(n))

If all 8 scores for the cell are negative, it is not moved. Oth-
erwise, it is moved to the bin with the highest score for the
move. During one iteration of the Refinement, the above steps
are followed for all the cells in the placement region. This iter-
ation is then repeated until there is no significant improvement
in the wirelength. For the first top-level iteration of ILR, the



width and height of the bins are set to 5 times that of the bin
used during the Cell Shifting step. The width and height of
these bins are then gradually brought down to the values used
during Cell Shifting over subsequent iterations of the global
placement.

B. Enhancements to the ILR Technique

A major drawback of the above described ILR technique is
that every bin in the placement region, irrespective of whether
it is sparse or dense, will have the same weight for the uti-
lization component. This does not accurately reflect the place-
ment distribution. A sparse bin should have a lesser utilization
weight so that more cells can be moved into it. Correspond-
ingly, the utilization weight for a dense bin should be higher so
as to enable movement of cells out of this bin. In the enhanced
version of the ILR each bin has its associated utilization weight
that is constantly updated based on the placement distribution.

Another extension to the ILR is in handling placement
blockages. Most ASIC circuits contain many placement block-
ages in the form of fixed macros. Quadratic placers often place
a lot of movable objects on top of the fixed macros. These ob-
jects have to be moved out of the fixed macros in an effective
manner with minimal increase in the wirelength. To handle
fixed macros during placement, we construct a contour map
of the placement region. Based on the fixed macros, each bin
in the contour map has a value of either1 in case it overlaps
with a fixed macro or0 otherwise. The initial contour map
for one of the placement benchmarks is shown in Figure 4.
We then run a smoothing transform on the entire contour map.
This transform smooths the sharp edges in the original contour
map creating a smoothed version as shown in Figure 5. This
smoothing is basically done so that cells can easily move over
and cross a fixed macro if required or slide down the slope so
that it can be moved out of the macro.

Based on the above enhancements, for celli in bin m, if:

• α: Weight for the wirelength component.

• β(m): Weight of the utilization component for binm.

• β(n): Weight of the utilization component for binn.

• γ: Weight for the contour component.

• wli(m): Half-perimeter wirelength wheni is in binm

• wli(n): Half-perimeter wirelength wheni is in binn

• U(m): Utilization function for binm

• U(n): Utilization function for binn

• C(m): Contour height of binm

• C(n): Contour height of binn

Then, the score for the move from binm to bin n is given
by:

si(m, n) =

α(wli(m)−wli(n))+(βmU(m)−βnU(n))+γ(C(m)−C(n))
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Fig. 6. Bin Structure for Iterative Local Refinement.

C. ILR for Placement Congestion Control

For placement congestion control, the ILR is divided into 2
components. Thed-ILR uses the global pre-defined grid struc-
ture used for placementdensity computation. It then calculates
the utilization and contour height for these bins. Cells arethen
moved fromsource to target bins of the global bin structure.
based on the score function given in the previous subsection.

Once thed-ILR is performed, we then run ther-ILR as before
in which the bin sizes are initial set to a large value and then
decreased over subsequent placement iterations. The interac-
tion between thed-ILR and ther-ILR can be seen in Figure 6
which shows the decrease in the size of the bins from thed-ILR
stage to the end of ther-ILR stage.

V. L EGALIZATION AND DETAILED PLACEMENT

The aim of the legalization step is to resolve module over-
laps present in the global placement solution and yield a legal
non-overlapping placement. Our legalization stage is divided
into two steps. In the first step, we ignore all the standard-
cells and resolve overlaps among the macro blocks. We then
fix them in legal positions in the placement region and legal-
ize the standard cells. These steps are described in more detail
below.

A. Macro Block Legalization

During legalization, we do not want to move the macros
by a significant amount from their global placement positions.
Hence, the goal of the macro block legalization algorithm isto
resolve overlaps among the macros by perturbing them by the
minimum possible distance from their global placement posi-
tions. This is achieved by using theIterative Clustering Algo-
rithm [27] for macro block legalization.

Briefly, [27] formulates the macro block legalization prob-
lem as a Minimum Perturbation Floorplan Realization prob-
lem. It uses the sequence pair [18] for floorplan representation
and considers both movable and fixed macros during the con-
struction of the sequence pair. It then uses low-temperature
simulated annealing to determine a good sequence pair such
that the corresponding placement of the movable macros, ob-
tained from theIterative Clustering Algorithm will resolve



overlaps among the macro blocks with minimum perturbation
from their global placement positions.

B. Density Based Standard Cell Legalization

After resolving overlaps among the macro blocks, we fix
their positions for all subsequent steps of placement and treat
them as placement blockages. Each row in the placement re-
gion is then fragmented into segments due to the placement
blockages. The aim of the density based standard-cell legal-
izer is to satisfy the segment capacities as well as the place-
ment congestion constraint and assign cells to legal locations
within the segments. This is done as follows.

B.1 Selective Bin-based Standard Cell Movement

First, the placement region is binned with the height of each
bin being equal to the standard-cell height and its width being
equal to around 4×averageCellWidth. We call this bin struc-
ture as the Regular Bin Structure (RBS). The utilization of each
bin is then determined. Simultaneously, the utilization ofeach
segment in the placement region is also determined. The uti-
lization of a segment is defined as the total width of all the cells
within the segment. If the total width of all the cells withina
segment is greater than the segment width, it is considered to
be above capacity.

Based on the segment utilizations and placement blockages,
we construct amove map of the entire placement region. For
each bin in the RBS this map has a value of either1 (for moving
cells into or out of this bin) or0 (for not moving cells into
or out of this bin). The values are assigned as follows: For
bins that completely overlap placement blockages we assigna
value of0 as we do not want cells to be moved on top of the
blockage. Also, if the the utilization of a particular segment is
greater than theplacement target density then, a small region
of bins in and around the current segment is assigned a value
of 1 for move based legalization to be performed on these bins.
This is depicted in Figure 7 where there are two segments that
are above capacity (shown by the diagonal lines). Then, we
turn on move based legalization for only a small region of bins
around the segments (shown by the dotted regions).

For moving the cells among the bins we use a technique that
is quite similar to the Iterative Local Refinement. The differ-
ence being that the score for a move during the legalizer is a
weighted sum of three components: The first being the half-
perimeter wirelength reduction for the move. The second be-
ing a function of the utilization of the source and target bins.
The third being a weighted difference of themove map values
for the source and target bins. Since the legalization technique
is mainly used to even out the placement and bring all the seg-
ments within capacity, a higher weight is assigned to the sec-
ond and third components.

Once all the segments are brought to within capacity, we
assign the cells to legal positions within each segment. The
key advantages of the selective bin-based legalizer is thatit
does not disturb the global placement solution by a significant
amount. Secondly, the bin-based legalizer also distributes the
cells evenly within segments. This helps to satisfy placement
congestion constraints.

 

Fig. 7. Selective Bin-based Standard Cell Movement.

C. Detailed Placement

The aim of the detailed placement stage is to further reduced
the wirelength of the placement. For detailed placement, we
adopt a modified version of theFastDP [22] detailed placer
that can handle placement congestion constraints.

VI. EXPERIMENTAL RESULTS

Our algorithm was tested on the ISPD-2005 Placement
Benchmarks [19] and the placement congestion constrained
ISPD-2006 Placement Benchmarks [20]. These benchmark
suites have been derived from industrial ASIC designs with
circuit sizes ranging from 210K to 2.48M placeable ob-
jects. In addition, the ISPD-2006 benchmark suite is also
placement congestion constrained, with a specificplace-
ment target density assigned to each circuit.

For runtime comparison we ran two state-of-the-art placers
APlace 2.0 [15,16] andmPL6 [5] on the ISPD-2005 Placement
Benchmarks.APlace 2.0 is a faster version of the placer used
in the ISPD 2005 Placement contest [14] andmPL6 comprises
of enhanced versions of the placers described in [4] and [8].
All experiments are run on a 2.5 GHZ AMD Opteron 252 ma-
chine with 8 GB RAM.

In Table I, we compare our placer withAPlace 2.0 andmPL6
on the ISPD-2005 benchmark suite. It can be seen that we are
on average,3% better in terms of wirelength as compared to
APlace 2.0 and14.9X faster. As compared tomPL6 we have
4% higher wirelength and are4.4X faster.

In Table II we compare our placement results with that of
other placers reported during the ISPD 2005 placement con-
test. It should be noted that for the contest, all the placers
were given the benchmarks in advance and there was no limit
on the CPU time required to get the best possible results on
the individual circuits. From Table II, the contest versionof
APlace is on average5.6% better than our placer in terms of
half-perimeter wirelength. In [15] the authors report thatthe
entire benchmark set takes 113.2 hrs on a 1.6 GHZ machine.
Since they do not give any other machine specification we are
unable to make runtime comparisons with the contest version
of APlace. It can also be seen that our results are better than
the reported results of all the other placers.

In Table III we compare our placement results with that of
other placers reported during the ISPD 2006 placement contest
using the same scoring function as the contest. On average,
we have3% higher score than the best reported results using
the ISPD-2006 contest scoring function. Looking at individual
results, on 4 of the 8 benchmarks we are better than or compa-
rable to the best reported results during the placement contest.

Table IV gives the runtime comparison of our placer with
other placers in the ISPD 2006 placement contest. On average,



TABLE I
HALF -PERIMETERWIRELENGTH AND RUNTIME COMPARISON OF OUR PLACER WITHmPL6 AND APlace2.0 ON THE ISPD-2005BENCHMARK SUITE.

Circuit Half-Perimeter Wirelength Runtime
Our mPL6

our

APlace2.0

our
Our (sec) mPL6

our

APlace2.0

our

adaptec2 94908408 0.97 1.01 517 4.35 17.72
adaptec4 204785632 0.95 1.02 1164 5.81 21.59
bigblue1 95458136 1.01 1.05 506 5.41 16.85
bigblue2 157384512 0.97 0.98 1309 5.96 15.31
bigblue3 387811008 0.89 1.06 4963 2.12 7.60
bigblue4 833668928 0.99 1.05 8823 2.73 10.44

0.96 1.03 4.40 14.92

TABLE II
HALF -PERIMETERWIRELENGTH COMPARISON OF OUR PLACER WITH OTHER ACADEMIC PLACERS ON THEISPD-2005BENCHMARK SUITE.

Placer Circuit Average
adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

APlace 0.92 0.92 0.99 0.91 0.92 1.00 0.944
Our Placer 1.00 1.00 1.00 1.00 1.00 1.00 1.000

mFAR 0.96 0.93 1.02 1.07 0.98 1.05 1.004
Dragon 1.00 0.98 1.07 1.01 0.98 1.08 1.022
mPL 1.02 0.98 1.03 1.10 0.95 1.08 1.029

FastPlace 1.14 1.00 1.06 1.08 1.18 1.07 1.088
Capo 1.05 1.03 1.13 1.09 0.99 1.32 1.103

NTUplace 1.06 1.01 1.12 1.21 1.06 1.38 1.140
Fengshui 1.30 1.65 1.20 1.81 1.21 1.25 1.403
Kraftwerk 1.66 1.72 1.57 2.05 1.69 1.68 1.728

TABLE III
OUR PLACER COMPARED TO OTHER ACADEMIC PLACERS ON THEISPD-2006BENCHMARK SUITE USING THEISPD-2006PLACEMENT CONTEST

SCORING FUNCTION.

Placer Circuit Average
adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

Kraftwerk 1.01 1.19 1.00 1.00 1.01 1.04 1.00 1.00 1.03
mPL6 1.00 1.06 1.07 1.17 1.00 1.02 1.00 1.00 1.04

NTUplace2 1.02 1.00 1.07 1.16 1.03 1.00 1.04 1.07 1.05
Our Placer 1.12 1.17 0.98 1.15 0.99 1.13 1.00 0.96 1.06

mFAR 1.09 1.23 1.09 1.16 1.09 1.13 1.03 1.04 1.11
APlace3 1.26 1.20 1.05 1.13 1.35 1.21 1.06 1.05 1.16
Dragon 1.08 1.21 1.29 1.90 1.05 1.13 1.03 1.23 1.24

FastPlace 1.82 1.22 1.02 1.37 1.35 1.76 1.04 1.05 1.33
DPlace 1.26 1.55 1.77 1.36 1.14 1.35 1.23 1.25 1.36
Capo 1.16 1.57 1.64 1.44 1.22 1.28 1.32 1.46 1.39

TABLE IV
RUNTIME RESULTS OF OUR PLACER COMPARED TO OTHER ACADEMIC PLACERS ON THEISPD-2006BENCHMARK SUITE.

Placer Circuit Average
adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7

Our Placer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kraftwerk 1.72 1.94 0.97 0.41 3.04 2.46 1.68 1.64 1.73

mPL6 4.33 3.86 5.89 4.35 6.37 4.09 3.77 6.22 4.86
NTUplace2 5.49 3.70 4.28 2.98 8.18 6.78 4.34 4.70 5.06

mFAR 3.60 4.35 2.80 1.33 6.97 3.79 3.81 4.27 3.86
APlace3 10.61 7.37 5.35 5.60 16.42 10.87 9.13 12.02 9.67
Dragon 1.18 1.69 1.58 0.52 1.63 1.17 1.21 2.17 1.39

FastPlace 2.12 0.88 1.00 1.09 1.52 2.06 1.30 1.45 1.43
DPlace 1.51 1.76 6.18 0.46 1.80 1.51 1.26 2.08 2.07
Capo 5.09 4.39 5.45 2.72 7.59 6.91 5.79 12.04 6.25



the runtime of our placer is the least among all the placers.

VII. C ONCLUSIONS

In this paper we describe an efficient and scalable quadratic
placer for large-scale standard cell and mixed-size circuits. It
is based on a multilevel global placement framework and in-
corporates an improved Iterative Local Refinement Technique
that can handle placement blockages as well as placement con-
gestion constraints. We also describe an efficient density based
standard-cell legalization scheme.

The current implementation produces competitive results
compared to other state-of-the-art academic placers on vari-
ous benchmark circuits but at a much lesser runtime. Such an
ultra-fast placer is very much needed in present day iterative
physical synthesis flows to achieve timing closure without a
significant runtime overhead.
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