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1. Introduction 
The purpose of this document is to provide a technical overview and understanding of the 
Pericles object-oriented parallel programming model. 
  
The need for Pericles derives mostly from a usability viewpoint.  The types of operations 
found in distributed operations such as scatter and gather, for example, require 
considerable preparation work in setting parameters for data distribution.  Providing 
flexibility in managing the asynchronous nature of parallel programming is also crucial.  
These concerns are addressed in Pericles mainly through the addition of new classes for 
data distribution and futures, for example, and through some supporting middleware. 
 
Pericles also simplifies distributed programming using a very simple idea.  The 
messaging paradigm of other distributed API’s such as MPI transformed into a 
parametric messaging paradigm in Pericles.  In this paradigm, distributed messaging is 
achieved through argument passing to remote calls.  This simplifies distributed 
messaging, and returns the user to programmatic terra firma.  This idea is not new in the 
literature, and has been very successfully used by the ProActive project at INRIA. 
 

2. The Pericles Programming Model 
 

2.1 The Pericles Programming Model – Overview 
 
 
The Pericles programming model provides a set of sophisticated features to facilitate 
parallel and distributed programming.  This facilitation is achieved though the 
introduction of a number programming concepts including: 
 

• Parallel Complex – The application base class representing a ParallelWorkGroup. 
• Parallel interfaces – Interfaces implemented by parallel complexes that identify 

and provide means for scatter and peer-to-peer operations. 
• Distributions – A template class that facilitates the means for scattering data 

through parallel complex, without explicit message creation. 
• Futures – A class that allows asynchronous management of distributed operations 

launched with scatters. 
• Reductions – A class that allows information from a scatter to be incrementally 

processed in a background thread. 
• Role topologies – Attribution on parallel complex members that allows them to be 

referenced to tasks specific to the application. 
 
The objective behind the Pericles programming model is to facilitate parallel and 
distributed programming by taking over and managing many of the data and messaging 
aspects of parallel programming model.   
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3. Basic Concepts 
 

3.1 Parallel Complex 

3.1.1 What is a Parallel Complex 
Pericles describes a notion of a parallel workgroup concept through an object 
representation called parallel objects, instances of which aggregate into a parallel 
complex, or complex, representing a full parallel workgroup.  Each endpoint of a 
workgroup is represented by a parallel object, and the full set of these, one per endpoint 
of a workgroup, is a parallel complex.  The parallel objects of a complex are mutually-

aware in as much as each has means for 
identifying and communicating with each 
or with a subset of parallel objects 
collectively. 
 
By example, and as illustrated in the 
diagram, {0, 1, 2, 3} represents a parallel 
workgroup with 4 endpoint members.  
Pericles provides and object framework 
for representing these as four parallel 
objects A, B, C, and D, with one-to-one 
mapping between objects and endpoints.  
The aggregate set of parallel objects {A, 
B, C, D}, covering all the endpoints, is 

the parallel complex.1  In this example, A is initiating a scatter operation to the other 
members of the complex. 

A

D

C
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0
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3.1.2 Characteristics of a Parallel Complexes 
Complexes enable both singular messaging, as in peer-to-peer communication, as well as 
collective messaging, such as broadcast, scatter, gather, and reduction.  Complexes 
invoke messaging using a call-based paradigm.  That is, instead of issuing a message 
send/receive protocol, passing a data payload, which receivers receive through a 
messaging notification, Pericles messages are invoked through application interfaces 
through methods, with arguments being data payload.  Receivers receive the call-based 
message as parameters on their implementations of those method interfaces.   
 
Thus, the contractual agreement on complex messaging is that each parallel object of the 
complex implements the same messaging interfaces.  These interfaces are called parallel 
interfaces, which will be further discussed in a succeeding section. 
 
While parallel interfaces define the messaging contract for a complex, it does not 
constrain the implementation of parallel objects for the complex to be identical.  In other 
                                                 
1 Sometimes any one parallel object is referred to as a parallel complex.  While this is an abuse of accurate 
terminology, it is nonetheless acceptable when the context is understood. 
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words, while the parallel interfaces define a uniform means for passing information 
within a complex, the parallel objects themselves can be each implemented uniquely to 
the intended computational collaboration intended by the complex.  After all, each 
member of the complex may need special computational needs, objectives, and goals 
based on the design of the aggregate computation.  In this sense, Pericles is a MIMD 
model, in distinction to the somewhat informal SIMD2 model found in MPI.  While this 
does not constrain the class types of a complex’s parallel objects to be identical, in 
practice it would be practical to do so.  With proper design, this should not impact greatly 
the variation in role that each object instance would carry for the aggregate computation.  

3.1.3 How Parallel Applications and Complexes are Created 
Launching parallel applications and parallel complex formation or generation is now 
briefly described.  It is required that all parallel object classes derive from 
ParallelComplex and implement a special interface for parallel messaging called the 
ParallelComplexInterface interface.  ParallelComplex provides the essential 
infrastructure for the parallel object to account for its endpoints, and asynchronous 
messaging. This interface provides means for intercepting a variety of messages, 
including formation and destruction of complexes, and changes in a complex’s 
membership, for example.  A parallel application is launched with a configuration 

indicating the number of endpoints, and 
possibly where the endpoints are 
located.  Upon launching, the first 
parallel objects that are created are for 
the parallel workgroup representing the 
entire set of endpoints, called the default 
workgroup.  We call the counterpart 
Pericles complex and object(s) for the 
default workgroup, the default complex 
and the default parallel object(s). 
 
As shown in the diagram, when all the 
default parallel objects are instantiated, 

so is the default complex, i.e. there is no need to explicitly add members to this complex; 
the system does that for you.  Suppose, in turn, a new complex, called Foo, is to be 
defined consisting of the first two endpoints of the default complex, {0, 1}.  In this 
example, A constructs a new workgroup containing only endpoint 0, and constructs Foo 
member Y, passing the new workgroup.  Y then adds endpoint 1 to itself.  This results in 
a notification to B, representing 1 in the default complex, that it should create Z, with 
endpoint 1 added to it.  The process for formation of larger sub-complexes of the default 
complex should be clear now.  It should also be clear how Foo could itself launch other 
complexes which would be totally instantiated by the other members of the Foo complex.  

pc pc pc

pc pc

Pericles PPM

Default Complex

Complex Foo

A B C

Y Z

                                                 
2 MPI is not a strict SIMD model, allowing variation of computation amongst members of a collective.  
However, the lock-step protocol of many MPI commands does force synchronization amongst collective 
members, making MPI a command-based SIMD model.  While Pericles requires sends to be received, 
sends are asynchronous, freeing one from the kind of lock-step synchronization found in MPI. 
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In all cases, parallel objects implement the ParallelMessage interface, which enables the 
process described above. 

3.1.4 Programmatic Details on Parallel Application Creation 
In this section, further details are given on the creation of parallel objects, referencing the 
figure of the last section.  All parallel objects derive from ParallelComplex, which has 
several construction variants: 
 
    public ParallelComplex(ParallelWorkgroup parent, int [] members,  
                                           Class [] parallelIntefaces); 
    public ParallelComplex(ParallelWorkgroup  wkg, Class [] parallelInterfaces); 
    public ParallelComplex(Class [] parallelInterfaces); 
 
In the first case, the constructor builds a new ParallelWorkgroup from a referenced parent 
workgroup and a subset of its members.  The second has a provided workgroup handed to 
it.   The last case allows the ParallelComplex to build its own ParallelWorkgroup.  In 
each case, the parallel interfaces are defined to the parallel object.   More on parallel 
interfaces is found in a later section.  In the example above, A would construct Y with: 
 
    public Y(ParallelWorkgroup parent, int [] members); 
 
which invokes then the first of the ParallelComplex constructors mentioned above.  
When the members {0,1} are added, B’s ParallelComplexInterface notification method is 
invoked: 
 
    public boolean invitedToComplex(ParallelWorkgroup wkgp); 
 
B then constructs Z and returns true.  B can use the name of the parallel workgroup to 
coordinate to the class Z for the construction.  The Y constructor would then be: 
 
    public Y(ParallelWorkgroup wkgp); 
 
using the second of the constructors mentioned above.  Parallel object A also gets 
notification, as its workgroup was the basis or parent for the workgroup.  However, since 
A has already instantiated Y, with sufficient bookkeeping on object creation, it can 
bypass this notification.  However, if A had not instantiated Y, but simply built a 
workgroup and added members, A would instantiate Y in a manner similar to the way B 
instantiated Z. 
 
Finally, Y and Z get notifications through their ParallelComplexInterface that they their 
membership in their workgroup has been finalized: 
 
    public void complexCreated(ParallelWorkgroup wkgp); 
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3.1.5 Implications for Tooling 
The tooling for parallel program construction could include features for helping with the 
following: 

• Definition of a parallel object class, providing assistance with implementing the 
ParallelComplexInterface interface 

• Assist in identifying all object classes that belong to a complex 
• Assist in identifying all interfaces affiliated with a complex 
• Assist in code generation on spawning a sub-complex from a complex 
• Assist in code generation for the de-construction of a sub-complex for a complex 

 

3.2 Parallel Interfaces 

3.2.1 What is a Parallel Interface 
Parallel interfaces provide the contract for messaging amongst the parallel objects within 
a complex.  A parallel interface is a Java interface defining methods for peer-to-peer and 
scatter messaging within a complex.  A complex may be defined through one or more 
parallel interfaces, and consequently, each parallel object within the complex must have 
implementations for each parallel interface.  The implementation of each method within a 
parallel interface defines the kind of task work expected from a parallel object within a 
collaborative computation in that complex. 
 
Since parallel interfaces are not distinguishable from standard Java interfaces, we require 
means for invocation of their methods with asynchronous parallelism semantics, as 
opposed to their standard invocation.  In other words, the interface for parallel method  
implementation or expression should be distinguished from the interface for parallel 
method invocation.  Towards that end, a parallel interface has two forms, one called the 
implementation interface, and the other the invocation interface.  The parallel object 
implements the implementation interface for parallel work, but invokes the invocation 
interface to invoke or initiate a scatter or peer-to-peer task.  As will be shown later, the 
invocation interface distinguished itself with variants on the method definitions that allow 
for singular and collective messaging, using data distributions and futures.  The term 
parallel interface usually means both interfaces inclusively, however it can mean either 
separately from discussion context. 
 

3.2.2 Characteristics of Parallel Interfaces 
Parallel implementation interfaces specify methods whose implementation usually 
defines collective tasks.  For each parallel object, the method would likely be defined in a 
manner unique to its role in the collective computation.  If the parallel object type is 
unique amongst the complex’s membership, it may be implemented uniquely.  Usually 
however, a complex shares the same object type in which case the distinction in 
computation is dynamically determined, perhaps by endpoint identity. 
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An invocation interface, as described, is a counterpart to the implementation interface 
defining variants of the implementation methods allowing for asynchronous messaging.  
To its name, invocation interfaces are purely meant for parallel method invocation.  
Invocation interfaces are tool-generated based on implementation interfaces.  A parallel 
object never implements the invocation interface3, but instead obtains a reference to a 
proxy for it, to execute a parallel task.  Invocation interfaces manage a number of critical 
details in distributed computation, including marshalling, communication with other 
parallel object endpoints, and various error detections. 
 
Each implementation method is recast into a set of variant methods in the invocation 
interface.  The variants allow for peer-to-peer messaging, collective messaging, and 
asynchronous invocation.  For example, suppose the parallel interface ValueSet defines 
the following method: 
    int getValue(double initValue, String title); 
 
The invocation interface would include the following counterparts: 
    
   Future<int> getValue(double initValue, String title);                     // broadcast 
   Future<int> getValue(Distribution<double, String> params);      // scatter 
 
Two variants are constructed –for collective broadcast, and for collective scatter.  In each 
case the return type is Future, a generic class that allows for asynchronous tracking of the 
resultant values.  In the scatter variant, we introduce a Distribution generic class which 
provides a means for passing different data, of the same kind, amongst the parallel object 
endpoints.  Further discussion on these topics will be presented later. 
 

3.2.3 How Parallel Interfaces are Used 
We will reference the parallel interface ValueSet and the getValue() method from the 
prior section.  The ValueSet implementation interface would be defined as a standard 
Java interface: 
 
interface ValueSet { 
    public int getValue(double initValue, String title); 
} 
 
The ValueSet invocation interface is derived or generated from the ValueSet 
implementation interface.  The new invocation interface’s name is based on that of the 
implementation interface, with “Invoke” appended to the front. The result is 
InvokeValueSet in this case: 
 

                                                 
3 The reason for not allowing parallel object implementation of an invocation interface is firstly that it 
contains signatures identical to the implementation interface, except for return type.  Secondly, the 
implementation of the invocation interface is, per method, a generic enablement of a parallel task based on 
the signature of the method.  This is best automatically or dynamically generated, and not handed to the 
user, per se. 
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interface InvokeValueSet { 
   Future<Int> getValue(double initValue, String title);                      // broadcast 
   Future<Int> getValue(Distribution<Double, String> params);      // scatter 
} 
 
To invoke parallel messaging, the parallel object first requires a proxy reference to the 
required interface: 
 
InvokeValueSet ivs=(InvokeValueSet)this.getParallelProxy(ValueSet.class); 
 
getParallelProxy is a method from the ParallelComplex class from which the parallel 
object derives.  ParallelComplex is provided by Pericles for various parallel queries and 
operations.  Given access to the invocation interface, it is easy to initiate a broadcast 
across the complex: 
 
    Future<Integer> v = ivs.getValue(5, “Bin”); 
 
By this invocation, a parallel broadcast has been initiated across the complex.  Each 
parallel object will execute getValue(5, “Bin”), and return their values.  The Future<int> 
will track the receipt of all the int values from the broadcast replies.  The call will not 
block; instead, the user may either query for completion, or wait and extract the value: 
 
 int value =  (v.completed() ? v.intValue() : -1);  // or 
 int value = v.wait().intValue(); 
 
The other invocation types will be examined in more detail later. 
 

3.2.4 Implications for Tooling 
Tooling for parallel program construction could include features to assist in the 
following: 

• Generation of the invocation interface from the implementation interface 
• Consolidate parallel object classes with parallel interfaces 
• Generate code (assist) in obtaining interface proxies (getParallelProxy) 
• Provide general code assist, completions, etc. as found in Eclipse 
• Analysis for missing Futures, or Futures that have not been waited upon for 

values (within a given method). 
  

3.3 Distributions 

3.3.1 What is a Distribution 
Distributed scatter operations involve the dissemination of varied data across a 
potentially large population of parallel object endpoints.  With methods as the means for 
scatters in Pericles, there are natural limits on the argument data that can be sent through 
any one method signature.  In fact, per signature, only one set of data can be specified as 
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arguments, which can only be effective for a broadcast distributed operation, or peer-to-
peer operation. 
 
To broaden the means of using methods for scatter operations, an abstraction is 
introduced for representing an amalgamation of signatures of varied argument data, an 
abstraction called Distribution.  Conceptually, a distribution allows many “signatures-
worth of arguments” to be bundled together, for passing to the method for a scatter 
operation.  Distribution is introduced in Pericles as an enabling software artifact.  As was 
seen in the prior section, a variant of the original method is generated for the invocation 
interface that allows a distribution to be passed as an argument. 
 

3.3.2 Characteristics of Distributions 
Distribution is a Java generic class for enabling scatter operations.  For a given method in 
a parallel interface, the parameter types of a Distribution used in a scatter-variant match 
the method’s parameter types one-to-one, and in order.  For example, given the following 
parallel method: 
 
    int sendInformation(int x, String y, Info z);   
 
the corresponding Distribution that would be used in the scatter variant of the method is: 
 
   Distribution<Integer, String, Info>; 
 
As a programming mechanism, a distribution is a set of Distribution.Element’s.  A 
distribution element corresponds to a single signature’s worth of arguments, and is 
templated similarly to Distribution.  In the above example, we have: 
 
    Distribution.Element<Integer, String, Info> 
 
where a Distribution.Element corresponds to on set of arguments to the parallel interface 
method sendInformation. 
 
Thus, in programming a scatter, one builds a set of Distribution.Element’s to disburse 
through a set of parallel object endpoints, adds each of them to the Distribution, and 
invokes the scatter variant of the parallel method, passing the Distribution. 
 
Distributions are an aid for distributed programming in Pericles.  However there are a 
few restrictions and rules.  Since Distribution is implemented as a template, the size of 
the distribution’s parameter type signature (corresponding to the number of parameters in 
the parallel method) is limited4.  Java generics also have a number of considerations or 
limitations.  For example, native types such as int and double cannot be directly used.  
Instead the Object classes Integer and Double have to be used.  Also, one cannot specify 
arrays as parameter types, and any of the variety of Collection classes must be used 

                                                 
4 Presently the proposed limit is 20.  However, this will likely change with implementation. 
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instead.  As a means for overcoming these short-falls in actual situations, such as when a 
parallel method has a very large number of parameters, a non-generic Distribution is 
provided to facilitate the packaging of information for scatter operations.  However, 
discussion of this facility is out of scope of this report. 

3.3.3 How Distributions are Used 
We will re-examine the example of the prior section, and show details on how to use 
distributions for a scatter operation.  Suppose we are to do a scatter of N sets of {Integer, 
String, InfoClass} arguments amongst the parallel objects of a complex.  The 
construction of the distribution would look like the following: 
 
   Distribution<Integer,String,Info> d=new Distribution<Integer,String,Info>(); 
   for(int i=0; i<N; i+) { 
        Distribution.Element<Integer, String, Info> e = new Distribution.Element 
                           <Integer, String, Info>(new Integer(i), strings[i], info[i]); 
        d.addElement(e); 
   } 
 
Following along the discussions of the prior sections, the actual scatter might look like 
the following: 
 
   InvokeProcIFace pi =( InvokeProcIFace)this.getParallelProxy(ProcIFace.class); 
   Future<Integer> f = pi.sendInformation(d); 
 
Details on how the handle the Future and acquire the returned results will be discussed in 
a later section. 
 

3.3.4 Implications for Tooling 
Distributions are meant to facilitate scatter operations.  Tooling features would therefore 
focus on facilitating the use of distributions, such as: 

• Generation of Distribution<…> with type parameters, in appropriate contexts, 
based on the parallel method selected. 

• Similar with the generation of Distribution.Element<…> 
• Various code assists and completions to help in coding distributions easier. 
• Refactoring Distribution’s when method parameters are changed. 
• More direct code generative means for building a Distribution from a selected set 

of data (to be used as arguments). 

3.4 Collective Messaging Operations (Broadcast & Scatter) 

3.4.1 What are Collective Messaging Operations 
The collective messaging operations in Pericles are broadcast and scatter.  In a broadcast, 
arguments specified to the method’s signature are distributed identically to all the parallel 
object endpoints.  In a scatter, multiple argument signatures are distributed amongst the 
parallel objects.  Clearly, the former operation uses the multi-typed method signature 
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found in the parallel interface, while a scatter uses an invocation variant utilizing 
Distributions.   
 
In both cases, the parallel object endpoints return values commensurate with the return 
type of the parallel method.  However, collective messaging operations are asynchronous 
in nature.  Therefore, a device called “Futures” is used to manage the returns on these 
operations.  Futures are discussed in a later section. 
 

3.4.2 Characteristics of Collective Messaging Operations 
 
By default, broadcasts and scatters target the entire complex membership, including the 
sender.  That means, that the sender endpoint must include for itself data in its send, as 
part of a group computation, and its implementation method will be invoked 
asynchronously with that data in its parameters.  Often this situation is not desirable, and 
there is a clean separation between master and worker processes.  Pericles offers the 
option of excluding itself from a collective messaging operation.  This facilitates greatly 
the implementation of master-worker relationships within a complex, when a leader 
member distributes work to the others.  More generally, Pericles allows the sender to 
exclude specific members from the operation, restricting the operation to specific 
complex member receivers.  Alternative, a specific subset of endpoints can be specified 
for the operation.  In either case, this feature enables a rich master-worker computation to 
be defined that facilitates partitioning the field of complex members to different roles 
(see Role Topology section). 
 
The distribution of argument data in a scatter operation follows a round-robin/greedy 
algorithm.  That is, at the start of the operation, the Distribution.Element’s of the 
Distribution are handed-out, in order, to each parallel object in the complex.  If there are 
more elements than members, the next element is handed to the member whose response 
is most recently received, and so forth, on a first-come first-serve basis. 
 
More generally, the method of data distribution is a variable in collective messaging 
operations.  A Distribution policy can be defined and specified for any one collective 
messaging operation.  One may want to ensure that endpoints with larger storage 
capacity, for example, get higher priority for receiving distribution elements than others, 
or that distribution elements follow a particular statistical pattern, perhaps based on the 
distribution element data values themselves.  The ability to design distribution policies 
for collective messaging begins to address needs for resource management and 
scheduling at the programmatic level. 
 

3.4.3 How Collective Messaging Operations are Used  
Broadcasts and scatters have been discussed and exemplified in prior sections.  Using our 
last example and setting the stage for further demonstration, examples of a broadcast and 
scatter are given: 
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   InvokeProcIFace pi = (InvokeProcIFace)this.getParallelProxy(ProcIFace.class); 
   Future<Integer> bcastResult   = pi.sendInformation(id[k], name[k], info[k]); 
   Future<Integer>scatterResultf = pi.sendInformation(d); 
 
Future’s are used to manage the return results, and will be discussed in a later section. 
 
In cases where it is derisible to do any of excluding the invoker, excluding other complex 
members, or narrowing the scatter to a subset of members, a qualifying member 
constraint must be specified.  This constraint is specified thourhg the proxy.  This is 
possible through the proxy invocation interface with a set of utility methods to deal with 
inclusions and exclusions.  These are generated into the proxy invocation interface.  In 
this case, we have: 
 
    exclude():                            // exclude invoker from broadcast/scatter 
    exclude(int [] exclusions);  // exclude specific endpoints 
    include(int [] inclusions);  // only use specified endpoints 
 
When a proxy invokes any of the above, the designated set stays in effect with the proxy 
until it is further altered or reset.  For convenience each method returns the proxy.   By 
way of example: 
 
   bcastResult = pi.exclude().sendInformation(3, “abc”, info);    // exclude self only 
   bcastResult = pi.exclude(new int [] {1, 5, 7}).sendInformation(…);  // exclude 1, 3, 7 
   bcastResult = pi.include(new int [] {1, 3, 9}).sendInformation(…);  // only to 1, 3, 9 
 
As discussed earlier, distribution policies are user defined policies for defining how 
distribution elements are scattered amongst complexes endpoints.  Distribution policies 
are implementations of the DistributionPolicy interface: 
 
   interface DistributionPolicy { 
       int determineEndpoint(DistributionElement e, int [] targets, int [] availableTargets); 
   } 
 
The determineEndpoint method accepts as input the raw generic type 
DistributionElement, which is the current element that requires a target endpoint identity, 
the set of allowable targets (which may have been restricted by inclusion/exclusion 
mentioned earlier), and the set of targets endpoints available for further calls of a scatter 
operation.  The method returns a valid endpoint id to designate the target, or -1 to let the 
Pericles middleware decide.  Note that if an endpoint is specified that is available, the 
system will wait on that target, and when it is freed will receive that data element.  This is 
not strictly a synchronous barrier, however, as the policy will be called for other 
distributed element target assignments. 
 
Policy assignment is achieved through the method: 
 
   bcastResult.assignDistributionPolicy(new MyPolicy()); 
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This method also returns the proxy, and thus a broadcast/scatter can be appended to the 
above. 

3.4.4 Peer-To-Peer Sends 
Clearly, the include methods on the proxy are sufficient to execute peer-to-peer 
operations, by simply specifying the one target member.  However, to facilitate peer-to-
peer, we introduce the additional method to the proxy interface: 
 
    to(int targeted);                  // only to the targetId endpoint 
 
Much like the exclude and include interfaces mentioned earlier, this designated set (on 
one) stays in effect with the proxy until it is further altered or reset.  Also, as before, the 
method returns the proxy, allowing the target method to be appended. 

3.4.5 Implications for Tooling 
Programming broadcast and scatter operations could greatly benefit from the usual 
tooling code assist and code completions.  A number of related tooling traits were given 
in the Parallel Interface section 3.2.4.  Along with those, it would be useful to have a 
means for help in coding distribution policies, as well as a means for locating all 
distribution policy classes within a code base, selection from which could help in coding 
the assignment statement. 

3.5  Futures 

3.5.1 What are Futures 
Futures are effectively handles to return results from asynchronous operations.  Since 
Pericles is inherently an asynchronous programming model, Futures are widely used in 
Pericles programming.  A Future is responsible for managing all the returns from the 
endpoints in an asynchronous operation, whether or not they return actual values.  As 
discussed later, Futures also provide an anchor for means for distributed operation state 
notification and reduction of returned results into different data forms (see Future 
Notification & Reductions); 
 
The Future class is implemented as a Java generic.  The parameter type on a future must 
match that of the return type of the method of whose distributed operation the Future 
receives.  In the case of “void” type, the raw Future type is used. 
 

3.5.2 Characteristics of Futures 
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To gain an appreciation for the characteristics of a Future, it is worth exploring the figure 
below which examines the execution lifetime of a Future relative to a distributed 
operation.  The timeline charts the events within a complex during, say a scatter.  The 
Future is created at the time the scatter is initiated.  In this case, a distribution is specified, 
and calls are made to all the target endpoints.  Each target endpoint processes to the data 
(parameters) it receives on this operation, and returns a value.  During this process, the 
future incrementally receives the returns from the target call.  The Future also has a set of 
reduction objects which process the received results either as they are received by the 
future, or at the end of all the receipts (discussed in a later section).  The program may 
retrieve all the reduced values at the end of the process. 
 

Scatter

call

call

call

call

Time

Data Calls Target entry

Reductions

Values

 

Futures then are a managing device for coordinating the receipt of all the asynchronous 
calls in a distributed operation, as well as coordinating the received values from those 
calls.  However, during that time, the program may proceed with other computations, and 
poll the Futures for there state, or even intermediate results. 
 
The programmatic operations on Futures involve state query, waiting, and value access.  
For state query, one would be most interested in querying for the completion status of the 
distributed operation.  The query methods on Futures include: 
 
  boolean Future::isCompleted();           // indicate whether operation is done or not 
  int [] Future::getCompletedCalls();     // int [] maps to endpoints for broadcast 
                                                                //           and to Distributed.Element’s for scatter 
  int [] Future::getCurrentCalls();         // maps as above, but for current calls 
  int [] Future::getOutstandingCalls();  // maps as above, but for call not initiated 
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The above methods on Future allow the program to check not only whether or not the full 
operation has completed, but also how much of the operation has completed.  The latter 
includes queries for completed calls, currently processing calls, and calls that have not 
been initiated, i.e. when there are more Distributed.Element’s than parallel object 
endpoints.  The semantics for these change between broadcast and scatter.  Since 
broadcasts have as many calls as endpoints, the returned array maps to endpoints.  That is 
not the case for scatters, the returned array maps to indices of Distributed.Element’s. 
 
There are likely to be times when one needs to wait on a Future for a specific state to 
proceed with processing.  The methods for these are: 
 
  boolean Future::wait();                           // wait indefinitely 
  boolean Future::wait(int ms);                  // wait for a specified number of milliseconds 
  boolean Future::waitOn(int [] ids, int ms);  // wait for endpoints/element completions 
 
As with the state query calls, the waitOn method interprets the integer array as endpoints 
or Distributed.Element’s depending on whether this is a broadcast or scatter. 
 
The cancellation calls are: 
 
    boolean Future::cancel(); 
    boolean Future::cancel(int [] ids);    // cancel endpoints/element 
 
Value access methods include: 
 
   <T>  getValue(int id);                        // get the value for endpoint/element call 
   <T> [] getValue(int [] id);                // get the values for endpoints/elements calls 
 
For value accessing methods above, if the value has not yet been received, the method 
blocks until the value is received.  So it is recommended to use any combination of query 
or wait calls first to assure the value access methods return promptly. 

3.5.3 How Futures are Used 
Much of how to use futures should be clear to most proficient programmers, from the 
characteristics section 3.5.2.  The practical use of these characteristics is quite varied, and 
depends on the programming task.  In simple cases, one would simply choose to wait on 
a Future.  More complex cases might require querying the Future intermittently for 
completion, and do other work in the mean time.  

3.5.4 Implications for Tooling 
Programming tool features that could help in using Futures include: 

• Discover distributed operations that do not receive a Future.  These could be 
warnings.  

• Re-factor distributed operations that do not receive a Future, into one that does. 
• Re-factor all declared Futures when the parameter type changes. 
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• Provide a set of code generative patterns that can take advantage of the powerful 
incremental query and processing powers of futures described in 3.5.3. 

3.6 Future Notifications & Reductions 

3.6.1 What are Future Notifications & Reductions 
Futures, as handles to asynchronous operations, can only be used as polling devices for 
distributed operations status.  That is, the user must query the Future object to determine 
the status.  Future notifications provide a means for observing asynchronously the 
completion status on a distributed operation represented by a Future object.  Future 
notifications follow the standard Java notification mechanisms5 of notification interfaces, 
and provide a means for a program to detect the completion of a distributed operation, or 
its intermediate stages of completion. 
 
Similar to Future notification is the concept of Reduction.   A Reduction is a means for 
computing application-dependent values based on the returned values of a distributed 
operation.  For example, if a parallel method returns an integer value; one reduction 
might obtain the sum or mean of those values.  In fact, it may be desirable to obtain 
intermediate computations, e.g. running sums, as a computation proceeds.   This allows 
one to cancel or terminate a distributed operation based on early results.  Operationally, 
there is very little difference between Future notifications and Reductions, and in fact the 
latter can be built from the former.  However, conceptually they are distinct in their 
intended use of the results of distributed operations – the former for notification of state 
and the latter for computation of related states.  Thus, they are related and extremely 
similar in nature, but described with their own unique settings. 

3.6.2 Characteristics of Future Notifications and Reductions 
Future notifications provide a means for a program to check not only whether the full 
distributed operation has completed, but also how much of the operation has completed.  
The latter includes notification for completed distributed operations, the state of currently 
processing operations, including states of operations that have not been initiated, i.e. 
when there are more Distributed.Element’s than parallel object endpoints. The 
notification interface for a notification class on a Future is: 
 
    interface FutureNotification<T> { 
         void finalCompletion(Future<T> f); 
         void synchronized  partialCompletion(Future f<T>, int endpoint_DE); 
    } 
 
The two methods provide means for being notified of full completion of the distributed 
operation, as well as a means for determining partial completion.  In both cases, the user 
is provided a Future to further query the distributed operation.  The partial completion 
method indicates the endpoint or Distributed.Element that most recently completed.   
 

                                                 
5 Reference any of the Java 1.4.2 notification related objects, such as EventListener, Observable, Observer.  
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The implement a Future notification, and its association with a Future is as follows: 
 
    future.addNotification(new MyNotification() {…});   // example using anonymous class 
 
Reductions can be entirely implemented using FutureNotification instances.  However, 
the role of a Reduction has more to do with computing values bases on the returned 
values from a distributed operation, than with determination of state completion.  
Therefore, Reductions have a substantial role within the Pericles model, and have their 
own class.  Naturally, the Reduction class looks nearly identical to that of 
FutureNotification: 
 
    interface Reduction<T> { 
         void finalReduction(Future<T> f); 
         void synchronized partialReduction(Future f<T>, int endpoint_DE); 
    } 
 
To use Reductions, one implements the Reduction interface, and associates it with a 
Future like: 
 
    future.addReduction(new MyReduction() {…});   // example using anonymous class 

3.6.3 How Future Notifications and Reductions are Used 
How Future Notifications and Reductions are programmatically used should be clear 
from the above discussion.  Notifications, as asynchronous indicators of distributed 
operation completion, are very useful in enabling multi-tasking while one or more 
distributed operations are in progress.  The actual notification of completion, for 
example, indicates to the program when the associated Future can be queried for its final 
state, eliminated wasteful polling techniques. 
 
Reductions are particularly interesting in that “running results” can be gathered in an 
event driven manner.  This is particularly useful for monitoring long-running 
computations, whose individual tasks contribute to a final value.  The program can 
monitor the computation’s progress, and potentially cancel it if the results are 
unsatisfactory, or better yet capitalize on the early running results. 

3.6.4 Implications for Tooling 
Programming tool features that could help in using Future Notifications and Reductions 
include: 

• Reduction template classes for doing common reduction operations such statistics, 
data collection, etc. 

• Coding patterns for managing multiplicities of asynchronous and related 
distributed operations and notifications. 
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3.7 Role-based Topologies 

3.7.1 What is a Role-based Topology 
The concept of role-based topology is a generalization of topology found in MPI.  A 
topology provides an alternative means for referencing an endpoint over the usual 0, 1, 2 
… indexing scheme.  Instead, with a topology, one is able to reference the parallel object 
endpoints in a domain-specific manner.  For example, for a topic such as matrix 
multiplication mathematical programming, it is convenient to arrange the endpoints into 
an array, and reference the endpoints by coordinates, or perhaps reference specific rows 
or columns of endpoints.  In other domains, it may be preferable to arrange the endpoints 
into a graph. 
 
Because of the MPI and numerical legacy of this concept, most discussions on process 
topology envision them mostly as geometric artifacts.  However, conceptually topology 
breaks down into that of role assignment.  In the array case above, the role is designated 
by coordinates; for a graph, as a graph node.   
 
By making a couple of generalizations, a role-based topology could engender broader 
models.  The generalizations are: 
 

• Make the role designations general, e.g. based on strings, combinations of 
integers and strings, etc. 

• Make a role-endpoint mapping one-to-many, allowing many processes to be 
identified by the same role. 

 
For example, one could have a topology for transaction processing, with different roles, 
for example, for task receivers, transaction pricing, transaction executors, and report 
generators.  More generally, any process can break into roles, with the roles of designated 
resources doing specific kinds of tasks. 

3.7.2 Characteristics of Role-based Topologies 
A role is a means of designation for one or more endpoints.  It is general in nature, and 

domain specific.  A role 
topology is a set of roles 
which cover all parallel 
object endpoints of a 
complex.  By cover, we 
mean that each endpoint has 
an assigned role relative to 
that role topology.  A 
complex may have none or 
one or more than one role 
topology. 

1) Leader declares role topology
2) Member are invited to the topology 

including the leader, black line
3) Members accept or decline, red line
4) Leader and members are informed of 

the existence of the topology, green line

 
The process for 
constructing a topology is 

 18



depicted in the figure.  Topologies are constructed through a declaration of the topology 
by some member, called the leader of the topology, of the complex.  The other members 
are then notified that a topology has been declared for the complex and that they need to 
accept or decline, as well as state their role in the declared topology.  If all the members 
accept, the topology is validated to the complex, i.e. it formally exists.  A second 
notification is then sent throughout the complex membership indicating that the role 
topology exists, and restates the role of the endpoint. 
 
The main classes in role topology are: 
 
   public Role implements Comparator {  } // User declares attributes for role designation 
 
  public RoleTopology<R extends Role> { 
      public int [] getRoleMembership(Role r); 
      public int [] getRoleMembership(RoleQuery<R> q); 
      public Role  getRoleFor(int endpointId); 
      public Role [] getRoles(); 
  } 
 
The programmer declares and implements roles, while RoleTopology only needs to be 
instantiated.  The construction scheme described above utilizes ParallelComplex and 
ParallelComplexInterface methods: 
 
    public ParallelComplex:: establishRoleTopology(RoleTopology topology); 
                                                                                                         
    public Role ParallelComplexInterface::roleTopologyInvite(Class roleClass,  
                                                                                                   int     leaderId);  
 
    public void ParallelComplexInterface::roleTopologyCreation(Class roleClass,  
                                                                                                         int     leaderId,  
                                                                                                         Role yourRole);  
 
The establishment of the topology by the leader is achieved through the 
establishRoleTopolgy method from ParallelComplex.  The ParallelMessage notifications 
include one for invitation, and one for role topology creation.  In the notification 
methods, a role class itself is passed as a parameter indicating the class used in declaring 
the topology, e.g. RoleTopology<roleClassName>.  The return in the role invitation 
notification is the Role that the endpoint declares for itself, that will be used in the 
topology.  In the roleTopologyCreation notification, the role for the endpoint is passed, 
saving the programming from bookkeeping chores between invitation/acceptance and 
creation notification.  At this time, there are no underlying mechanisms to ensure that the 
self-identification of roles (returned in the invitation notification) are consistent.  That 
responsibility lies in the domain of the application.   
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3.7.3 How Role Topologies are Used 
The RoleTopology class is utilized programmatically and through its methods, provides 
flexibility in describing the target members for scatter distributed operations.  As a simple 
example, suppose all parallel object endpoint belong to a topology wherein they are color 
coded, and we need a scatter operation to the green members: 
 
    proxy.include(topology.getRoleMembership(greenRole)).scatter(Distribution<….); 
 
In cases where, for example, role designation if more complex, and the desired 
membership for an operation requires more flexibility for determination, the generic class 
RoleQuery is provided.  The essence of this class is a user defined method to accept or 
decline each role as a member of the distributed operation set. 
 
   Proxy.include(topology.getRoleMembership(new RoleQuery() { 
                                                              public boolean acceptAsMember(Role r) {…}}); 
 
The role topology instance an also be used to query the role for a given endpoint id.  The 
full set of roles can be queried through the role topology.  The complete set of topologies 
can be queried through the ParallelComplex object. 

3.7.4 Implications for Tooling 
From a tool viewpoint to assist in program construction, the following features would be 
useful: 

• Access to RoleTopology instantiations, or variables that hold those instantiations. 
• Access to Role definitions, instantiations, or variables that hold those 

instantiations. 
   

4. Examples 

4.1 A Simple Scatter-Gather: Vector Multiply 
This example involves the computation of vector multiplication with a matrix.  The 
example is set up such that there is one complex, and a designated master of that 
complex.  The complex holds to the matrix, and a set of vectors that are to be multiplied 
with the matrix.  The scheme is simple; the master first distributes the matrix amongst the 
workers using row-wise stripping.  That is, each of the worker processes gets a number of 
contiguous rows of the matrix.  Then, the master sends each vector in turn to the workers, 
and collects for each vector from each worker, the portion of the result and stitches them 
together. 

4.1.1 Class Structures 
We will assume for this example that the same Java class will be used by the master and 
the workers.  The differentiation of purpose will be clear; the process with rank or id 0 
will be the master.  We will use one interface called MasterWorker which has methods 
for receiving a piece of the matrix, and a method for multiplying a piece of the matrix. 
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The representation of matrices and vectors is with Java arrays, with a matrix being  
    double [] [] matrix; 
And a vector being simply 
    double []  vector; 
Since arrays cannot be used in generics, we will freely use some given helper classes that 
represent part or all of matrix.  Detailed constructors for these are: 
   MatrixPart(int [][] matrix, int beginRow, int numRows, int beginCol, int numCols); 
   VectorPart(int [] vector, int beginIndex, int numIndices); 
With obvious defaults constructors for representing full matrices or vectors. 
 
The Java class for our example follows along with the parallel interface6: 
 
    class MatrixTask extends ParallelComplex implements MatrixWorker 
    { 
    } 
    interface MatrixWorker  
    { 
        public boolean          deliverMatrix(MatrixPart matrixPart);l 
        public VectorPart     multiply(VectorPart   fullVector); 
    } 

4.1.2 Matrix Distribution 
Matrix distribution is achieved through first building a Distribution<MatrixPart>, 
followed by a scatter to the workers.  Assume that N represents the number of worker 
tasks in the collective, the distribution’s construction following to this outline: 
 
    Distribution<MatrixPart> d = new Distribution<MatrixPart>(); 
    while(rowsDone!=rowsDim) { 
        int                  rowsForThisPart = Math.min(rowsPerPart, rowsDim-rowsDone); 
        MatrixPart    part = new MatrixPart(matrix, rowsDone, rowsForThisPart, 
                                                                    0, colDim); 
        d.addElement(part); 
        rowsDone += rowsForThisPart; 
    } 
 
We then proceed with the distribution.  We will not collect the reply Booleans as futures, 
however more robust implementations would.  The general transport has an assumed 
sequentiality of delivery, meaning the matrix partial will be received before any vector 
multiplies are dispatched. 
 
    InvokeMatrixWorker imt = (InvokeMatrixTask)getParallelProxy(MatrixWorker.class); 
    imt.exclude().deliverMatrix(d); 

                                                 
6 To simplify, we are excluding the application implementation of ParallelComplexInterface. 
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4.1.3 Vector Multiplication and Results Collection 
For a given vector, we send it in its entirety to each worker, and collect the vector partials 
into a result vector. 
 
    Future<VectorPart> f = imt.exclude().multiply(new VectorPart(vector)); 
    f.wait(); 
    VectorPart [] vList = new VectorPart[N]; 
    for(int i=0; i<N; i++)  vList[i] = f.getValue(i); 
    double [] resultVector = VectorPart.toVector(vList);   // concatenate results 
 
The detailed implementation of the parallel interface methods is straight forward, and 
beyond the scope of this illustration. 
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