
RC24003 (W0607-048) July 13, 2006
Computer Science

IBM Research Report

Pericles: An Object-Oriented Parallel Programming Model

Donald P. Pazel
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Pericles: An Object-Oriented Parallel

Programming Model

Donald P. Pazel
IBM Corporation

What you leave behind is not what is engraved in stone monuments, but what is woven into the lives of
others - Pericles

1. Introduction
The purpose of this document is to provide a technical overview and understanding of the
Pericles object-oriented parallel programming model.

The need for Pericles derives mostly from a usability viewpoint. The types of operations
found in distributed operations such as scatter and gather, for example, require
considerable preparation work in setting parameters for data distribution. Providing
flexibility in managing the asynchronous nature of parallel programming is also crucial.
These concerns are addressed in Pericles mainly through the addition of new classes for
data distribution and futures, for example, and through some supporting middleware.

Pericles also simplifies distributed programming using a very simple idea. The
messaging paradigm of other distributed API’s such as MPI transformed into a
parametric messaging paradigm in Pericles. In this paradigm, distributed messaging is
achieved through argument passing to remote calls. This simplifies distributed
messaging, and returns the user to programmatic terra firma. This idea is not new in the
literature, and has been very successfully used by the ProActive project at INRIA.

2. The Pericles Programming Model

2.1 The Pericles Programming Model – Overview

The Pericles programming model provides a set of sophisticated features to facilitate
parallel and distributed programming. This facilitation is achieved though the
introduction of a number programming concepts including:

• Parallel Complex – The application base class representing a ParallelWorkGroup.
• Parallel interfaces – Interfaces implemented by parallel complexes that identify

and provide means for scatter and peer-to-peer operations.
• Distributions – A template class that facilitates the means for scattering data

through parallel complex, without explicit message creation.
• Futures – A class that allows asynchronous management of distributed operations

launched with scatters.
• Reductions – A class that allows information from a scatter to be incrementally

processed in a background thread.
• Role topologies – Attribution on parallel complex members that allows them to be

referenced to tasks specific to the application.

The objective behind the Pericles programming model is to facilitate parallel and
distributed programming by taking over and managing many of the data and messaging
aspects of parallel programming model.

 2

3. Basic Concepts

3.1 Parallel Complex

3.1.1 What is a Parallel Complex
Pericles describes a notion of a parallel workgroup concept through an object
representation called parallel objects, instances of which aggregate into a parallel
complex, or complex, representing a full parallel workgroup. Each endpoint of a
workgroup is represented by a parallel object, and the full set of these, one per endpoint
of a workgroup, is a parallel complex. The parallel objects of a complex are mutually-

aware in as much as each has means for
identifying and communicating with each
or with a subset of parallel objects
collectively.

By example, and as illustrated in the
diagram, {0, 1, 2, 3} represents a parallel
workgroup with 4 endpoint members.
Pericles provides and object framework
for representing these as four parallel
objects A, B, C, and D, with one-to-one
mapping between objects and endpoints.
The aggregate set of parallel objects {A,
B, C, D}, covering all the endpoints, is

the parallel complex.1 In this example, A is initiating a scatter operation to the other
members of the complex.

A

D

C

B

0

1

2

3

3.1.2 Characteristics of a Parallel Complexes
Complexes enable both singular messaging, as in peer-to-peer communication, as well as
collective messaging, such as broadcast, scatter, gather, and reduction. Complexes
invoke messaging using a call-based paradigm. That is, instead of issuing a message
send/receive protocol, passing a data payload, which receivers receive through a
messaging notification, Pericles messages are invoked through application interfaces
through methods, with arguments being data payload. Receivers receive the call-based
message as parameters on their implementations of those method interfaces.

Thus, the contractual agreement on complex messaging is that each parallel object of the
complex implements the same messaging interfaces. These interfaces are called parallel
interfaces, which will be further discussed in a succeeding section.

While parallel interfaces define the messaging contract for a complex, it does not
constrain the implementation of parallel objects for the complex to be identical. In other

1 Sometimes any one parallel object is referred to as a parallel complex. While this is an abuse of accurate
terminology, it is nonetheless acceptable when the context is understood.

 3

words, while the parallel interfaces define a uniform means for passing information
within a complex, the parallel objects themselves can be each implemented uniquely to
the intended computational collaboration intended by the complex. After all, each
member of the complex may need special computational needs, objectives, and goals
based on the design of the aggregate computation. In this sense, Pericles is a MIMD
model, in distinction to the somewhat informal SIMD2 model found in MPI. While this
does not constrain the class types of a complex’s parallel objects to be identical, in
practice it would be practical to do so. With proper design, this should not impact greatly
the variation in role that each object instance would carry for the aggregate computation.

3.1.3 How Parallel Applications and Complexes are Created
Launching parallel applications and parallel complex formation or generation is now
briefly described. It is required that all parallel object classes derive from
ParallelComplex and implement a special interface for parallel messaging called the
ParallelComplexInterface interface. ParallelComplex provides the essential
infrastructure for the parallel object to account for its endpoints, and asynchronous
messaging. This interface provides means for intercepting a variety of messages,
including formation and destruction of complexes, and changes in a complex’s
membership, for example. A parallel application is launched with a configuration

indicating the number of endpoints, and
possibly where the endpoints are
located. Upon launching, the first
parallel objects that are created are for
the parallel workgroup representing the
entire set of endpoints, called the default
workgroup. We call the counterpart
Pericles complex and object(s) for the
default workgroup, the default complex
and the default parallel object(s).

As shown in the diagram, when all the
default parallel objects are instantiated,

so is the default complex, i.e. there is no need to explicitly add members to this complex;
the system does that for you. Suppose, in turn, a new complex, called Foo, is to be
defined consisting of the first two endpoints of the default complex, {0, 1}. In this
example, A constructs a new workgroup containing only endpoint 0, and constructs Foo
member Y, passing the new workgroup. Y then adds endpoint 1 to itself. This results in
a notification to B, representing 1 in the default complex, that it should create Z, with
endpoint 1 added to it. The process for formation of larger sub-complexes of the default
complex should be clear now. It should also be clear how Foo could itself launch other
complexes which would be totally instantiated by the other members of the Foo complex.

pc pc pc

pc pc

Pericles PPM

Default Complex

Complex Foo

A B C

Y Z

2 MPI is not a strict SIMD model, allowing variation of computation amongst members of a collective.
However, the lock-step protocol of many MPI commands does force synchronization amongst collective
members, making MPI a command-based SIMD model. While Pericles requires sends to be received,
sends are asynchronous, freeing one from the kind of lock-step synchronization found in MPI.

 4

In all cases, parallel objects implement the ParallelMessage interface, which enables the
process described above.

3.1.4 Programmatic Details on Parallel Application Creation
In this section, further details are given on the creation of parallel objects, referencing the
figure of the last section. All parallel objects derive from ParallelComplex, which has
several construction variants:

 public ParallelComplex(ParallelWorkgroup parent, int [] members,
 Class [] parallelIntefaces);
 public ParallelComplex(ParallelWorkgroup wkg, Class [] parallelInterfaces);
 public ParallelComplex(Class [] parallelInterfaces);

In the first case, the constructor builds a new ParallelWorkgroup from a referenced parent
workgroup and a subset of its members. The second has a provided workgroup handed to
it. The last case allows the ParallelComplex to build its own ParallelWorkgroup. In
each case, the parallel interfaces are defined to the parallel object. More on parallel
interfaces is found in a later section. In the example above, A would construct Y with:

 public Y(ParallelWorkgroup parent, int [] members);

which invokes then the first of the ParallelComplex constructors mentioned above.
When the members {0,1} are added, B’s ParallelComplexInterface notification method is
invoked:

 public boolean invitedToComplex(ParallelWorkgroup wkgp);

B then constructs Z and returns true. B can use the name of the parallel workgroup to
coordinate to the class Z for the construction. The Y constructor would then be:

 public Y(ParallelWorkgroup wkgp);

using the second of the constructors mentioned above. Parallel object A also gets
notification, as its workgroup was the basis or parent for the workgroup. However, since
A has already instantiated Y, with sufficient bookkeeping on object creation, it can
bypass this notification. However, if A had not instantiated Y, but simply built a
workgroup and added members, A would instantiate Y in a manner similar to the way B
instantiated Z.

Finally, Y and Z get notifications through their ParallelComplexInterface that they their
membership in their workgroup has been finalized:

 public void complexCreated(ParallelWorkgroup wkgp);

 5

3.1.5 Implications for Tooling
The tooling for parallel program construction could include features for helping with the
following:

• Definition of a parallel object class, providing assistance with implementing the
ParallelComplexInterface interface

• Assist in identifying all object classes that belong to a complex
• Assist in identifying all interfaces affiliated with a complex
• Assist in code generation on spawning a sub-complex from a complex
• Assist in code generation for the de-construction of a sub-complex for a complex

3.2 Parallel Interfaces

3.2.1 What is a Parallel Interface
Parallel interfaces provide the contract for messaging amongst the parallel objects within
a complex. A parallel interface is a Java interface defining methods for peer-to-peer and
scatter messaging within a complex. A complex may be defined through one or more
parallel interfaces, and consequently, each parallel object within the complex must have
implementations for each parallel interface. The implementation of each method within a
parallel interface defines the kind of task work expected from a parallel object within a
collaborative computation in that complex.

Since parallel interfaces are not distinguishable from standard Java interfaces, we require
means for invocation of their methods with asynchronous parallelism semantics, as
opposed to their standard invocation. In other words, the interface for parallel method
implementation or expression should be distinguished from the interface for parallel
method invocation. Towards that end, a parallel interface has two forms, one called the
implementation interface, and the other the invocation interface. The parallel object
implements the implementation interface for parallel work, but invokes the invocation
interface to invoke or initiate a scatter or peer-to-peer task. As will be shown later, the
invocation interface distinguished itself with variants on the method definitions that allow
for singular and collective messaging, using data distributions and futures. The term
parallel interface usually means both interfaces inclusively, however it can mean either
separately from discussion context.

3.2.2 Characteristics of Parallel Interfaces
Parallel implementation interfaces specify methods whose implementation usually
defines collective tasks. For each parallel object, the method would likely be defined in a
manner unique to its role in the collective computation. If the parallel object type is
unique amongst the complex’s membership, it may be implemented uniquely. Usually
however, a complex shares the same object type in which case the distinction in
computation is dynamically determined, perhaps by endpoint identity.

 6

An invocation interface, as described, is a counterpart to the implementation interface
defining variants of the implementation methods allowing for asynchronous messaging.
To its name, invocation interfaces are purely meant for parallel method invocation.
Invocation interfaces are tool-generated based on implementation interfaces. A parallel
object never implements the invocation interface3, but instead obtains a reference to a
proxy for it, to execute a parallel task. Invocation interfaces manage a number of critical
details in distributed computation, including marshalling, communication with other
parallel object endpoints, and various error detections.

Each implementation method is recast into a set of variant methods in the invocation
interface. The variants allow for peer-to-peer messaging, collective messaging, and
asynchronous invocation. For example, suppose the parallel interface ValueSet defines
the following method:
 int getValue(double initValue, String title);

The invocation interface would include the following counterparts:

 Future<int> getValue(double initValue, String title); // broadcast
 Future<int> getValue(Distribution<double, String> params); // scatter

Two variants are constructed –for collective broadcast, and for collective scatter. In each
case the return type is Future, a generic class that allows for asynchronous tracking of the
resultant values. In the scatter variant, we introduce a Distribution generic class which
provides a means for passing different data, of the same kind, amongst the parallel object
endpoints. Further discussion on these topics will be presented later.

3.2.3 How Parallel Interfaces are Used
We will reference the parallel interface ValueSet and the getValue() method from the
prior section. The ValueSet implementation interface would be defined as a standard
Java interface:

interface ValueSet {
 public int getValue(double initValue, String title);
}

The ValueSet invocation interface is derived or generated from the ValueSet
implementation interface. The new invocation interface’s name is based on that of the
implementation interface, with “Invoke” appended to the front. The result is
InvokeValueSet in this case:

3 The reason for not allowing parallel object implementation of an invocation interface is firstly that it
contains signatures identical to the implementation interface, except for return type. Secondly, the
implementation of the invocation interface is, per method, a generic enablement of a parallel task based on
the signature of the method. This is best automatically or dynamically generated, and not handed to the
user, per se.

 7

interface InvokeValueSet {
 Future<Int> getValue(double initValue, String title); // broadcast
 Future<Int> getValue(Distribution<Double, String> params); // scatter
}

To invoke parallel messaging, the parallel object first requires a proxy reference to the
required interface:

InvokeValueSet ivs=(InvokeValueSet)this.getParallelProxy(ValueSet.class);

getParallelProxy is a method from the ParallelComplex class from which the parallel
object derives. ParallelComplex is provided by Pericles for various parallel queries and
operations. Given access to the invocation interface, it is easy to initiate a broadcast
across the complex:

 Future<Integer> v = ivs.getValue(5, “Bin”);

By this invocation, a parallel broadcast has been initiated across the complex. Each
parallel object will execute getValue(5, “Bin”), and return their values. The Future<int>
will track the receipt of all the int values from the broadcast replies. The call will not
block; instead, the user may either query for completion, or wait and extract the value:

 int value = (v.completed() ? v.intValue() : -1); // or
 int value = v.wait().intValue();

The other invocation types will be examined in more detail later.

3.2.4 Implications for Tooling
Tooling for parallel program construction could include features to assist in the
following:

• Generation of the invocation interface from the implementation interface
• Consolidate parallel object classes with parallel interfaces
• Generate code (assist) in obtaining interface proxies (getParallelProxy)
• Provide general code assist, completions, etc. as found in Eclipse
• Analysis for missing Futures, or Futures that have not been waited upon for

values (within a given method).

3.3 Distributions

3.3.1 What is a Distribution
Distributed scatter operations involve the dissemination of varied data across a
potentially large population of parallel object endpoints. With methods as the means for
scatters in Pericles, there are natural limits on the argument data that can be sent through
any one method signature. In fact, per signature, only one set of data can be specified as

 8

arguments, which can only be effective for a broadcast distributed operation, or peer-to-
peer operation.

To broaden the means of using methods for scatter operations, an abstraction is
introduced for representing an amalgamation of signatures of varied argument data, an
abstraction called Distribution. Conceptually, a distribution allows many “signatures-
worth of arguments” to be bundled together, for passing to the method for a scatter
operation. Distribution is introduced in Pericles as an enabling software artifact. As was
seen in the prior section, a variant of the original method is generated for the invocation
interface that allows a distribution to be passed as an argument.

3.3.2 Characteristics of Distributions
Distribution is a Java generic class for enabling scatter operations. For a given method in
a parallel interface, the parameter types of a Distribution used in a scatter-variant match
the method’s parameter types one-to-one, and in order. For example, given the following
parallel method:

 int sendInformation(int x, String y, Info z);

the corresponding Distribution that would be used in the scatter variant of the method is:

 Distribution<Integer, String, Info>;

As a programming mechanism, a distribution is a set of Distribution.Element’s. A
distribution element corresponds to a single signature’s worth of arguments, and is
templated similarly to Distribution. In the above example, we have:

 Distribution.Element<Integer, String, Info>

where a Distribution.Element corresponds to on set of arguments to the parallel interface
method sendInformation.

Thus, in programming a scatter, one builds a set of Distribution.Element’s to disburse
through a set of parallel object endpoints, adds each of them to the Distribution, and
invokes the scatter variant of the parallel method, passing the Distribution.

Distributions are an aid for distributed programming in Pericles. However there are a
few restrictions and rules. Since Distribution is implemented as a template, the size of
the distribution’s parameter type signature (corresponding to the number of parameters in
the parallel method) is limited4. Java generics also have a number of considerations or
limitations. For example, native types such as int and double cannot be directly used.
Instead the Object classes Integer and Double have to be used. Also, one cannot specify
arrays as parameter types, and any of the variety of Collection classes must be used

4 Presently the proposed limit is 20. However, this will likely change with implementation.

 9

instead. As a means for overcoming these short-falls in actual situations, such as when a
parallel method has a very large number of parameters, a non-generic Distribution is
provided to facilitate the packaging of information for scatter operations. However,
discussion of this facility is out of scope of this report.

3.3.3 How Distributions are Used
We will re-examine the example of the prior section, and show details on how to use
distributions for a scatter operation. Suppose we are to do a scatter of N sets of {Integer,
String, InfoClass} arguments amongst the parallel objects of a complex. The
construction of the distribution would look like the following:

 Distribution<Integer,String,Info> d=new Distribution<Integer,String,Info>();
 for(int i=0; i<N; i+) {
 Distribution.Element<Integer, String, Info> e = new Distribution.Element
 <Integer, String, Info>(new Integer(i), strings[i], info[i]);
 d.addElement(e);
 }

Following along the discussions of the prior sections, the actual scatter might look like
the following:

 InvokeProcIFace pi =(InvokeProcIFace)this.getParallelProxy(ProcIFace.class);
 Future<Integer> f = pi.sendInformation(d);

Details on how the handle the Future and acquire the returned results will be discussed in
a later section.

3.3.4 Implications for Tooling
Distributions are meant to facilitate scatter operations. Tooling features would therefore
focus on facilitating the use of distributions, such as:

• Generation of Distribution<…> with type parameters, in appropriate contexts,
based on the parallel method selected.

• Similar with the generation of Distribution.Element<…>
• Various code assists and completions to help in coding distributions easier.
• Refactoring Distribution’s when method parameters are changed.
• More direct code generative means for building a Distribution from a selected set

of data (to be used as arguments).

3.4 Collective Messaging Operations (Broadcast & Scatter)

3.4.1 What are Collective Messaging Operations
The collective messaging operations in Pericles are broadcast and scatter. In a broadcast,
arguments specified to the method’s signature are distributed identically to all the parallel
object endpoints. In a scatter, multiple argument signatures are distributed amongst the
parallel objects. Clearly, the former operation uses the multi-typed method signature

 10

found in the parallel interface, while a scatter uses an invocation variant utilizing
Distributions.

In both cases, the parallel object endpoints return values commensurate with the return
type of the parallel method. However, collective messaging operations are asynchronous
in nature. Therefore, a device called “Futures” is used to manage the returns on these
operations. Futures are discussed in a later section.

3.4.2 Characteristics of Collective Messaging Operations

By default, broadcasts and scatters target the entire complex membership, including the
sender. That means, that the sender endpoint must include for itself data in its send, as
part of a group computation, and its implementation method will be invoked
asynchronously with that data in its parameters. Often this situation is not desirable, and
there is a clean separation between master and worker processes. Pericles offers the
option of excluding itself from a collective messaging operation. This facilitates greatly
the implementation of master-worker relationships within a complex, when a leader
member distributes work to the others. More generally, Pericles allows the sender to
exclude specific members from the operation, restricting the operation to specific
complex member receivers. Alternative, a specific subset of endpoints can be specified
for the operation. In either case, this feature enables a rich master-worker computation to
be defined that facilitates partitioning the field of complex members to different roles
(see Role Topology section).

The distribution of argument data in a scatter operation follows a round-robin/greedy
algorithm. That is, at the start of the operation, the Distribution.Element’s of the
Distribution are handed-out, in order, to each parallel object in the complex. If there are
more elements than members, the next element is handed to the member whose response
is most recently received, and so forth, on a first-come first-serve basis.

More generally, the method of data distribution is a variable in collective messaging
operations. A Distribution policy can be defined and specified for any one collective
messaging operation. One may want to ensure that endpoints with larger storage
capacity, for example, get higher priority for receiving distribution elements than others,
or that distribution elements follow a particular statistical pattern, perhaps based on the
distribution element data values themselves. The ability to design distribution policies
for collective messaging begins to address needs for resource management and
scheduling at the programmatic level.

3.4.3 How Collective Messaging Operations are Used
Broadcasts and scatters have been discussed and exemplified in prior sections. Using our
last example and setting the stage for further demonstration, examples of a broadcast and
scatter are given:

 11

 InvokeProcIFace pi = (InvokeProcIFace)this.getParallelProxy(ProcIFace.class);
 Future<Integer> bcastResult = pi.sendInformation(id[k], name[k], info[k]);
 Future<Integer>scatterResultf = pi.sendInformation(d);

Future’s are used to manage the return results, and will be discussed in a later section.

In cases where it is derisible to do any of excluding the invoker, excluding other complex
members, or narrowing the scatter to a subset of members, a qualifying member
constraint must be specified. This constraint is specified thourhg the proxy. This is
possible through the proxy invocation interface with a set of utility methods to deal with
inclusions and exclusions. These are generated into the proxy invocation interface. In
this case, we have:

 exclude(): // exclude invoker from broadcast/scatter
 exclude(int [] exclusions); // exclude specific endpoints
 include(int [] inclusions); // only use specified endpoints

When a proxy invokes any of the above, the designated set stays in effect with the proxy
until it is further altered or reset. For convenience each method returns the proxy. By
way of example:

 bcastResult = pi.exclude().sendInformation(3, “abc”, info); // exclude self only
 bcastResult = pi.exclude(new int [] {1, 5, 7}).sendInformation(…); // exclude 1, 3, 7
 bcastResult = pi.include(new int [] {1, 3, 9}).sendInformation(…); // only to 1, 3, 9

As discussed earlier, distribution policies are user defined policies for defining how
distribution elements are scattered amongst complexes endpoints. Distribution policies
are implementations of the DistributionPolicy interface:

 interface DistributionPolicy {
 int determineEndpoint(DistributionElement e, int [] targets, int [] availableTargets);
 }

The determineEndpoint method accepts as input the raw generic type
DistributionElement, which is the current element that requires a target endpoint identity,
the set of allowable targets (which may have been restricted by inclusion/exclusion
mentioned earlier), and the set of targets endpoints available for further calls of a scatter
operation. The method returns a valid endpoint id to designate the target, or -1 to let the
Pericles middleware decide. Note that if an endpoint is specified that is available, the
system will wait on that target, and when it is freed will receive that data element. This is
not strictly a synchronous barrier, however, as the policy will be called for other
distributed element target assignments.

Policy assignment is achieved through the method:

 bcastResult.assignDistributionPolicy(new MyPolicy());

 12

This method also returns the proxy, and thus a broadcast/scatter can be appended to the
above.

3.4.4 Peer-To-Peer Sends
Clearly, the include methods on the proxy are sufficient to execute peer-to-peer
operations, by simply specifying the one target member. However, to facilitate peer-to-
peer, we introduce the additional method to the proxy interface:

 to(int targeted); // only to the targetId endpoint

Much like the exclude and include interfaces mentioned earlier, this designated set (on
one) stays in effect with the proxy until it is further altered or reset. Also, as before, the
method returns the proxy, allowing the target method to be appended.

3.4.5 Implications for Tooling
Programming broadcast and scatter operations could greatly benefit from the usual
tooling code assist and code completions. A number of related tooling traits were given
in the Parallel Interface section 3.2.4. Along with those, it would be useful to have a
means for help in coding distribution policies, as well as a means for locating all
distribution policy classes within a code base, selection from which could help in coding
the assignment statement.

3.5 Futures

3.5.1 What are Futures
Futures are effectively handles to return results from asynchronous operations. Since
Pericles is inherently an asynchronous programming model, Futures are widely used in
Pericles programming. A Future is responsible for managing all the returns from the
endpoints in an asynchronous operation, whether or not they return actual values. As
discussed later, Futures also provide an anchor for means for distributed operation state
notification and reduction of returned results into different data forms (see Future
Notification & Reductions);

The Future class is implemented as a Java generic. The parameter type on a future must
match that of the return type of the method of whose distributed operation the Future
receives. In the case of “void” type, the raw Future type is used.

3.5.2 Characteristics of Futures

 13

To gain an appreciation for the characteristics of a Future, it is worth exploring the figure
below which examines the execution lifetime of a Future relative to a distributed
operation. The timeline charts the events within a complex during, say a scatter. The
Future is created at the time the scatter is initiated. In this case, a distribution is specified,
and calls are made to all the target endpoints. Each target endpoint processes to the data
(parameters) it receives on this operation, and returns a value. During this process, the
future incrementally receives the returns from the target call. The Future also has a set of
reduction objects which process the received results either as they are received by the
future, or at the end of all the receipts (discussed in a later section). The program may
retrieve all the reduced values at the end of the process.

Scatter

call

call

call

call

Time

Data Calls Target entry

Reductions

Values

Futures then are a managing device for coordinating the receipt of all the asynchronous
calls in a distributed operation, as well as coordinating the received values from those
calls. However, during that time, the program may proceed with other computations, and
poll the Futures for there state, or even intermediate results.

The programmatic operations on Futures involve state query, waiting, and value access.
For state query, one would be most interested in querying for the completion status of the
distributed operation. The query methods on Futures include:

 boolean Future::isCompleted(); // indicate whether operation is done or not
 int [] Future::getCompletedCalls(); // int [] maps to endpoints for broadcast
 // and to Distributed.Element’s for scatter
 int [] Future::getCurrentCalls(); // maps as above, but for current calls
 int [] Future::getOutstandingCalls(); // maps as above, but for call not initiated

 14

The above methods on Future allow the program to check not only whether or not the full
operation has completed, but also how much of the operation has completed. The latter
includes queries for completed calls, currently processing calls, and calls that have not
been initiated, i.e. when there are more Distributed.Element’s than parallel object
endpoints. The semantics for these change between broadcast and scatter. Since
broadcasts have as many calls as endpoints, the returned array maps to endpoints. That is
not the case for scatters, the returned array maps to indices of Distributed.Element’s.

There are likely to be times when one needs to wait on a Future for a specific state to
proceed with processing. The methods for these are:

 boolean Future::wait(); // wait indefinitely
 boolean Future::wait(int ms); // wait for a specified number of milliseconds
 boolean Future::waitOn(int [] ids, int ms); // wait for endpoints/element completions

As with the state query calls, the waitOn method interprets the integer array as endpoints
or Distributed.Element’s depending on whether this is a broadcast or scatter.

The cancellation calls are:

 boolean Future::cancel();
 boolean Future::cancel(int [] ids); // cancel endpoints/element

Value access methods include:

 <T> getValue(int id); // get the value for endpoint/element call
 <T> [] getValue(int [] id); // get the values for endpoints/elements calls

For value accessing methods above, if the value has not yet been received, the method
blocks until the value is received. So it is recommended to use any combination of query
or wait calls first to assure the value access methods return promptly.

3.5.3 How Futures are Used
Much of how to use futures should be clear to most proficient programmers, from the
characteristics section 3.5.2. The practical use of these characteristics is quite varied, and
depends on the programming task. In simple cases, one would simply choose to wait on
a Future. More complex cases might require querying the Future intermittently for
completion, and do other work in the mean time.

3.5.4 Implications for Tooling
Programming tool features that could help in using Futures include:

• Discover distributed operations that do not receive a Future. These could be
warnings.

• Re-factor distributed operations that do not receive a Future, into one that does.
• Re-factor all declared Futures when the parameter type changes.

 15

• Provide a set of code generative patterns that can take advantage of the powerful
incremental query and processing powers of futures described in 3.5.3.

3.6 Future Notifications & Reductions

3.6.1 What are Future Notifications & Reductions
Futures, as handles to asynchronous operations, can only be used as polling devices for
distributed operations status. That is, the user must query the Future object to determine
the status. Future notifications provide a means for observing asynchronously the
completion status on a distributed operation represented by a Future object. Future
notifications follow the standard Java notification mechanisms5 of notification interfaces,
and provide a means for a program to detect the completion of a distributed operation, or
its intermediate stages of completion.

Similar to Future notification is the concept of Reduction. A Reduction is a means for
computing application-dependent values based on the returned values of a distributed
operation. For example, if a parallel method returns an integer value; one reduction
might obtain the sum or mean of those values. In fact, it may be desirable to obtain
intermediate computations, e.g. running sums, as a computation proceeds. This allows
one to cancel or terminate a distributed operation based on early results. Operationally,
there is very little difference between Future notifications and Reductions, and in fact the
latter can be built from the former. However, conceptually they are distinct in their
intended use of the results of distributed operations – the former for notification of state
and the latter for computation of related states. Thus, they are related and extremely
similar in nature, but described with their own unique settings.

3.6.2 Characteristics of Future Notifications and Reductions
Future notifications provide a means for a program to check not only whether the full
distributed operation has completed, but also how much of the operation has completed.
The latter includes notification for completed distributed operations, the state of currently
processing operations, including states of operations that have not been initiated, i.e.
when there are more Distributed.Element’s than parallel object endpoints. The
notification interface for a notification class on a Future is:

 interface FutureNotification<T> {
 void finalCompletion(Future<T> f);
 void synchronized partialCompletion(Future f<T>, int endpoint_DE);
 }

The two methods provide means for being notified of full completion of the distributed
operation, as well as a means for determining partial completion. In both cases, the user
is provided a Future to further query the distributed operation. The partial completion
method indicates the endpoint or Distributed.Element that most recently completed.

5 Reference any of the Java 1.4.2 notification related objects, such as EventListener, Observable, Observer.

 16

The implement a Future notification, and its association with a Future is as follows:

 future.addNotification(new MyNotification() {…}); // example using anonymous class

Reductions can be entirely implemented using FutureNotification instances. However,
the role of a Reduction has more to do with computing values bases on the returned
values from a distributed operation, than with determination of state completion.
Therefore, Reductions have a substantial role within the Pericles model, and have their
own class. Naturally, the Reduction class looks nearly identical to that of
FutureNotification:

 interface Reduction<T> {
 void finalReduction(Future<T> f);
 void synchronized partialReduction(Future f<T>, int endpoint_DE);
 }

To use Reductions, one implements the Reduction interface, and associates it with a
Future like:

 future.addReduction(new MyReduction() {…}); // example using anonymous class

3.6.3 How Future Notifications and Reductions are Used
How Future Notifications and Reductions are programmatically used should be clear
from the above discussion. Notifications, as asynchronous indicators of distributed
operation completion, are very useful in enabling multi-tasking while one or more
distributed operations are in progress. The actual notification of completion, for
example, indicates to the program when the associated Future can be queried for its final
state, eliminated wasteful polling techniques.

Reductions are particularly interesting in that “running results” can be gathered in an
event driven manner. This is particularly useful for monitoring long-running
computations, whose individual tasks contribute to a final value. The program can
monitor the computation’s progress, and potentially cancel it if the results are
unsatisfactory, or better yet capitalize on the early running results.

3.6.4 Implications for Tooling
Programming tool features that could help in using Future Notifications and Reductions
include:

• Reduction template classes for doing common reduction operations such statistics,
data collection, etc.

• Coding patterns for managing multiplicities of asynchronous and related
distributed operations and notifications.

 17

3.7 Role-based Topologies

3.7.1 What is a Role-based Topology
The concept of role-based topology is a generalization of topology found in MPI. A
topology provides an alternative means for referencing an endpoint over the usual 0, 1, 2
… indexing scheme. Instead, with a topology, one is able to reference the parallel object
endpoints in a domain-specific manner. For example, for a topic such as matrix
multiplication mathematical programming, it is convenient to arrange the endpoints into
an array, and reference the endpoints by coordinates, or perhaps reference specific rows
or columns of endpoints. In other domains, it may be preferable to arrange the endpoints
into a graph.

Because of the MPI and numerical legacy of this concept, most discussions on process
topology envision them mostly as geometric artifacts. However, conceptually topology
breaks down into that of role assignment. In the array case above, the role is designated
by coordinates; for a graph, as a graph node.

By making a couple of generalizations, a role-based topology could engender broader
models. The generalizations are:

• Make the role designations general, e.g. based on strings, combinations of
integers and strings, etc.

• Make a role-endpoint mapping one-to-many, allowing many processes to be
identified by the same role.

For example, one could have a topology for transaction processing, with different roles,
for example, for task receivers, transaction pricing, transaction executors, and report
generators. More generally, any process can break into roles, with the roles of designated
resources doing specific kinds of tasks.

3.7.2 Characteristics of Role-based Topologies
A role is a means of designation for one or more endpoints. It is general in nature, and

domain specific. A role
topology is a set of roles
which cover all parallel
object endpoints of a
complex. By cover, we
mean that each endpoint has
an assigned role relative to
that role topology. A
complex may have none or
one or more than one role
topology.

1) Leader declares role topology
2) Member are invited to the topology

including the leader, black line
3) Members accept or decline, red line
4) Leader and members are informed of

the existence of the topology, green line

The process for
constructing a topology is

 18

depicted in the figure. Topologies are constructed through a declaration of the topology
by some member, called the leader of the topology, of the complex. The other members
are then notified that a topology has been declared for the complex and that they need to
accept or decline, as well as state their role in the declared topology. If all the members
accept, the topology is validated to the complex, i.e. it formally exists. A second
notification is then sent throughout the complex membership indicating that the role
topology exists, and restates the role of the endpoint.

The main classes in role topology are:

 public Role implements Comparator { } // User declares attributes for role designation

 public RoleTopology<R extends Role> {
 public int [] getRoleMembership(Role r);
 public int [] getRoleMembership(RoleQuery<R> q);
 public Role getRoleFor(int endpointId);
 public Role [] getRoles();
 }

The programmer declares and implements roles, while RoleTopology only needs to be
instantiated. The construction scheme described above utilizes ParallelComplex and
ParallelComplexInterface methods:

 public ParallelComplex:: establishRoleTopology(RoleTopology topology);

 public Role ParallelComplexInterface::roleTopologyInvite(Class roleClass,
 int leaderId);

 public void ParallelComplexInterface::roleTopologyCreation(Class roleClass,
 int leaderId,
 Role yourRole);

The establishment of the topology by the leader is achieved through the
establishRoleTopolgy method from ParallelComplex. The ParallelMessage notifications
include one for invitation, and one for role topology creation. In the notification
methods, a role class itself is passed as a parameter indicating the class used in declaring
the topology, e.g. RoleTopology<roleClassName>. The return in the role invitation
notification is the Role that the endpoint declares for itself, that will be used in the
topology. In the roleTopologyCreation notification, the role for the endpoint is passed,
saving the programming from bookkeeping chores between invitation/acceptance and
creation notification. At this time, there are no underlying mechanisms to ensure that the
self-identification of roles (returned in the invitation notification) are consistent. That
responsibility lies in the domain of the application.

 19

3.7.3 How Role Topologies are Used
The RoleTopology class is utilized programmatically and through its methods, provides
flexibility in describing the target members for scatter distributed operations. As a simple
example, suppose all parallel object endpoint belong to a topology wherein they are color
coded, and we need a scatter operation to the green members:

 proxy.include(topology.getRoleMembership(greenRole)).scatter(Distribution<….);

In cases where, for example, role designation if more complex, and the desired
membership for an operation requires more flexibility for determination, the generic class
RoleQuery is provided. The essence of this class is a user defined method to accept or
decline each role as a member of the distributed operation set.

 Proxy.include(topology.getRoleMembership(new RoleQuery() {
 public boolean acceptAsMember(Role r) {…}});

The role topology instance an also be used to query the role for a given endpoint id. The
full set of roles can be queried through the role topology. The complete set of topologies
can be queried through the ParallelComplex object.

3.7.4 Implications for Tooling
From a tool viewpoint to assist in program construction, the following features would be
useful:

• Access to RoleTopology instantiations, or variables that hold those instantiations.
• Access to Role definitions, instantiations, or variables that hold those

instantiations.

4. Examples

4.1 A Simple Scatter-Gather: Vector Multiply
This example involves the computation of vector multiplication with a matrix. The
example is set up such that there is one complex, and a designated master of that
complex. The complex holds to the matrix, and a set of vectors that are to be multiplied
with the matrix. The scheme is simple; the master first distributes the matrix amongst the
workers using row-wise stripping. That is, each of the worker processes gets a number of
contiguous rows of the matrix. Then, the master sends each vector in turn to the workers,
and collects for each vector from each worker, the portion of the result and stitches them
together.

4.1.1 Class Structures
We will assume for this example that the same Java class will be used by the master and
the workers. The differentiation of purpose will be clear; the process with rank or id 0
will be the master. We will use one interface called MasterWorker which has methods
for receiving a piece of the matrix, and a method for multiplying a piece of the matrix.

 20

The representation of matrices and vectors is with Java arrays, with a matrix being
 double [] [] matrix;
And a vector being simply
 double [] vector;
Since arrays cannot be used in generics, we will freely use some given helper classes that
represent part or all of matrix. Detailed constructors for these are:
 MatrixPart(int [][] matrix, int beginRow, int numRows, int beginCol, int numCols);
 VectorPart(int [] vector, int beginIndex, int numIndices);
With obvious defaults constructors for representing full matrices or vectors.

The Java class for our example follows along with the parallel interface6:

 class MatrixTask extends ParallelComplex implements MatrixWorker
 {
 }
 interface MatrixWorker
 {
 public boolean deliverMatrix(MatrixPart matrixPart);l
 public VectorPart multiply(VectorPart fullVector);
 }

4.1.2 Matrix Distribution
Matrix distribution is achieved through first building a Distribution<MatrixPart>,
followed by a scatter to the workers. Assume that N represents the number of worker
tasks in the collective, the distribution’s construction following to this outline:

 Distribution<MatrixPart> d = new Distribution<MatrixPart>();
 while(rowsDone!=rowsDim) {
 int rowsForThisPart = Math.min(rowsPerPart, rowsDim-rowsDone);
 MatrixPart part = new MatrixPart(matrix, rowsDone, rowsForThisPart,
 0, colDim);
 d.addElement(part);
 rowsDone += rowsForThisPart;
 }

We then proceed with the distribution. We will not collect the reply Booleans as futures,
however more robust implementations would. The general transport has an assumed
sequentiality of delivery, meaning the matrix partial will be received before any vector
multiplies are dispatched.

 InvokeMatrixWorker imt = (InvokeMatrixTask)getParallelProxy(MatrixWorker.class);
 imt.exclude().deliverMatrix(d);

6 To simplify, we are excluding the application implementation of ParallelComplexInterface.

 21

4.1.3 Vector Multiplication and Results Collection
For a given vector, we send it in its entirety to each worker, and collect the vector partials
into a result vector.

 Future<VectorPart> f = imt.exclude().multiply(new VectorPart(vector));
 f.wait();
 VectorPart [] vList = new VectorPart[N];
 for(int i=0; i<N; i++) vList[i] = f.getValue(i);
 double [] resultVector = VectorPart.toVector(vList); // concatenate results

The detailed implementation of the parallel interface methods is straight forward, and
beyond the scope of this illustration.

 22

	Introduction
	The Pericles Programming Model
	The Pericles Programming Model – Overview

	Basic Concepts
	Parallel Complex
	What is a Parallel Complex
	Characteristics of a Parallel Complexes
	How Parallel Applications and Complexes are Created
	Programmatic Details on Parallel Application Creation
	Implications for Tooling

	Parallel Interfaces
	What is a Parallel Interface
	Characteristics of Parallel Interfaces
	How Parallel Interfaces are Used
	Implications for Tooling

	Distributions
	What is a Distribution
	Characteristics of Distributions
	How Distributions are Used
	Implications for Tooling

	Collective Messaging Operations (Broadcast & Scatter)
	What are Collective Messaging Operations
	Characteristics of Collective Messaging Operations
	How Collective Messaging Operations are Used
	Peer-To-Peer Sends
	Implications for Tooling

	Futures
	What are Futures
	Characteristics of Futures
	How Futures are Used
	Implications for Tooling

	Future Notifications & Reductions
	What are Future Notifications & Reductions
	Characteristics of Future Notifications and Reductions
	How Future Notifications and Reductions are Used
	Implications for Tooling

	Role-based Topologies
	What is a Role-based Topology
	Characteristics of Role-based Topologies
	How Role Topologies are Used
	Implications for Tooling

	Examples
	A Simple Scatter-Gather: Vector Multiply
	Class Structures
	Matrix Distribution
	Vector Multiplication and Results Collection

