
RC24005 (W0607-052) July 14, 2006
Computer Science

IBM Research Report

Learning on Graph with Normalized Laplacian Regularization

Rie Kubota Ando
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Tong Zhang
Yahoo! Inc.

New York, NY 10011

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Learning on Graph with Normalized Laplacian Regularization

Rie Kubota Ando
IBM T.J. Watson Research Center

Hawthorne, NY 10532, U.S.A.
rie1@us.ibm.com

Tong Zhang
Yahoo! Inc.

New York City, NY 10011, U.S.A.
tzhang@yahoo-inc.com

Abstract

We consider a general form of transductive learning on graphs with Laplacian regularization
for multi-category classification, and obtain margin-based generalization bounds. Using this
analysis, we establish the connection between graph cuts and margin, which enables us to
express the generalization behavior of graph learning based on appropriate geometric properties
of the graph. In particular, using a learning theoretical definition of normalized cut, we show
the importance of normalizing the graph Laplacian matrix. Under appropriate assumptions,
the optimal normalization factors can be derived. The analysis reveals the limitations of the
standard normalization method, and provides a remedy. Experiments confirm the superiority of
the learning theoretically motivated normalization scheme on artificial and real-world datasets.

1 Introduction

Graph-based methods, such as spectral embedding, spectral clustering, and semi-supervised learn-
ing, have drawn much attention in the machine learning community. While various ideas have been
proposed based on different intuitions, only recently have there been theoretical studies trying to
understand why these methods work. Such investigations are critical for future progress in the field
because the theoretical insights can help us focus on what is important and design more effective
algorithms.

In spectral clustering, a traditional starting point is to find a partition of a graph that minimizes
a certain definition of “graph cut” that quantifies the quality of the partition. The cut is the
objective one attempts to minimize. Spectral methods can then be derived as a certain continuous
relaxation that approximately solves the “graph cut” problem. Based on various intuitions and
heuristics, various definitions of cuts have been proposed in the literature (for example, [8, 3],
among others). In order to understand such methods, we need to ask the following two questions.
First what is the quality of the relaxation approach as an approximation method to solve the
original “graph cut” problem. Second, and more importantly, we need to understand why one
should optimize one definition of “cut” instead of other alternatives. In the literature, different
arguments and intuitions have been proposed to justify different choices. However, without a more

1

universally acceptable criterion, it is difficult to argue that one cut definition is better than another
just based on heuristics. If a universally agreeable standard does exist, then one should focus on
that criterion instead of an artificially defined cut problem.

A common use of spectral partition is to cluster nodes in a graph (each partition is a cluster). In
such applications, there are often pre-defined (but unknown) clusters (classes) that one is interested
in. In this setting, the goal is to find such classes either using unsupervised or semi-supervised
methods. Therefore for such problems, a universally agreeable standard is to find clusters that
overlap significantly with the underlying class labels. In particular, instead of using any artificially
defined cut, we should design an algorithm to minimize the classification error. This is the criterion
we focus on in this paper.

In order to apply graph methods to statistical clustering or semi-supervised learning, one may
construct similarity graphs by linking similar data points. For example, one may connect data points
that are close in the feature space to form a k-nearest neighbor graph. If the graph is fully connected
within each class and disconnected between the classes, then appropriate cut minimization leads to
perfect classification. It was proposed in [6] that one may first project these data points into the
eigenspace corresponding to the largest eigenvalues of a normalized adjacency matrix of the graph
and then use the standard k-means method to perform clustering. The basic motivation is quite
similar to that of [8]. It can be shown that in the ideal case (each class forms a connected subgraph,
and there is no inter-class edge), points in the same cluster will be mapped into a single point in
the reduced eigenspace, while points in different clusters will be mapped to different points. This
implies that for clustering the distance in the reduced space is better than the original distance.

A natural question to ask is in general how should one design a distance function that leads
to better clustering. While the argument in [6] gives a satisfactory answer in the idealized case,
it is far less clear what happens in general. One approach to address this problem is to learn a
distance metric that can lead to more desirable clustering results from a set of labeled examples (for
example, as in [10]). The inner product associated with a distance metric can be viewed as a kernel,
and the kernel fully determines the outcome of the k-means algorithm. Therefore this approach
can also be viewed as designing a kernel optimal for clustering. Closely related to clustering, one
may also consider kernel design methods in semi-supervised learning using a discriminative method
such as SVM (e.g. [5]). In this setting, the change of the distance metric becomes a change of the
underlying kernel. If the kernel is induced from a graph, then one may formulate semi-supervised
learning directly on the graph; for example, see [1, 9, 13, 14].

In these studies, the kernel is induced from the adjacency matrix W whose (i, j)-entry is the
weight of edge (i, j). W is often normalized by D−1/2WD−1/2 [2, 8, 6, 13] where D is a diagonal
matrix whose (j, j)-entry is the degree of the j-th node, but sometimes not [1, 14]. Although such
normalization may significantly affect the performance, the issue has not been studied from the
learning theory perspective.

The relationship of kernel design and graph learning was investigated in [12], where it was
argued that quadratic regularization-based graph learning can be regarded as kernel design in
the spectral domain. That is, one keeps the kernel eigenvectors and modifies the corresponding
eigenvalues. Moreover if input data are corrupted with noise, then such spectral graph design can
help to improve classification performance. The focus there was on graphs with nodes generated
from a random distribution (i.e., under the standard assumption of supervised learning), and edges
weighted by a fixed kernel function. However, the analysis does not handle general graphs such
as web graphs and does not explain why normalization of the adjacency matrix W is useful for

2

practical purposes.
Our goals here are twofold. First we present a model for transductive learning on graphs

and develop a margin analysis for multi-class graph learning. We use this theory to analyze the
performance of graph learning using graph properties such as graph-cut and a concept we call
pure subgraph. The analysis naturally employs quantities formalizing the standard graph-learning
assumption that well connected nodes are likely to have the same label. Second, we use the analysis
to obtain a better understanding of the role of normalization of the graph Laplacian matrix (D−W)
as well as dimension reduction in graph learning. The theoretical analysis indicates a limitation
of the standard degree-based normalization mentioned above. We propose a remedy based on the
learning theory results and use experiments to demonstrate that the remedy leads to improved
classification performance.

2 Transductive Learning Model

We consider the following multi-category transductive learning model defined on a graph. Let
V = {v1, . . . , vm} be a set of m nodes, and let Y be a set of K possible output values. Assume
that each node vj is associated with an output value yj ∈ Y, which we are interested in predicting.
In order to do so, we randomly draw a set of n indices Zn = {ji : 1 ≤ i ≤ n} from {1, . . . ,m}
uniformly and without replacement. We manually label the n nodes vji with labels yji ∈ Y, and
then automatically label the remaining m − n nodes. The goal is to estimate the labels on the
remaining m − n nodes as accurately as possible.

In this paper, we shall assume that the labels y = [y1, . . . , ym] are deterministic. However,
the analysis can also be applied if we have random labels. In the standard supervised learning
model, we want to make a prediction that works well under such randomization of labels. In the
transductive learning setting considered in this paper, we may assume that we are given a single
random draw y = [y1, . . . , ym], which we fix. With this fixed y vector, we are interested in the
performance of reconstructing it from a subset of labels. This formulation is the more appropriate
setting for problems such as classification on graphs considered here.

In modern machine learning, instead of estimating the labels yj directly, yj is often encoded
into a vector in RK , so that the problem becomes that of generating an estimation vector fj =
[fj,1, . . . , fj,K] ∈ RK , which can then be used to recover the label yj. In multi-category classification
with K classes Y = {1, . . . ,K}, we encode each yj = k ∈ Y as ek ∈ RK , where ek is a vector of
zero entries except for the k-th entry being one. Given a function fj = [fj,1, . . . , fj,K] ∈ RK (which
is intended to approximate eyj), we decode the corresponding label estimation ŷj as:

ŷj = arg max
k

{fj,k : k = 1, . . . ,K} .

If the true label is yj, then the corresponding classification error is:

err(fj, yj) = I(ŷj �= yj),

where we use I(·) to denote the set indicator function.
In order to estimate f = [fj] = [fj,k] ∈ RmK from only a subset of labeled nodes, we have to

impose restrictions on possible values of f . In this paper, we consider restrictions defined through
a quadratic regularizer of the following form:

fTQKf =
K∑

k=1

fT
·,kK

−1f·,k,

3

where K ∈ Rm×m is a kernel matrix and f·,k = [f1,k, . . . , fm,k] ∈ Rm. That is, the predictive vector
for each class k is regularized separately. We assume that the kernel matrix K is full-rank. We
will consider the kernel matrix induced by the graph Laplacian, which we shall define later in the
paper. Note that we use the bold symbol K to denote the kernel matrix and the regular capitalized
K to denote the number of classes.

Given a vector f ∈ RmK , the accuracy of its component fj = [fj,1, . . . , fj,K] ∈ RK is measured
by a loss function φ(fj, yj). Our learning method attempts to minimize the empirical risk on the
set Zn of n labeled training nodes, subject to fTQKf being small:

f̂(Zn) = arg min
f∈RmK

 1

n

∑
j∈Zn

φ(fj, yj) + λfTQKf

 . (1)

where λ > 0 is an appropriately chosen regularization parameter.
In this paper, we focus on a special class of loss function that is of the form φ(fj , yj) =∑K

k=1 φ0(fj,k, δk,yj
), where δa,b is the delta function defined as: δa,b = 1 when a = b and δa,b = 0

otherwise. We are interested in the generalization behavior of (1) compared to a properly defined
optimal regularized risk. This type of inequality is often referred to as “oracle inequality” in the
learning theory literature and is particularly useful for analyzing the quality of the underlying
learning method. The following theorem gives an oracle inequality, and its proof can be found in
Appendix A.

Theorem 1 Let φ(fj , yj) =
∑K

k=1 φ0(fj,k, δk,yj
) in (1). Assume that there exist positive constants

a, b, and c such that

• φ0(x, y) is non-negative and convex in x.

• φ0(x, y) is Lipschitz with constant b when φ0(x, y) ≤ a.

• c = inf{x : φ0(x, 1) ≤ a} − sup{x : φ0(x, 0) ≤ a}.
Then ∀p > 0, the expected generalization error of the learning method (1) over the random training
samples Zn can be bounded by:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j(Zn), yj) ≤ 1
a

inf
f∈RmK

 1

m

m∑
j=1

φ0(fj, yj) + λfTQKf

+

(
btrp(K)

λnc

)p

,

where Z̄n = {1, . . . ,m} − Zn,

trp(K) =

 1

m

m∑
j=1

Kp
j,j

1/p

,

and Kj,j denotes the j-th diagonal entry of matrix K.

If we take p = 1 in Theorem 1, then the bound becomes

EZn

1
m − n

∑
j∈Z̄n

err(f̂j(Zn), yj) ≤ 1
a

inf
f∈RmK

 1

m

m∑
j=1

φ0(fj, yj) + λfTQKf

+

btr(K)
λnmc

,

4

where tr(K) = mtr1(K) is the trace of matrix K. The trace of a kernel matrix has been employed
in a number of previous studies to characterize generalization ability of kernel methods. The
generalized quantity in Theorem 1 with p �= 1 has non-trivial consequences which we will investigate
in the paper. The formulation used here corresponds to the one-versus-all method for multi-category
classification, and standard binary loss functions such as least squares, logistic regression, and SVMs
can be used. For the SVM loss function φ0(x, y) = max(0, 1−(2x−1)(2y−1)), we may take a = 0.5,
b = 2, and c = 0.5. In the experiments reported here, we shall employ the least squares function
φ0(x, y) = (x − y)2 which is widely used in the graph learning literature. With this formulation,
we may choose a = 1/16, b = 0.5, c = 0.5, and obtain the following result.

Corollary 1 Consider the least squares one-versus-all method for graph learning:

f̂(Zn) = arg min
f∈RmK

 1

n

∑
j∈Zn

K∑
k=1

(fj − δk,yj
)2 + λfTQKf

 .

Then ∀p > 0, the expected generalization error of the learning method over the random training
samples Zn can be bounded by:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j(Zn), yj) ≤ 16 inf
f∈RmK

 1

m

m∑
j=1

K∑
k=1

(fj − δk,yj
)2 + λfTQKf

+

(
trp(K)

λn

)p

.

Note that one may also use other forms of loss function such as φ(fj , yj) = supk �=yj
φ0(fj,yj −

fj,k) and obtain similar bounds. Moreover, it is possible to derive other types of (non-oracle)
generalization bounds, such as probability inequalities in which the generalization error is bounded
using the observed training error plus a complexity term. We shall not include them in this paper
since Theorem 1 is sufficient for our purposes here. What is important in our analysis are the two
quantities fTQKf and trp(K) that determine the generalization performance. We will focus on
the interpretation of these quantities.

3 Margin and Graph Cut

Consider an undirected graph G = (V,E) defined on the nodes V = {vj : j = 1, . . . ,m}, with
edges E ⊂ {1, . . . ,m} × {1, . . . ,m}, and weights wj,j′ ≥ 0 associated with edges (j, j′) ∈ E. For
simplicity, we assume that (j, j) /∈ E and wj,j′ = 0 when (j, j′) /∈ E. Let degj(G) =

∑m
j′=1 wj,j′ be

the degree of node j of graph G. We consider the following definition of normalized Laplacian.

Definition 1 Consider a graph G = (V,E) of m nodes with weights wj,j′ (j, j′ = 1, . . . ,m). The
unnormalized Laplacian matrix L(G) ∈ Rm×m is defined as: Lj,j′(G) = −wj,j′ if j �= j′; degj(G)
otherwise. Given m scaling factors Sj (j = 1, . . . ,m), let S = diag({Sj}). The S-normalized
Laplacian matrix is defined as: LS(G) = S−1/2L(G)S−1/2. The corresponding regularization is
based on:

fT
·,kLS(G)f·,k =

1
2

m∑
j,j′=1

wj,j′

(
fj,k√
Sj

− fj′,k√
Sj′

)2

.

5

A common choice of S is S = I, corresponding to regularizing with the unnormalized Laplacian
L. The idea is natural: we assume that the predictive values fj,k and fj′,k should be close when
(j, j′) ∈ E with a strong link. Another common choice is to normalize by Sj = degj(G), as in [6, 8,
13, 2], which we refer to as degree-based normalization. At first sight, the need for normalization
is not immediately clear. However, as we will show later, normalization using appropriate scaling
factors can improve performance.

In this section we focus on learning on graph with the Laplacian regularizer. Another important
issue, dimension reduction, will be considered in the next section.

3.1 Generalization analysis using graph-cut

We will adapt the margin style generalization analysis in Section 2 to analyze graph learning
using graph properties such as graph-cut. We now introduce a learning theoretical definition of
S-normalized graph cut as follows.

Definition 2 Given label y = {yj}j=1,...,m on V , we define the cut for the S-normalized Laplacian
LS in Definition 1 as:

cut(LS, y) =
∑

j,j′:yj �=yj′

wj,j′

2

(
1
Sj

+
1

Sj′

)
+

∑
j,j′:yj=yj′

wj,j′

2

(
1√
Sj

− 1√
Sj′

)2

.

Note that unlike typical graph-theoretical definitions of graph-cut in the literature, the learning
theoretical definition of cut not only penalizes a normalized version of between-class edge weights,
but also penalizes within-class edge weights when such an edge connects two nodes with different
scaling factors. This difference has important consequences, which we will investigate later in the
paper. For unnormalized Laplacian, the second term on the right hand side of Definition 2 vanishes,
which means that it only penalizes weights corresponding to edges connecting nodes with different
labels. In this case, the learning theoretical definition is identical to the standard graph-theoretical
definition:

cut(L, y) =
∑

j,j′:yj �=yj′

wj,j′.

Using the learning theoretical graph-cut definition, we can obtain a generalization result for the
estimator in (1) with K defined as follows:

K−1 = αS−1 + LS(G) = S−1/2(αI + L(G))S−1/2 , (2)

where I is the identity matrix. Note that α > 0 is a tuning parameter to ensure that K is strictly
positive definite. As we will see later, this parameter is important. The corresponding regularization
condition is

fTQKf =
K∑

k=1

α

m∑
j=1

f2
k,j

Sj
+

1
2

m∑
j,j′=1

(
fj,k√
Sj

− fj′,k√
Sj′

)2

wj,j′

 .

Another possibility is to let K−1 = αI +LS(G). The conclusions, which we will not include in this
paper, are similar to that of (2).

6

For simplicity, we state the generalization bound based on Theorem 1 with optimal λ. Note
that in applications, λ is usually tuned through cross validation. Therefore assuming optimal λ
will simplify the bound so that we can focus on the more essential characteristics of generalization
performance.

Theorem 2 Assume that the conditions in Theorem 1 hold with the regularization condition (2).
Moreover, assume that φ0(0, 0) = φ0(1, 1) = 0, then ∀p > 0, there exists a sample independent
regularization parameter λ in (1) such that the expected generalization error is bounded by:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j(Zn), yj) ≤ Cp(a, b, c)
np/(p+1)

(αs + cut(LS, y))p/(p+1)trp(K)p/(p+1),

where Cp(a, b, c) = (b/ac)p/(p+1)(p1/(p+1) + p−p/(p+1)) and s =
∑m

j=1 S−1
j .

Proof Let fj,k = δyj ,k. It can be easily verified that

1
m

m∑
j=1

φ(fj, yj) + λfTQKf = λ(αs + cut(LS, y)).

Now, using this expression in Theorem 1, and then optimizing over λ, we obtain the desired in-
equality.

It is easy to check that the conditions on the loss function in Theorem 2 hold for the least
squares method in Corollary 1 with b/ac = 16. The conditions also hold for some other standard
loss functions such as SVM.

With a fixed p, the generalization error decreases at the rate O(n−p/(p+1)) when the sample
size n increases. This rate of convergence is faster when p increases. However in general, trp(K)
is an increasing function of p. Therefore we have a trade-off between the two terms, and without
appropriate normalization (which we will consider later in the paper), one may prefer a smaller
p in order to optimize the bound. An analysis will be provided in the next section. The bound
also suggests that if we normalize K so that its diagonal entries Kj,j become a constant, then
trp(K) is independent of p, and thus a larger p can be used in the bound. This motivates the
idea of normalizing the diagonals of K, which we will further investigate later in the paper. The
generalization bound in Theorem 2 is closely related to the margin analysis for binary linear classifi-
cation. Here we relate it to the concept of graph cut. Our goal is to better understand the quantity
(αs + cut(LS, y))p/(p+1)trp(K)p/(p+1) using graph properties, which gives better understanding of
graph based learning.

In the following, we will give example applications of Theorem 2. They illustrate that theoreti-
cally it is important to tune the parameter α to achieve good performance, which is also empirically
observed in our experiments.

3.2 Zero-cut and Geometric Margin Separation

We consider an application of Theorem 2 for the unnormalized Laplacian under the zero-cut as-
sumption that each connected component of the graph has a single label. With this assumption,
the task is simply to estimate what label each connected component has.

7

Theorem 3 Assume that cut(L, y) = 0, and the graph has q connected components of sizes m1 ≤
· · · ≤ mq (

∑
� m� = m). For all p > 0, let α → 0, and with optimal λ, the learning method (1) with

K−1 = αI + L under the assumptions of Theorem 2 has generalization error

EZn

1
m − n

∑
j∈Z̄n

err(f̂j, yj) ≤ Cp(a, b, c)
np/(p+1)

(
q∑

�=1

(m/m�)p−1

)1/(p+1)

+ O(α).

In particular, we have

EZn

1
m − n

∑
j∈Z̄n

err(f̂j , yj) ≤ 2

√
b

ac
· q

n
+ O(α).

and
EZn

1
m − n

∑
j∈Z̄n

err(f̂j, yj) ≤ b

ac
· m

nm1
+ O(α).

Proof Since the graph has q connected components, L has q eigenvectors v� (� = 1, . . . , q) with
zero-eigenvalues, where each eigenvector v� is the indicator function of the �-th connected compo-
nent in the graph, i.e. the j-th entry of vector v� is 1 for j ∈ V� and 0 otherwise. It is not hard to
check that as α → 0, αK → ∑q

�=1
1

m�
v�vT

� + O(α). Therefore αtrp(K) → m−1/p(
∑q

�=1 m1−p
�)1/p.

Now, we can use Theorem 2 to obtain the first inequality. The second inequality is obtained by
setting p = 1, and the third inequality is obtained by letting p → ∞.

Under the zero-cut assumption, the generalization performance can be bounded as O(
√

q/n)
when α → 0. However, we can also achieve a faster convergence rate of O(1/n), although the
generalization performance depends on the inverse of the smallest component size through m/m1 ≥
q. This implies that we will achieve better convergence at the O(1/n) level if the sizes of the
components are balanced. If the component sizes are significantly different, the convergence may
behave like O(

√
q/n).

We discuss a concrete example in which Theorem 3 is applicable. Assume that each node vj is
associated with a data point xj that belongs to the d-dimensional unit ball B = {x ∈ Rd : ‖x‖2 ≤ 1}.
We form a graph by connecting all nodes vj to their nearest neighbors. In particular, we may
consider an ε-ball centered at each vj : Bj(ε) = {x : ‖x − xj‖2 ≤ ε}. We then form a graph by
connecting each j with all points within the ball Bj(ε) and with unit weights.

We say that the data points are separable with geometric margin γ if for each node vj the
ball Bj(γ) only contains points in class yj. Now assume we use a ball of size ε ≤ γ. In this
case, cut(L, y) = 0, and there is a constant q ≤ ε−d such that the graph has at most q connected
components, and we have:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j , yj) ≤ 2

√
b

ac
· q

n
+ O(α).

This bound does not depend on margin γ but depends only on q, the number of connected compo-
nents. So even if the margin γ is small, the bound can still be good as long as q is small.

8

The results obtained here are novel and critical for understanding why graph based semi-
supervised learning may work better than standard kernel learning. In fact, it is not possible
to derive similar generalization bounds for supervised learning because one needs unlabeled data
(in addition to labeled data) to define such connected components. This means that graph semi-
supervised learning can take advantage of the new quantity q to characterize its generalization
performance, and this quantity cannot be utilized by standard supervised learning.

Note that we have assumed a very specific generative model for the data. In particular, if the
data are generated in a way such that the number of connected components q is small, and each
connected component belongs to a single class, then graph based semi-supervised learning can work
better than supervised kernel learning. If this assumption does not hold (at least approximately),
then graph based learning methods may fail. However, for many practical applications, the geo-
metric margin separation assumption does appear quite reasonable. Therefore for such problems,
graph based semi-supervised learning, which can take advantage of the underlying data generation
model, may become helpful.

The analysis given here is related to that of [12], where the benefit of graph learning was
examined through the kernel design point of view, and a data generation model with noisy input
was considered. [12] showed that unsupervised kernel design will generally be beneficial under
that assumption, using a generalization bound that depends on the trace of the kernel matrix
(corresponding to p = 1 in this paper). Here we consider the specific kernel induced from graph
Laplacian and characterize the generalization behavior of graph based semi-supervised learning with
respect to properties of the underlying graph. We seek to give useful insights into the effectiveness
of semi-supervised learning from a different (but related) point of view from that of [12]. The
statistical analysis presented here is more general since the characterization uses a generalized
trace in which we can take p �= 1. This is important to obtain good understanding of the role of
normalization (which was not considered in [12]), as we will demonstrate later in the paper.

3.3 Non-zero cut and Pure Components

It is often too restrictive to assume that each connected component has only one label (that is, the
cut is zero). In this section, we show that similar bounds can be obtained when this data generation
assumption is relaxed. We are still interested in giving a characterization of the performance of (1)
in terms of properties of the graph and introduce the following definition.

Definition 3 A subgraph G0 = (V0, E0) of G = (V,E) is called a pure component if G0 is con-
nected, E0 is induced by restricting E on V0, and the labels y have identical values on V0. A pure
subgraph G′ = ∪q

�=1G� of G divides V into q disjoint sets V = ∪q
�=1V� such that each subgraph

G� = (V�, E�) is a pure component. Denote by λi(G�) = λi(L(G�)) the i-th smallest eigenvalue of
L(G�).

For instance, if we remove all edges of G that connect nodes with different labels, then the
resulting subgraph is a pure subgraph (though it may not be the only one). For each pure component
G�, its first eigenvalue λ1(G�) is always zero. The second eigenvalue λ2(G�) > 0 because G� is
connected. This λ2(G�) can be regarded as a measurement of how well G� is connected. We use it
together with graph cut to specify our generalization bound.

Theorem 4 Let the assumptions of Theorem 2 hold with regularization condition (2). Let G′ =
∪q

�=1G� (G� = (V�, E�)) be a pure subgraph of G. For all p ≥ 1, there exist sample-independent

9

regularization parameter λ and a fixed tuning parameter α, such that the learning method (1) under
the assumptions of Theorem 2 has generalization error

EZn

1
m − n

∑
j∈Z̄n

err(f̂j, yj)

≤Cp(a, b, c)
np/(p+1)

s1/2

(
q∑

�=1

s�(p)/m
mp

�

)1/2p

+ cut(LS, y)1/2

(
q∑

�=1

s�(p)/m
λ2(G�)p

)1/2p

2p/(p+1)

,

where m� = |V�|, s =
∑m

j=1 S−1
j , and s�(p) =

∑
j∈V�

Sp
j .

Proof The idea is similar to that of Theorem 3. We use the same notation, and let v� be the
indicator function of V� in V . Let I� be the diagonal matrix with value ones for nodes corresponding
to V� and zeros elsewhere. By the definitions, it is not hard to verify that L −∑q

�=1 λ2(G�)(I� −
v�vT

� /m�) is positive semi-definite. Therefore

(
αI +

q∑
�=1

λ2(G�)(I� − v�vT
� /m�)

)−1

− (αI + L)−1

is positive-semi-definite. Also, from (2) we have S−1/2KS−1/2 = (αI + L(G))−1, so we know that
the diagonal entries of S−1/2KS−1/2 can be upper-bounded by those of

(
αI +

q∑
�=1

λ2(G�)(I� − v�vT
� /m�)

)−1

=
q∑

�=1

(α + λ2(G�))−1
(
I� + α−1λ2(G�)v�vT

� /m�

)
.

For the latter, its m� diagonal entries for each pure component � can be upper bounded by
λ2(G�)−1 + (αm�)−1. Therefore:

m1/ptrp(K) ≤
(

q∑
�=1

s�(p)(α−1m−1
� + λ2(G�)−1)p

)1/p

≤

α−1

(
q∑

�=1

s�(p)m−p
�

)1/p

+

(
q∑

�=1

s�(p)λ2(G�)−p

)1/p

 .

Substitute this estimate into Theorem 2, we have

EZn

1
m − n

∑
j∈Z̄n

err(f̂j(Zn), yj) ≤ Cp(a, b, c)
np/(p+1)

[
m−1/p(αs + C)(α−1A + B)

]p/(p+1)
,

where A = (
∑q

�=1 s�(p)m−p
�)1/p, B = (

∑q
�=1 s�(p)λ2(G�)−p)1/p, and C = cut(LS, y). Now optimize

over α (let α =
√

AC/(sB)), and simplify, we obtain the desired inequality.

Theorem 4 is a natural generalization of Theorem 3 when p ≥ 1. It quantitatively illustrates the
importance of analyzing graph learning using a partition of the original graph into well-connected

10

pure components. The second eigenvalue λ2(Gi) measures how well-connected Gi is. A more
intuitive quantity that measures the connectedness of graph G = (V,E) is the isoperimetric number
hG defined as

hG = inf
S⊂V

∑
j∈S,j′∈V −S

wj,j′/min(|S|, |V − S|).

It is well-known that λ2(Gi) ≥ h2
Gi

/(2maxj degj(Gi)) [2]. The isoperimetric number of a graph is
large when the nodes are well-connected everywhere. In particular, if degj(G) is of the order |V |,
and wi,j = 1 when (i, j) ∈ E, then for a well-connected graph,

∑
j∈S,j′∈V −S wj,j′ is of the order

|S||V − S|, and hG = O(|V |). We thus have the condition λ2(G�) ≥ u(G′)|V�| for some constant
u(G′) that does not depend on the size of the pure components. Under this condition, we may
replace

∑q
�=1 m�λ2(G�)−p by u(G′)−p

∑q
�=1 m1−p

� in Theorem 4 and obtain a simplified bound:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j, yj) ≤ Cp(a, b, c)
np/(p+1)

(
q∑

�=1

s�(p)/m
(m�/m)p

)1/(p+1)(√
s

m
+

√
cut(LS, y)
u(G′)m

)2p/(p+1)

,

where we define u(G′) = min�(λ2(G�)/m�). We consider two special cases: p = 1 and p → ∞:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j , yj) ≤2

√
b

ac
·
∑q

�=1(s�(1)/m�)
n

(√
s

m
+

√
cut(LS, y)
u(G′)m

)
, (3)

EZn

1
m − n

∑
j∈Z̄n

err(f̂j , yj) ≤ b

ac
· max� maxj∈V�

(Sj/m�)
n

(
√

s +

√
cut(LS, y)

u(G′)

)2

. (4)

These bounds are generalizations of those in Theorem 3. Suppose that we take S = I. Then the
number of pure components q affects the O(1/

√
n) convergence rate in (3) as

∑q
�=1 s�(1)/m� = q. If

the sizes of the components are balanced, we can achieve better convergence at the O(1/n) level as
in (4); otherwise, the convergence may behave like O(

√
q/n). This observation motivates a scaling

matrix S that compensates for the unbalanced pure component sizes, which we will investigate
next.

3.4 Optimal Normalization for Near-zero-cut Partition

As discussed in the introduction, the common practice of the normalization of the adjacency matrix
(W) or the graph Laplacian (D − W) is based on degrees, which corresponds to setting S = D.
Although such normalization may significantly affect the performance, to our knowledge, there is
no learning theory analysis on the effect of normalization. The purpose of this section is to fill this
gap using the theoretical tools developed earlier. We shall focus on a near ideal situation to gain
intuition.

Consider a pure subgraph G′ = ∪q
�=1G� (G� = (V�, E�)) of G. From Definition 1, we know

that good scaling factors Sj should be approximately constant within each class. In the following,
we are interested in finding an optimal scaling matrix S such that Sj is constant within each
pure component V�. Therefore in the following, we will assume that S is quantified by q numbers
[s̄�]�=1,...,q, such that Sj = s̄� when j ∈ V�.

11

Consider the following quantity:

cut(G′, y) =
∑

j,j′:yj �=yj′

wj,j′ +
∑
� �=�′

∑
j∈V�,j′∈V�′

wj,j′

2
.

It is easy to check that
cut(LS, y) ≤ cut(G′, y)/min

�
s̄�.

Assume that weights are small between pure components, and therefore, cut(G′, y) is small.
With the O(1/n) convergence rate, we obtain from (4) that

1
m − n

∑
j∈Z̄n

err(f̂j, yj) ≤ b

ac
· max�(s̄�/m�)

n

√√√√ q∑

�=1

m�/s̄� +

√
cut(G′, y)

u(G′)min� s̄�

2

.

If we assume that cut(G′, y)/(u(G′)min� m�) � q, then the dominating term on the right hand
side is

max�(s̄�/m�)
n

q∑
�=1

m�

s̄�
,

which can be optimized with the choice s̄� = m�, and the resulting bound becomes:

1
m − n

∑
j∈Z̄n

err(f̂j, yj) ≤ b

ac
· 1
n

(
√

q +

√
cut(G′, y)

u(G′)min� m�

)2

.

That is, if cut(G′, y) is small, then we can choose scaling factor s̄� ∝ m� for each pure component �
so that the generalization performance is approximately (ac)−1b ·q/n, which is of the order O(1/n).

The analysis provided here not only proves the importance of normalization under the learning
theoretical framework, but also suggests that the good normalization factor for each node j is
approximately the size of the well-connected pure component that contains node j (assuming that
nodes belonging to different pure components are only weakly connected). Our analysis focused
on the case that the scaling factors are a constant within each pure component. This condition is
quite natural if we look at the normalized Laplacian regularization condition in Definition 1, where
fj,k/

√
Sj should be similar to fj′,k/

√
Sj′ when wj,j′ is large. If j and j′ belongs to the same class,

then fj,k should be similar to fj′,k. Therefore for such a pair (j, j′), we want to have Sj ≈ Sj′ if wj,j′

is large. Note that this requirement is not enforced by the standard degree-based normalization
method Sj = degj(G) because a well-connected pure component may contain nodes with quite
different degrees. The assumption is satisfied under a simplified “box model”, which is related to
the models used by some previous researchers to derive the standard normalization method (e.g.
[8]). In this model, a pure component is completely connected, and each node connects to all other
nodes and itself with edge weight wj,j′ = 1. The degree is thus degj(G�) = |V�| = m�, which gives
the optimal scaling in our analysis.

In general, the box model may not be a good approximation for practical problems. A more
realistic approximation, which we call core-satellite model, will be introduced in the experimental
section. For such a model, the degree-based normalization can fail because the degj(G�) within
each pure component G� is not approximately constant, and it may not be proportional to m�. In

12

general, this approximation using degrees causes Sj to potentially vary significantly within a pure
component because each Sj is only determined by its local neighborhoods.

Our analysis suggests that it is necessary to modify the degree-based scaling method Sj =
degj(G) so that the scaling factor is approximately a constant within each pure component, which
should be proportional to m�. Our remedy is to look for connected components at a larger distance
scale. Although there could be various methods to achieve this effect, we shall focus on a specific
method motivated by the proofs of Theorem 3 and Theorem 4. Let K̄ = (αI + L)−1 be the kernel
matrix corresponding to the unnormalized Laplacian. Using the terminology in the proofs, we
observe that for small α:

αK̄ =
q∑

�=1

v�vT
� /m� + O(1),

and thus K̄j,j ∝ m−1
� for each j ∈ V�. Therefore with small α, the scaling factor Sj = 1/K̄j,j is

near optimal for all j. For α > 0, the effect of this scaling factor is essentially equivalent to looking
for connected components at a scale of at most O(1/α) number of nodes. We call this method
of normalization K-scaling in this paper. It is equivalent to a normalization of the kernel matrix
K, so that each Kj,j = 1. Although this method coincides with a common practice in standard
kernel learning, it is important to notice that to show this method behaves well in the graph
learning setting is highly non-trivial and novel. To our best knowledge, no one has proposed this
normalization method in the graph learning setting before. In fact, without learning theoretical
results developed in this paper, it is not obvious to observe or argue that this method should
work better than the more standard degree-based normalization method. In our framework, the
main advantage of K-scaling (compared to the standard degree-scaling, which we call L-scaling) is
twofold:

• The resulting Sj does not vary significantly within a well-connected pure component.

• The resulting scaling is approximately m� (at a scale of 1/α), which is predicted by our theory
to be desirable.

The superiority of this method will be demonstrated in our experiments. The main drawback of
this method is the computational cost of directly inverting (αI + L). For large scale problems,
approximation methods are required.

4 Dimension Reduction

Normalization and dimension reduction have been commonly used in spectral clustering such as [6,
8]. For semi-supervised learning, dimension reduction (without normalization) is known to improve
performance [1, 12] while the degree-based normalization (without dimension reduction) has also
been explored [13]. In this section, we show that an appropriate combination of normalization and
dimension reduction can improve classification performance.

We shall first introduce dimension reduction with normalized Laplacian LS(G). Denote by
Pr

S(G) the projection operator onto the eigenspace of αS−1+LS(G) corresponding to the r smallest
eigenvalues. Now, we may define the following regularizer on the reduced subspace:

fT
·,kK

−1f·,k =

{
fT
·,kK

−1
0 f·,k if Pr

S(G)f·,k = f·,k,
+∞ otherwise.

(5)

13

Note that in the following, we will focus on bounding the generalization complexity using the
reduced dimensionality r. In such context, the choice of K0 is not important as far as our analysis
is concerned. We may simply choose K0 = I (or we may let K−1

0 = αS−1 + LS(G)).
The benefit of dimension reduction in graph learning has been investigated in [12], under the

spectral kernel design framework. The idea is to modify the kernel eigenvalues so that the target
spectral coefficient matches the kernel coefficients. Note that the normalization issue, which will
change the eigenvectors and their ordering, wasn’t investigated there. However, with a fixed scaling
matrix S, the reasoning given in [12] can also be applied here. It was shown there that if noise is
added into the kernel matrix, then in general kernel eigenvalues will decay slower than the target
spectral coefficients. Because of this, dimension reduction, which makes kernel eigenvalues better
match the decay of target spectral coefficients, will become helpful. For Laplacian regularization
investigated here, we may regard noise as edges connecting different pure components that increase
the cut in Definition 2. Such noise can be significantly reduced if we project it into a low-dimensional
space, and if the target functions approximately lie in this low-dimensional space. In this context,
the effect of modification of eigenspaces through appropriate Laplacian normalization is to achieve
faster decay of the target spectral coefficients in the first few eigenvectors of the kernel.

The following theorem shows that the target vectors can be well approximated by their projec-
tion via Pq

S(G).

Theorem 5 Let G′ = ∪q
�=1G� (G� = (V�, E�)) be a pure subgraph of G. Consider r ≥ q. Then we

have:
λr+1(LS(G)) ≥ λr+1(LS(G′)) ≥ min

�
λ2(LS(G�)).

For each k, let f̄j,k = δyj ,k be the target (encoding of the true labels) for class k (j = 1, . . . ,m).
Then ‖Pr

S(G)f̄·,k − f̄·,k‖2
2 ≤ δr(S)‖f̄·,k‖2

2, where

δr(S) =
‖LS(G) − LS(G′)‖2 + d(S)

λr+1(LS(G))
, d(S) = max

�

1
2|V�|

∑
j,j′∈V�

(S−1/2
j − S−1/2

j′)2.

Proof Let E = LS(G) − LS(G′), then E is a positive semi-definite matrix. Therefore, we know
that the eigenvalues of LS(G) are no less than the corresponding eigenvalues of LS(G′). Since the
(q+1)-th smallest eigenvalue of LS(G′) is min� λ2(L(G�)), we obtain the first displayed inequalities.
Moreover,

f̄T
·,kLS(G)f̄·,k = f̄T

·,kEf̄·,k + f̄T
·,kLS(G′)f̄·,k ≤ (‖E‖2 + d(S))f̄T

·,kf̄·,k.

Therefore

f̄T
·,k(I − Pr

S(G))f̄·,k ≤ 1
λr+1(LS(G))

f̄T
·,kLSf̄·,k ≤ ‖LS(G) − LS(G′))‖2 + d(S)

λr+1(LS(G))
‖f̄·,k‖2

2.

The result follows from the observation that f̄T
·,k(I − Pr

S(G))f̄·,k = ‖f̄·,k − Pr
S(G)f̄·,k‖2

2.

In Theorem 5, normalization plays a direct role because S affects δr(S). The analysis is analo-
gous to that of Section 3.4 and the conclusions there hold. Similar to Theorem 3, we can prove the
following generalization bound using Theorem 5. For simplicity, we only consider a simple kernel
K0 = I, and take p = 1.

14

Theorem 6 Let the assumptions of Theorem 5 hold. Consider the least squares loss φ(fj , yj) =∑K
k=1(fj,k − δk,yj

)2 in (1) using the regularization condition (5) and K0 = I. The generalization
error with optimal λ can be bounded as:

EZn

1
m − n

∑
j∈Z̄n

err(f̂j , yj) ≤ 16δr(S) + 32
√

r/n.

Proof Using Theorem 5, it can be easily verified that

1
m

m∑
j=1

φ(f̄j, yj) + λ
K∑

k=1

fT
·,kK

−1f·,k ≤ δr(S) + λm.

Since regularizing with K0 = I is equivalent with regularizing with K0 = Pr
S(G), we can use

tr(K) = r. Now using this estimate in Corollary 1, we have

EZn

1
m − n

∑
j∈Z̄n

err(f̂j, yj) ≤ 16(δr(S) + λm) +
r

λnm
.

Optimizing over λ gives the desired bound.

Similar to Theorem 4, it is possible to prove a bound for general p in Theorem 6, but the
estimation of trp(K) is more complicated than that of tr(K). We skip the derivation because
the extra complication is not important for the purpose of this paper. Compared to Theorem 4,
the advantage of dimension reduction in Theorem 6 is that the quantity cut(LS, y) is replaced by
‖LS(G) − LS(G′)‖2, which is typically much smaller. Instead of a rigorous analysis, we shall just
give a brief intuition. For simplicity we take S = I so that we can ignore the variations caused by
S. The 2-norm of the symmetric error matrix LS(G)−LS(G′) is its largest eigenvalue, which is no
more than the largest 1-norm of one of its row vectors. In contrast, cut(LS, y) behaves similar to
the absolute sum of entries of the error matrix, which is m times more than the averaged 1-norm
of its row vectors. Therefore if error is relatively uniform across rows, then cut(LS, y) can be at
an order of m times more than ‖LS(G) − LS(G′)‖2.

5 Experiments

We experiment with the Laplacian regularization with the normalization methods discussed above,
on synthesized data sets generated by controlling graph properties as well as three real-world data
sets.

5.1 Experimental framework

The Laplacian matrix L is generated from a graph G so that Lj,j′ = −wj,j′ for j �= j′ and Lj,j =
degj(G). Using L, we define matrix K as follows:

• Unnormalized: K = (αI + L)−1. That is, S = I. No scaling.

15

classes #1, #2 classes #3–#10
graph1 (4,2) (2,1)
graph2 (6,3) (2,1)
graph3 (8,4) (2,1)

Figure 1: Generation of graph 1–5. (c, e) in the table indicates that for each node, we randomly
chose c nodes of the same class and connect it to them, and we randomly chose e nodes of other
classes (introducing errors) and connect it to them. Edge weights are fixed to 1.

0

20

40

60

80

100

graph1 graph2 graph3

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 2: Classification accuracy (%) on the graphs where degrees are nearly constant within the class.
n = 40, m = 2000. With dimension reduction (dim ≤ 20; chosen by cross validation). Average over 10
random splits with one standard deviation.

• K-scaling: K = (S−1/2(αI + L)S−1/2)−1 where S = diagj(K̄
−1
j,j) with K̄ = (αI + L)−1. The

diagonal entries of K are all ones.

• L-scaling: K = (αI + S−1/2LS−1/2)−1 where S = diagj(degj(G)). The diagonal entries of
K−1 are constant (α + 1). This is the standard degree-based scaling.

Using these three types of matrix K, we test the following two types of regularization. One
regularizes by fTK−1f using K without dimension reduction, as in Section 3. The other reduces
the dimension of K−1 to r by leaving out all but several eigenvectors corresponding to the smallest
r eigenvalues to obtain the eigenspace projector Pr

S(G) and regularizes by:{
fTK−1f if Pr

S(G)f = f

+∞ otherwise

as in Section 4. We use the one-versus-all strategy and use least squares as our loss function:
φk(a, b) = (a − δk,b)2.

In related studies, the Laplacian or the adjacency matrix is either normalized using degrees like
L-scaling or unnormalized, e.g. [6, 13, 1]. We are interested in how well K-scaling performs.

From m data points, n training labeled examples are randomly chosen while ensuring that at
least one training example is chosen from each class. The remaining m − n data points serve as
test data. The regularization parameter λ is chosen by cross validation on the n training labeled
examples. We will show performance when the rest of the parameters (α and dimensionality r)
are also chosen by cross validation on the training labeled examples and when they are set to the

16

0

20

40

60

80

100

graph6 graph7 graph8 graph9 graph10

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 3: Classification accuracy on the core-satellite graphs. n = 40, m = 2000. With dimension reduction
(dim ≤ 20; chosen by cross validation). Average over 10 random splits with one standard deviation.

optimum. The dimensionality r is chosen from K,K +5,K +10, · · · , 100 where K is the number of
classes unless otherwise specified. Our focus is on small n close to the number of classes. Throughout
this section, we conduct 10 runs with random training/test splits and report the average accuracy.

5.2 Controlled data experiments

The purpose of the controlled data experiments is to observe the correlation of the effectiveness
of the normalization methods with graph properties. The graphs we generate contain 2000 nodes,
each of which is assigned one of 10 classes.

First, we show the results when dimension reduction is applied to the three types of matrix K.
Figure 2 shows classification accuracy on three graphs that were generated so that the node degrees
(of either correct edges or erroneous edges) are close to constant within each class but vary across
classes. Details of their generation are described in Figure 1. We observe that on these graphs,
both K-scaling and L-scaling significantly improve classification accuracy over the unnormalized
baseline. There is no prominent difference between K-scaling’s and L-scaling’s performance.

Observe that K-scaling and L-scaling perform differently on the graphs used in Figure 3. These
graphs have the following properties. Each class consists of core nodes and satellite nodes. Core
nodes of the same class are tightly connected with each other and do not have any erroneous
edges. Satellite nodes are relatively weakly connected to core nodes of the same class. The satellite
nodes are also connected to some other classes’ satellite nodes (i.e., introducing errors). This core-
satellite model is intended to simulate real-world data in which some data points are close to the
class boundaries (satellite nodes). More precisely, graphs 6–10 were generated as follows. Each
graph consists of 2000 nodes (m = 2000) uniformly distributed over 10 classes (K = 10). 10% of
the nodes are the core nodes. For every core node, we randomly choose 10 other core nodes of the
same class and connect it to them with edge weight 1. For every satellite node, we randomly choose
one core node of the same class and connect them with edge weight 0.01. Also, for each satellite
node, we randomly choose one satellite node of some other class (i.e., introducing error) and connect
them with edge weight we. We set the error edge weight we = 0.002, 0.004, · · · , 0.01 for graphs
6, 7, · · · , 10, respectively. Note that although classes are uniformly distributed, pure components
that optimize the generalization bound may be non-uniform in size. For graphs generated in this
manner, degrees vary within the same class since the satellite nodes have smaller degrees than the
core nodes. Our analysis suggests that L-scaling will do poorly. Figure 3 shows that on the five

17

80

85

90

95

100

0 0.005 0.01

Error edge weight
Ac

cu
ra

cy
 (%

)

Unnormalized

L-scaling

K-scaling

Figure 4: Classification accuracy on the core-satellite graphs. x-axis: error edge weight we. n = 40, m =
2000. Without dimension reduction. Average over 10 random splits.

0

20

40

60

80

100

graph1 graph2 graph3

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 5: Classification accuracy (%) on the graphs where degrees are nearly constant within the class.
Average over 10 random splits. n = 40, m = 2000. Without dimension reduction.

core-satellite graphs, K-scaling indeed produces higher performance than L-scaling. In particular,
K-scaling does well even when L-scaling rather underperforms the unnormalized baseline.

Our analysis suggests that K-scaling should work well when the graph has relatively small error.
This trend is more clearly observed on these core-satellite graphs without dimension reduction. As
shown in Figure 4, the advantage of K-scaling over L-scaling is more prominent on the graphs
with smaller error edge weights. On the other hand, the theory suggests that when the graph has
large error (large cut), the benefit of normalization is less clear (since the derivation of K-scaling
assumes near-zero cut). This is especially so when dimension reduction is not applied because as
pointed out in Section 4, dimension reduction reduces error. This trend can be observed in Figure
5, which shows that on graphs 1–3 (having larger errors than the core-satellite graphs), neither L-
scaling nor K-scaling prominently improves performance over the unnormalized Laplacian without
dimension reduction though L-scaling seems to perform slightly better. Note that the performance
without dimension reduction (Figure 5) is significantly worse than the performance with dimension
reduction (Figure 2). This means that dimension reduction, which reduces error, is important when
we try to apply graph based methods.

18

GPOL Domestic politics 486
GSPO Sports 407
GDIP International relations 299
GCRIM Crime, low enforcement 224
GJOB Labor issues 206
GVIO War, civil war 142
GDIS Disasters and accidents 89
GHEA Health 57
GENT Arts, culture, entertainment 47
GENV Environments 43

Total 2000

Figure 6: 10 RCV1 categories and their populations used in our experiments.

5.3 Real-world data experiments

5.3.1 Data and baseline

Our real-world data experiments use two image data sets (MNIST and UMIST) and one text
data set (RCV1). The MNIST data set, downloadable from http://yann.lecun.com/exdb/mnist/,
consists of hand-written digit image data (representing 10 classes, from digit “0” to “9”). For our
experiments, we randomly choose 2000 images (i.e., m = 2000). The UMIST data set, downloadable
from http://images.ee.umist.ac.uk/danny/database.html, consists of 575 face images taken from
several angles of 20 people (representing 20 classes). The details of this data are described in [4].
We use all the images (i.e., m = 575). Reuters Corpus Version 1 (RCV1) consists of news articles
labeled with topics. For our experiments, we chose 10 topics (representing 10 classes) that have
relatively large populations and randomly chose 2000 articles that are labeled with exactly one of
those 10 topics. The class distribution over these 2000 articles is non-uniform as shown in Figure
6.

To generate graphs from the image data, as is commonly done, we first generate the vectors of
the gray-scale values of the pixels, and produce the edge weight between the i-th and the j-th data
points Xi and Xj by wi,j = exp(−||Xi − Xj ||2/t) where t > 0 is a parameter (RBF kernels). To
generate graphs from the text data, we first create the bag-of-word vectors (without stemming and
removing common stopwords) and then set wi,j based on RBF as above or set wi,j to the inner
product of Xi and Xj (linear kernels). Optionally, we zero out all wi,j but k nearest neighbors (i.e.,
i is j’s k nearest neighbors or j is i’s k nearest neighbors) to reduce error in graphs and refer to it
as the RBF (or linear) kernel with kNN.

As our baseline, we also test the supervised configuration by letting W + βI (where W is a
weight matrix whose (i, j)-entry is wi,j) be the kernel matrix and using the same least squares loss
function. We set β to the optimum, which was 0.001 for the RBF kernel for RCV1 and 1 for the
other graphs.

5.3.2 Results

Figure 7 shows performance in relation to the number of labeled examples (n) on the MNIST data
set. The comparison of the three bold lines (representing the methods with dimension reduction)

19

(a) MNIST, dim and alpha
determined by cross validation

(b) MNIST, w/ optimum dim
and optimum alpha

45

50

55

60

65

70

75

80

85

90

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

45

50

55

60

65

70

75

80

85

90

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

Supervised baseline

Unnormalized (w/o dim redu.)

L-scaling (w/o dim redu.)

K-scaling (w/o dim redu.)

Unnormalized (w/ dim redu.)

L-scaling (w/ dim redu.)

K-scaling (w/ dim redu.)

Figure 7: Classification accuracy (%) in relation to the number of labeled examples (n) on MNIST. m =
2000. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and α were set to
the optimum. Average over 10 random splits.

30

35

40

45

50

55

60

65

70

75

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

30

35

40

45

50

55

60

65

70

75

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

Supervised baseline

Unnormalized (w/o dim redu.)

L-scaling (w/o dim redu.)

K-scaling (w/o dim redu.)

Unnormalized (w/ dim redu.)

L-scaling (w/ dim redu.)

K-scaling (w/ dim redu.)

(a) RCV1, RBF, dim and alpha
determined by cross validation

(b) RCV1, RBF, w/ optimum dim
and optimum alpha

Figure 8: Classification accuracy (%) in relation to the number of labeled examples (n) on RCV1. RBF
kernel (with t = 0.25). m = 2000. (a) Dimensionality and α were determined by cross validation. (b)
Dimensionality and α were set to the optimum. Performance differences of the best performing method ‘K-
scaling (w/ dim redu.)’ from ‘L-scaling (w/ dim redu.)’ and ‘Unnormalized (w/ dim redu.)’ are statistically
significant (p ≤ 0.01) in both the settings (a) and (b).

20

40

45

50

55

60

65

70

75

80

85

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

40

45

50

55

60

65

70

75

80

85

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

Supervised baseline

Unnormalized (w/o dim redu.)

L-scaling (w/o dim redu.)

K-scaling (w/o dim redu.)

Unnormalized (w/ dim redu.)

L-scaling (w/ dim redu.)

K-scaling (w/ dim redu.)

(a) RCV1, linear, dim and alpha
determined by cross validation

(b) RCV1, linear, w/ optimum dim
and optimum alpha

Figure 9: Classification accuracy (%) in relation to the number of labeled examples (n) on RCV1. Linear
kernel. m = 2000. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and
α were set to the optimum. Performance differences of the best performing method ‘K-scaling (w/ dim
redu.)’ from the second and third best ‘L-scaling (w/ dim redu.)’ and ‘Unnormalized (w/ dim redu.)’ are
statistically significant (p ≤ 0.01) in both the settings (a) and (b).

45

50

55

60

65

70

75

80

85

90

95

20 40 60

of labeled examples

ac
cu

ra
cy

 (%
)

45

50

55

60

65

70

75

80

85

90

95

20 40 60

of labeled examples

ac
cu

ra
cy

 (%
)

Supervised baseline

Unnormalized (w/o dim redu.)

L-scaling (w/o dim redu.)

K-scaling (w/o dim redu.)

Unnormalized (w/ dim redu.)

L-scaling (w/ dim redu.)

K-scaling (w/ dim redu.)

(a) UMIST, dim and alpha
determined by cross validation

(b) UMIST, w/ optimum dim
and optimum alpha

Figure 10: Classification accuracy (%) in relation to the number of labeled examples (n) on UMIST.
m = 575. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and α were set
to the optimum. In (b), performance differences of the best performing method ‘K-scaling (w/ dim redu.)’
from the second and third best ‘K-scaling (w/o dim redu.)’ and ‘L-scaling (w/o dim redu.)’ are statistically
significant (p ≤ 0.01).

21

in Figure 7 (a) shows that when the dimensionality and α are determined by cross validation,
K-scaling outperforms L-scaling, and L-scaling outperforms the unnormalized Laplacian. These
performance differences are statistically significant (p ≤ 0.01) based on the paired t test. The
performance of the unnormalized Laplacian (with dimension reduction) is roughly consistent with
the performance with similar (m,n) with heuristic dimension selection in [1]. Although without
dimension reduction, L-scaling and K-scaling still improve performance over the unnormalized
Laplacian, the best performance is always obtained by K-scaling with dimension reduction (the
bold line with circles).

In Figure 7 (a), the unnormalized Laplacian with dimension reduction underperforms the un-
normalized Laplacian without dimension reduction, indicating that dimension reduction rather de-
grades performance in this case. By comparing Figure 7 (a) and (b), we observe that this seemingly
conter-intuitive performance trend is caused by the difficulty in choosing the right dimensionality
by cross validation. Figure 7 (b) shows the performance at the optimum dimensionality and the
optimum α. As observed, if the optimum dimensionality is known (as in (b)), dimension reduc-
tion improves performance either with or without normalization by K-scaling and L-scaling, and
that all the transductive configurations outperform the supervised baseline. We also note that the
comparison of Figure 7 (a) and (b) shows that choosing good dimensionality by cross validation is
much harder than choosing α by cross validation especially when the number of labeled examples
is small. This trend was observed also on the other data sets we experimented.

On the RCV1 data set, the performance trend is essentially similar to that of MNIST. Figure 8
shows the performance on RCV1 using the RBF kernel (t = 0.25, 100NN). In the setting of Figure 8
(a) where the dimensionality and α were determined by cross validation, K-scaling with dimension
reduction generally performs the best. By setting the dimensionality and α to the optimum, the
benefit of K-scaling with dimension reduction is even clearer (Figure 8 (b)).

On text data like RCV1, linear kernels (instead of RBF) are often used. Figure 9 shows the
performance with linear kernels with 100NN. Again, K-scaling with dimension reduction performs
the best. Its performance differences from the second and third best ‘L-scaling (w/ dim redu.)’
and ‘Unnormalized (w/ dim redu.)’ are statistically significant (p ≤ 0.01) in both Figure 9 (a) and
(b).

In Figure 10, we observe that dimension reduction seems less useful on the UMIST data set.
We conjecture that this may be because UMIST differs from our other data sets in that it is much
more ‘sparse’; UMIST has a smaller number of data points (m = 575 vs. m = 2000) while it
has more classes (K = 20 vs. K = 10). Nevertheless, when the dimensionality and α are set to
the optimum (Figure 10 (b)), again, K-scaling with dimension reduction performs the best. Its
differences from the second and the third best methods (K-scaling without dimension reduction
and L-scaling without dimension reduction) are statistically significant (p ≤ 0.01).

Overall, on these graphs generated from image and text data sets, K-scaling with dimension
reduction consistently outperformed the others. But without dimension reduction, K-scaling and
L-scaling were not always effective. Transductive learning (either with or without normalization)
generally improved performance.

5.4 Approximation of K-scaling

Although K-scaling consistently improves performance as shown above, its drawback is the rela-
tively large runtime as it involves the computation of the inverse of an m-by-m matrix. We propose a
less computationally-intensive approximation method using a known fact that (I−A)−1 =

∑∞
k=0 Ak

22

55

60

65

70

75

80

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

70

75

80

85

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

K-scaling

h=10

h=5

h=2

h=0

L-scaling

(a) MNIST, dim and alpha
determined by cross validation

(b) MNIST, w/ optimum dim
and optimum alpha

Figure 11: Classification accuracy (%) of the approximation method using K̂(h). MNIST. (a) Dimension-
ality and α were determined by cross validation. (b) Dimensionality and α were set to the optimum.

if ||A||2 < 1. As in the introduction, let D = diagi(degi(G)), and let W be a weight matrix such
that Wi,j = wi,j so that we can write L = D − W. Let D̂ = D + αI. We define K̂(h) to be the
h-th order approximation of K̄ = (L + αI)−1 as follows:

K̂(h) = D̂−1/2

(
h∑

k=0

(
D̂−1/2WD̂−1/2

)k
)

D̂−1/2 .

We then set the i-th scaling factor Si so that:

Si = K̂(h)−1
i,i .

Since limh→∞ K̂(h) = K̄, the scaling factors produced with a sufficiently large h closely approximate
K-scaling. On the other hand, since K̂(0) = D̂−1 = (D + αI)−1, the scaling factors produced by
K̂(0) with α = 0 are exactly the same as L-scaling (or the standard degree-scaling).

Figure 11 shows the performance of this approximation method with h = 0, 2, 5, 10 with dimen-
sion reduction in comparison with corresponding K-scaling and L-scaling on MNIST. In Figure 11
(b), we observe that at the optimum dimensionality and α, the performance of the approximation
method lies exactly between that of L-scaling and K-scaling, and it approaches to K-scaling as the
order h increases. Intuitively, with a larger h, this approximation method takes more and more
global connections into account and improves performance.

6 Conclusion

We derived generalization bounds for multi-category classification on graphs with Laplacian regu-
larization, using geometric properties of the graph. In particular, we used this analysis to obtain
a better understanding of the role of normalization of the graph Laplacian matrix as well as the
effect of dimension reduction. We argued that the standard L-scaling normalization method has

23

the undesirable property that the normalization factors can vary significantly within a pure com-
ponent. An alternate normalization method, which we call K-scaling, is proposed to remedy the
problem. Experiments confirm the superiority of K-scaling combined with dimension reduction.

A Proof of Theorem 1

The proof employs the stability analysis of [11], and is similar to the proof of a related bound for
binary-classification in [12]. We shall introduce the following notation. let in+1 �= i1, . . . , in be an
integer randomly drawn from Z̄n, and let Zn+1 = Zn ∪{in+1}. Let f̂(Zn+1) be the semi-supervised
learning method (1) using training data in Zn+1:

f̂(Zn+1) = arg inf
f∈RmK

 1

n

∑
j∈Zn+1

φ(fj , yj) + λfTQKf

 .

We have the following stability lemma (a related result can be found in [11]);

Lemma 1 The following inequality holds for each k = 1, . . . ,K:

|f̂in+1,k(Zn+1) − f̂in+1,k(Zn)| ≤ |∇1,kφ(f̂in+1(Zn+1), yin+1)|Kin+1,in+1/(2λn),

where ∇1,kφ(fi, y) denotes a sub-gradient of φ(fi, y) with respect to fi,k, where fi = [fi,1, . . . , fi,K].

Proof From [7], we know that there exist sub-gradients of ∇1,kφ such that the following first-order
condition for the optimization problem (1) holds:

−2λnK−1f̂·,k(Zn) =
∑
j∈Zn

∇1,kφ(f̂j(Zn), yj)ej ,

where ej is the m-dimensional vector with all zeros except for the j-component with value one.
Similarly, we have

−2λnK−1f̂·,k(Zn+1) =
∑

j∈Zn+1

∇1,kφ(f̂j(Zn+1), yj)ej .

Now, for simplicity, let g = f̂(Zn) and h = f̂(Zn+1). By subtracting the above two equations, and
then taking the inner product with h·,k − g·,k, we obtain

−2λn(h·,k − g·,k)T K−1(h·,k − g·,k) =∇1,kφ(hin+1 , yin+1)(hin+1,k − gin+1,k)

+
∑
j∈Zn

(∇1,kφ(hj , yj) −∇1,kφ(gj , yj))(hj,k − gj,k).

Note that if c(s) is a convex function of s, then it is easy to verify that (∇c(s1)−∇c(s2))(s1−s2) ≥ 0.
Therefore we have

∑
j∈Zn

(∇1,kφ(hj , yj) −∇1,kφ(gj , yj))(hj,k − gj,k) ≥ 0. This implies that

2λn(h·,k − g·,k)TK−1(h·,k − g·,k) ≤ −∇1,kφ(hin+1 , yin+1)(hin+1,k − gin+1,k).

24

Using Cauchy-Schwartz inequality, we have

2λn(hin+1,k − gin+1,k)2 =2λn((h·,k − g·,k)T ein+1)
2

≤2λn(h·,k − g·,k)TK−1(h·,k − g·,k)eT
in+1

Kein+1

≤|∇1,kφ(hin+1 , yin+1)| · |hin+1,k − gin+1,k|Kin+1,in+1 .

Therefore we have |hin+1,k − gin+1,k| ≤ |∇1,kφ(hin+1 , yin+1)|Kin+1,in+1/(2λn).

Lemma 2 The following inequality holds

err(f̂in+1(Zn), yin+1) ≤ sup
k=k0,in+1

[
1
a
φ0(f̂in+1,k(Zn+1), δin+1,k) +

(
b

cλn
Kin+1,in+1

)p]
.

Proof If f̂(Zn) does not make an error on the in+1-th example. That is, if err(f̂in+1(Zn), yin+1) =
0, then the inequality automatically holds.

Now, assume that f̂(Zn) makes an error on the in+1-th example, that is, err(f̂in+1(Zn), yin+1) =
1. Then there exists k0 �= yin+1 such that f̂in+1,yin+1

(Zn) ≤ f̂in+1,k0(Zn). If we let d = (inf{x :

φ0(x, 1) ≤ a} + sup{x : φ0(x, 0) ≤ a})/2, then either f̂in+1,yin+1
(Zn) ≤ d or f̂in+1,k0(Zn) ≥ d.

By the definition of c, either we have inf{x : φ0(x, 1) ≤ a} − f̂in+1,yin+1
(Zn) ≥ c/2 or we have

f̂in+1,k0(Zn) − sup{x : φ0(x, 0) ≤ a} ≥ c/2. It follows that there exists k = k0 or k = yin+1 such

that either φ0(f̂in+1,k(Zn+1), δyin+1
,k) ≥ a or

∣∣∣f̂in+1,k(Zn+1) − f̂in+1,k(Zn)
∣∣∣ ≥ c/2. Using Lemma 1,

we have either φ0(f̂in+1,k(Zn+1), δyin+1
,k) ≥ a or bKin+1,in+1/(2λn) ≥ c/2, implying that

1
a
φ0(f̂in+1,k(Zn+1), δyin+1

,k) +
(

bKin+1,in+1

cλn

)p

≥ 1 = err(f̂in+1(Zn), yin+1).

We are now ready to prove Theorem 1. For every j ∈ Zn+1, denote by Z
(j)
n+1 the subset of n

samples in Zn+1 with the j-th data point left out. From Lemma 2, we have

err(f̂j(Z(j)
n), yj) ≤ 1

a
φ(f̂j(Zn+1), yj) +

(
b

cλn
Kj,j

)p

.

We thus obtain for all f ∈ RmK :

∑
j∈Zn+1

err(f̂j(Z(j)
n), yj) ≤1

a

∑
j∈Zn+1

φ(f̂j(Zn+1), yj) +
∑

j∈Zn+1

(
b

cλn
Kj,j

)p

≤1
a

 ∑

j∈Zn+1

φ(fj, yj) + λfTQKf

+

∑
j∈Zn+1

(
b

cλn
Kj,j

)p

.

25

Therefore

EZn

1
m − n

∑
j∈Z̄n

err(f̂j(Zn), yj)

≤ 1
n + 1

EZn+1

∑
j∈Zn+1

err(f̂j(Z(j)
n), yj)

≤ n

a(n + 1)
EZn+1

 1

n

∑
j∈Zn+1

φ(fj, yj) + λfTQKf

+

1
n + 1

EZn+1

∑
j∈Zn+1

(
b

cλn
Kj,j

)p

=
1
a

 1

m

m∑
j=1

φ(fj, yj) +
λn

n + 1
fTQKf

+

1
m

m∑
j=1

(
bKj,j

cλn

)p

.

References

[1] Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Riemannian manifolds. Ma-
chine Learning, Special Issue on Clustering:209–239, 2004.

[2] Fan R.K. Chung. Spectral Graph Theory. Regional Conference Series in Mathematics. Ameri-
can Mathematical Society, Rhode Island, 1998.

[3] Chris Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst Simon. A min-max cut algorithm
for graph partitioning and data clustering. In IEEE Int’l Conf. Data Mining, pages 107–114,
2001.

[4] Daniel B. Graham and Nigel M. Allinson. Characterizing virtual eigensignatures for general
purpose face recognition. Face Recognition: From Theory to Applications, NATO ASI Series
F, Computer and Systems Sciences, 163:446–456, 1998.

[5] G.R.G. Lanckriet, N. Cristianini, L.El Ghaoui, P.L. Bartlett, and M.I. Jordan. Learning the
kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–72,
2004.

[6] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In NIPS, pages 849–856, 2001.

[7] R. Tyrrell Rockafellar. Convex analysis. Princeton University Press, Princeton, NJ, 1970.

[8] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell, 22:888–905, 2000.

[9] M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In
NIPS 2001, 2002.

[10] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning,
with application to clustering with side-information. In NIPS, 2003.

[11] Tong Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 15:1397–1437,
2003.

26

[12] Tong Zhang and Rie K Ando. Analysis of spectral kernel design based semi-supervised learning.
In NIPS, 2006.

[13] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schlkopf. Learning with local and global
consistency. In NIPS 2003, pages 321–328, 2004.

[14] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using Gaussian
fields and harmonic functions. In ICML 2003, 2003.

27

