
RC24007 (W0607-058) July 14, 2006
Computer Science

IBM Research Report

Online Power and Performance Estimation for Dynamic
Power Management

Karthick Rajamani, Heather Hanson, Juan C. Rubio,
Soraya Ghiasi, Freeman L. Rawson

IBM Research Division
Austin Research Laboratory

11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Online Power and Performance Estimation for Dynamic Power Management

ABSTRACT
Power management is at the forefront of challenges facing
next-generation computing systems. Multiple mechanisms
for dynamic regulation of processor power can be used ag-
gressively to address power and thermal issues in real time;
however, to do so effectively requires knowledge of the power
and performance impact of the power-regulation choices.
The problem is complex since the impact of each mecha-
nism is both system- and workload-dependent.

In this paper, we present our methodology and models
for online predictions driven by data from processor per-
formance counters. They estimate power consumption and
performance when multiple power-management features are
used simultaneously. Our goal is to provide effective, effi-
cient power and performance prediction capabilities, which
allow OS schedulers and workload/power managers to gauge
the power and performance impact of a state change before
making it. We focus on near-term estimation over 10s of
millisecond intervals, rather than long-term averages. This
approach allows power managers to fine-tune the power state
of the processor for scheduling changes and workload varia-
tions. It also offers fast response for controlling the demand
on the power supply and the cooling subsystem.

We implement our methodology in a software service run-
ning on a Pentium M system and evaluate the power and
performance models using the SPEC CPU2000 benchmarks.
We also demonstrate their use with two new dynamic power
management applications: Power Saver that optimizes for
saving power within a specified bound on performance loss
and a Performance Maximizer that optimizes for best per-
formance while meeting a specified power limit.

1. INTRODUCTION
Power and thermal management are at the forefront of

concerns facing modern computing systems. Increasing cir-
cuit densities, limitations in technology scaling with respect
to voltage and power reductions, dense system packaging,
and increasing cost of advanced cooling and packaging so-
lutions have made power and thermal issues critical across
all classes of computing systems. Researchers are trying to
address problems ranging from chip-level thermal manage-
ment, to intelligent management of data-center resources for
balancing cost and capacity limitations against performance
goals and dynamic provisioning capabilities.

Techniques like dynamic voltage and frequency scaling
(DVFS) provide a way of regulating power consumption at
the cost of altering system performance. Once proposed
for battery-operated environments, such techniques are now
prevalent across a wide spectrum of systems. Examples in-
clude PowerTune in Apple’s IBM PowerPC 970 based sys-
tems [1], Intel’s DBS (demand-based switching) for server
power management [2], Linux’s cpufreq-based drivers and
Windows’ power management that exploits ACPI-defined
processor p-states. Their usage is still primarily limited to
energy-saving, reducing power consumption when systems

are under-utilized. However, there are a wide array of prob-
lems beyond energy savings which require intelligent power
and thermal management solutions. For example, Intel’s
on-chip micro-controller, Foxton [3], tries to maximize chip
computing capabilities in the face of variation in the manu-
facturing process and environment limitations by using just-
in-time frequency management with real-time thermal and
power consumption feedback from on-chip sensors.

The power management mechanisms most suitable for dy-
namic adaptation change characteristics of the system which
have an impact on both the power and computing capabil-
ities and, consequently, application performance. The most
critical aspect of any dynamic power management solution is
the ability to assess, in real-time, the impact on both perfor-
mance and power of any mechanism the solution can apply
at a given moment. Knowledge of the quantitative impact of
these actions is vital for dynamic power management solu-
tions which must choose which mechanism to engage and to
what extent in order to address a given situation.

In this paper, we focus on predicting the performance and
power impact of an execution state change for any running
application in real-time. Guiding principles for prediction
model development include ease of incorporation in soft-
ware solutions at the kernel- or user-level and low run-time
overheads. Our methodology uses platform-specific proces-
sor performance counters as generic activity monitors for
power management and creates activity-based models for
real-time performance and power estimation. Using per-
formance counters for power estimation and activity mon-
itoring has proven history. Our work extends their usage
for real-time prediction and with models that predict across
state changes. We also generalize the existing concept of
p-states to include all the processor features which manage
power and affect performance and can be altered at run-
time. For the Pentium M platform used in this paper, our
modified notion of p-states is defined by frequency, voltage,
and clock throttle level.

This paper makes the following contributions:

• It gives a methodology for real-time performance and power
prediction across p-state changes initiated by dynamic
power management.

• It develops power-performance estimation solutions on a
widely available processor, the Intel Pentium M processor.
Both available mechanisms for processor execution state
changes—DVFS and clock throttling—are analyzed.

• It evaluates the methodology with detailed experimental
results on the Pentium M.

• It demonstrates their usefulness with two new dynamic
power management applications.

The paper is organized as follows. The following section
briefly discusses the related work. Section 3 presents the role
of power and performance estimation, our methodology for
it, and our platform and infrastructure for real-time estima-
tions and evaluation. Section 4 presents our solutions for ac-
tivity rate and performance estimations, their experimental
evaluations and results. Section 5 presents our solutions for
activity-based power estimation, their experimental evalua-

tion and results. Section 6 presents examples of our models
being used in prototype implementations for new dynamic
power management applications. Finally, we conclude with
Section 7.

2. RELATED WORK
Industrial standards such as Advanced Power Manage-

ment(APM) and the Advanced Configuration and Power
Interface (ACPI) [4], define protocols for power manage-
ment states. Commercial systems include a variety of power-
management mechanisms including SpeedStep [5] and Pow-
erNow [6]. Multiple p-states are available for most systems.

There have been a number of efforts over the years ex-
amining the implementation and effectiveness of dynamic
voltage and frequency scaling for saving power and energy
in embedded systems [7, 8, 9]. Performance-oriented explo-
rations include attempts to quantify and/or reduce the per-
formance lost when using DVFS for energy-saving. While
our solution applies to this case, our estimation approach
also facilitates performance optimization in larger systems
constrained by power supply and cooling limitations rather
than energy.

Ghiasi, et al., introduce an operating systems scheduler
which dynamically places tasks on the processor that most
closely matches the application’s ideal frequency setting [10]
in a multi-processor system with heterogeneous-frequency
processors. While they use performance counter-based pre-
diction to guide decisions, they focus on mitigating perfor-
mance loss and do not model or predict power.

Counter-based power estimates have been developed for
use in power and energy management for several platforms,
including models by Bellosa, et al., [11, 12] and Contreras
and Martonosi [13] for the Intel Xscale embedded systems
processor and Bircher, et al., [14] for the Intel Pentium4
processor. Our work is distinct in the following ways:

• Prior power model evaluations focused on average power
prediction. We investigate instantaneous power and per-
formance, which is beneficial for online applications such
as operating systems scheduling.

• We predict the impact of p-state changes, unlike much of
prior work which predicts only for the current p-state.

• Counter-based models are inherently platform-specific, and
our models are the first of which we are aware for the Pen-
tium M system.

3. ONLINE ESTIMATION
The goals of this paper are to develop a methodology for

deriving models to predict the power and performance im-
pact of changes in processor p-states used in dynamic power
management, and, to show how such models can be used by
operating systems and workload managers to make power
and performance trade-offs during system operation.

3.1 Exploiting Power/Performance Models
Power and performance models have wide applicability in

systems software. They can be used to adapt to application
phase changes, environmental changes, and even hardware
failures. An operating system can use them to implement
performance-aware power-savings strategies by projecting
the performance of its power management actions, estimat-
ing the performance impact of each possible power-saving
action before exercising it. In a virtualized environment,

the hypervisor can provide specific power and performance
guarantees to each OS partition while still operating within
its overall power and thermal constraints.

Alternatively, the system can maximize performance while
operating under power or thermal constraints. For a given
power constraint, the OS can select the p-state that yields
the maximum performance for the workload while still meet-
ing the constraint. As workload behavior changes, the OS
can continually adapt to provide the highest-performing safe
p-state for the current application behavior.

Power constraints can also change dynamically due to the
addition of new machines to a power or cooling domain,
cooling unit failures, load-shedding during non-peak hours,
or the imposition of a power cap to bound operating ex-
penses. Such a change can be explicitly communicated or
automatically detected by the OS. Our power and perfor-
mance estimation models allow the OS to adapt the p-state
to the changing conditions.

Systems can also use the models to enhance traditionally
performance-centric decisions such as task scheduling and
admission control by taking power and energy considerations
into account. They allow the decisions to be to be guided
by both power estimations and performance projections.

3.2 Model Considerations
Events which trigger power-performance adaptation like

application phase changes, environmental changes, and hard-
ware failures have a wide range in their monitoring, esti-
mation and reaction timescales from 10−2 to 101 seconds.
Targeting a 10 millisecond timescale allows our solutions to
be applicable across a wide range of power management so-
lutions.

Wide applicability and good accuracy are obviously de-
sirable, but low overheads and quick responsiveness are also
vital for the real-time usage. We have found that activity-
based models for power and performance estimation based
on data collected from processor performance counters meet
these requirements. Performance counters are a proven tech-
nology for processor event monitoring and are widely avail-
able in modern microprocessors. Counter data can be ac-
cessed with high enough frequency (100s of samples per sec-
ond) with little performance impact.

The requirement that we use a very limited number of
counters without the overhead of sampling or switching be-
tween counter types does limit the absolute accuracy of our
predictions. Models with more counters, more frequent ac-
cesses, and long observation periods would increase predic-
tion accuracy but limit the ability to use counters for real-
time, short-term prediction vital to tracking workload be-
havior or unpredicted environment changes. We also require
our models have minimal observation and learning over-
heads. Ideally, a single observation at any p-state should
help us estimate the power and performance impact for any
change in p-state.

3.3 Problem Formulation
Throughout the rest of the paper, we use the following

notation.

• S: S(f, t) denotes the processor p-state as a function of the
frequency of operation f (with implicit associated volt-
age) and the effective duty cycle t. In the case of the
Pentium M clock throttling selects the effective duty cy-
cle.

• A: A(f, t) denotes an activity rate of the processor at
frequency f and effective duty cycle t.

• P : P (f, t) denotes the power at frequency f and effective
duty cycle t.

• Values without a ′ are current values, values with a ′ are
new or future values. For example, f represents the cur-
rent frequency and f ′ is the new frequency.

Our goal, given the observation of a performance metric
at a particular S(f, t), is to estimate what the values for
the performance metric and power would be when S(f, t)
is changed. Since the instruction stream initiates activity
and power consumption is a consequence of this activity, we
decompose the problem into two steps, estimating activity
at a new state S(f ′, t′) and then using the activity estimate
to produce a power estimate:

1. Estimate A → A′ given S(f, t) ⇒ S(f ′, t′).
2. Estimate P ′ given A′.

3.4 Infrastructure
The experimental infrastructure for model development

and evaluation uses a Pentium M 755 (Dothan) with a Ther-
mal Design Power (TDP) of 21 W and supporting both
DVFS and clock throttling p-state change mechanisms. DVFS
allows scaling from 600 MHz to 2000 MHz. We discretize
the frequency scaling range into eight 200 MHz steps with
corresponding voltage changes. Clock throttling provides 8
steps of roughly 12.5% increments in effective duty cycle.

The Radisys system board [15] has built-in sense resistors
for tapping the two supply points that power the processor,
as shown in Figure 1. The current, measured as the voltage
across the sense resistor, and the supply voltage are filtered,
amplified with a National Instruments SCXI-1125 module
and then digitized with a NI PCI-6052E DAQ card to be
periodically collected on a separate measurement computer.
The power measurement is completely non-intrusive and the
peak sampling capability of 333 K samples/s is more than
adequate for the 10ms sampling intervals we are interested
in for this work.

We have developed low-overhead drivers for changing S(f, t)
states by altering DVFS and clock throttling levels and for
monitoring performance counters under Windows XP and
Linux. The monitoring drivers collect the counters every
10 milliseconds with negligible performance impact. A GPIO
signal is used to mark the beginning and end of the traces,
and the marks are used to correlate the power and activity
traces.

The Pentium M processor has only two simultaneously ac-
cessible programmable performance counters that can mon-
itor any of 92 different events. For practical real-time ap-
plication of our estimation models, we restrict our models
to using just one or two activity rates chosen from the 92
monitorable events. The estimation models developed in
Section 4 and Section 5 are tailored to the Intel Pentium M
processor. However, the same approach used here can be
applied to create models for a different processor.

3.5 Usage Considerations
We are exploring online estimation with a minimal num-

ber of event counters for practical use in commercial sys-
tems. Although we have built our estimation models upon
user-accessible performance counters for this study, in prac-
tice this approach may be unacceptable. User-accessible
counters may be reconfigured by system users, rendering

Figure 1: Experimental platform: system under test
with sense resistors and data acquisition probes to
measure processor power.

the values stored in performance counters registers mean-
ingless to our models. Introducing a small, dedicated set
of performance counters for use by estimation models would
eliminate this shortcoming. Building models with additional
user-accessible performance counters can improve model ac-
curacy, but at the expense of additional area in the processor
core. Dedicated performance counters would also require ad-
ditional area and wiring, so the number of available counters
will remain restricted.

We found that three counters would be beneficial yet still
within reasonable limits. However, because we use the Pen-
tium M’s existing performance counters, we are limited to
the simultaneous use of at most two counters in this study.
We demonstrate the use of performance and power estima-
tion separately in this work using two counters per model,
noting that a system with 3 counters could estimate power
and performance simultaneously.

3.6 Model Development and Evaluation
Basic insights into how power or an activity rate changes

with S → S′ are obtained by observations made with a well-
understood set of micro-benchmarks, collectively known as
Memory Sensitive Loops (MS loops). Table 1 summarizes
the four loops used for this study. All four perform simple
array access operations. These loops are configured to op-
erate with different data footprints to exercise each of the
different memory hierarchy levels (L1, L2, and DRAM) in-
tensively to study dependence of application behavior on
the memory hierarchy. Our training data set consists of 12
data points (4 loops, 3 footprints each) per S(f, t) setting.
An advantage of using small, well-defined loops over other
benchmarks is that their performance and power character-
istics are relatively stable during the course of a run and
across multiple runs. The loops are run at the highest real-
time priority mode to minimize interference.

Once developed, our models are validated using a different
dataset. We use the SPEC CPU2000 benchmark suite with
the reference datasets for this purpose.

4. PERFORMANCE MODELING
It is important to know the performance impact of an

S(f, t) change before making it, because the impact might be
intolerable or undesirable for the workload. We address this
issue by including activity modeling as a core component of
our approach for power and performance estimation across

Micro-benchmark Description

DAXPY The daxpy function from the Linpack benchmark [16]. This loop traverses two floating point
arrays, scales each element of the first array by a constant adding it to the corresponding element
of the second array.

FMA Floating-point multiply-add. It reads two adjacent elements from a single array, computes their
dot product and sums it up for all such pairs – results in a multiplication and an addition per
pair. The result is kept in a local variable. The Pentium M’s built-in hardware prefetching is most
exercised for this loop.

MCOPY Sequentially copies all elements of one array to a second one. This loop tests the bandwidth limits
of the accessed memory hierarchy layers.

MLOAD RAND Random memory load. This loop performs random accesses over the elements of an array. It can
be used for determining the latency of a memory hierarchy.

Table 1: Micro-benchmarks used to study characteristics and as training set for the models.

S(f, t) changes. It has dual roles:

• Performance estimation: We present a methodology to es-
timate the change in instantaneous performance captured
by Instructions Retired/cycle with change in S(f, t).

• Power estimation: We provide models that facilitate the
estimation of the activities used by the power models:
Instructions Decoded/cycle (DPC) and Data Cache Unit
Miss Outstanding Cycles/cycle (DCU) (refer section 5).

4.1 Development of Activity Models
Our model development approach is guided by observa-

tions which indicate how activity rates change with fre-
quency and throttling level for each of the MS loops. In
the Pentium M, the frequencies for the L1 and L2 cache
levels scale with the processor frequency, while the speed of
DRAM memory is independent of the processor frequency.
Thus, to understand the impact of dominant usage of each
level of the memory hierarchy, each MS loop is run at three
memory footprints. The different characteristics of the loops
give us insight on the difference in impact for different work-
load types.

Our activity model development is based upon the follow-
ing steps:

1. Examine activity rate trends with S(f, t) changes.
2. Identify regions of uniform trends, capture the trends in

the models.
3. Simplify models to reduce the number of parameters.
4. Solve for remaining parameters.

In the model development discussion below, different char-
acteristics or behavior are illustrated with specific, repre-
sentative data. First we discuss the characteristics and the
consequent models for the instruction rates - both IPC and
DPC share these characteristics. DCU exhibits different be-
havior and is discussed separately.

4.1.1 Instruction Rate Characteristics
Key characteristics are first illustrated with representative

data for IPC. Although we do not discuss the characteristics
of DPC changes here, these observations are equally valid for
DPC - both respond to frequency and throttling changes in
a similar way for all regions of memory.

Figure 2 shows the variation in IPC versus the effective
duty cycle as a result of throttling for each of the differ-
ent frequency settings. While the behavior shown is for the
DAXPY micro-benchmark, it is representative of the behav-
ior for all the MS loops. The behavior for the 128K footprint

is very similar to the 4K footprint and so not shown sepa-
rately. The first observation is IPC variation with effective
duty cycle is linear at all footprints – the impact of throt-
tling on performance is linear with the duty cycle reduction
and not very dependent on memory hierarchy usage.

Figure 2: IPC vs throttling at different
frequencies—DAXPY micro-benchmark.

IPC is not affected by frequency change when the data
accesses are restricted to L1 (4KB) and L2 (128KB) - the
behavior for the 128KB footprint is very similar to the 4KB
footprint and so not shown. The separation of the lines at
the 4096KB footprint, as seen in Figure 2 (c) suggests fre-
quency has significant impact on IPC once DRAM accesses
dominate.

The impact of frequency on IPC is further illustrated in
Figure 3 that shows the variation in IPC with frequency at
each throttling level (labeled with the effective duty cycle).
(a) shows the independence of IPC with respect to frequency
at the 128KB footprint. The 4KB footprint is not shown,
but exhibits the same behavior. Figure 3(c) shows the near
linear increase in IPC with the cycle time (or 1/f) rather
than with frequency. The R2 of the least squares fit de-
creases with the duty cycle of throttling (shown just for the
highest throttling and no throttling cases), indicating the
linear fit is better when unthrottled.

The independence of IPC from frequency for 4KB and
128KB but the inverse relationship for the 4096KB foot-
print comes from which memory hierarchy levels are in-
volved for each footprint. For the 4KB and 128KB footprints
only the L1 and L2 cache levels are used and as they scale
with processor frequency there is no change in IPC with fre-
quency. With the 4096KB footprint, the DRAM is accessed
and its latency does not scale with processor frequency. At
higher frequencies, the fixed DRAM latency imposes a larger
penalty in terms of processor cycles and so results in a lower
IPC compared to when executing at a lower frequency.

Figure 3: IPC vs frequency—DAXPY micro-
benchmark. Note (c) is showing variation with 1/f .

4.1.2 Models for Instruction Rates
When an activity rate A scales linearly with an effective

operating level L (duty cycle, frequency or 1/frequency),
then it can be represented as

A = a · L + b (1)

The two parameters in the equation, a and b, can be de-
pendent upon the workload and the values for the other
setting, e.g. the coefficient and constant for throttling are
dependent upon the frequency of operation as shown in Fig-
ure 2(c).

When a is negligible, then A is independent of the value
of L, so an observation at any value of L would be applicable
for any other value of L.

A(L) ≈ b =⇒ A(L′) ≈ A(L) (2)
This is the model for IPC when the footprints are L1 or L2
resident (see Figure 3).

If b is negligible, then A(L′) can be inferred from A(L) as
A(L) ≈ b · L =⇒ A(L′) ≈ A(L) · (L′/L) (3)

This captures the behavior of IPC with respect to throttling
changes at all footprints (see Figure 2).

When neither a or b are negligible, one would need to take
multiple observations at different values of L keeping other
conditions the same to solve for both parameters. This may
not be a feasible option if the application changes behavior
often or if one is not allowed S(f, t) changes just to learn
the model.

As we desire to predict the behavior from a single obser-
vation to support fast real-time adaptations, we searched for
an alternative approach. The constant b in the linear model
reduces the impact of L on A. An allometric function pro-
vides an alternative that can be used to get a similar effect
without the constant

A(L) ≈ c · (L)d =⇒ A(L′) ≈ A(L) · (L′/L)d (4)

The exponent d is restricted to the range between 0 and 1.
This approximation can only be used when the errors be-
tween the linear model and this generalize allometric model
are small.

Combining the equations derived for the three cases, our
model can then be represented by the following generalized
equation:

A(f ′, t′) = A(f, t) ·
„

t′

t

«α

·
„

f

f ′

«β

(5)

where α is between 0 and 1 inclusive, and β s between -1
and 1 inclusive. The values of α and β are determined by
which case corresponds to the behavior associated with a
particular L change, where L may be f , or t.

To apply our generalized model to the activity rates we
are interested in, recall that IPC is linear with the cycle
time (1/f) in the 4096KB footprint region. The linear de-
pendency on 1/f results in f/f ′ rather than f ′/f .

With MS loops it is easy to identify when to treat IPC as
a constant with respect to frequency and when to use the in-
verse relationship as the footprints give a good indication of
the dominant memory hierarchy level in use. For a general
application that may not be the case. We use the ratio of the
L1 data miss cycles outstanding (DCU) to the instruction
rate (IPC or DPC) ton insight into of the memory hierarchy
usage. For DCU/IPC below a certain threshold, IPC is pre-
dicted as constant with respect to frequency. For DCU/IPC
above that threshold, IPC is predicted to vary as a power
between 0 to 1 of cycle time. The values of the threshold
and exponent are solved using all the data for MS loops by
minimizing the sum of the square of the normalized errors
(Σ(1 − yest/y)2). We chose to use the normalized errors as
the absolute error values vary over a wide range and using
them would discard the importance of errors at small values
of IPC and exaggerate the importance of errors at large val-

ues of IPC. Solving for the thresholds and exponents in this
fashion yields Equation 6 for IPC and Equation 7 for DPC.

IPC′ =

j
IPC · (t′/t), DCU/IPC < 1.21
IPC · (t′/t) · (f/f ′).81, DCU/IPC ≥ 1.21

(6)

DPC′ =

j
DPC · (t′/t), DCU/DPC < 1.21
DPC · (t′/t) · (f/f ′).92, DCU/DPC ≥ 1.21

(7)

4.1.3 Model for DCU
Tracking the behavior of DCU with memory footprints,

we find that with respect to throttling, the behavior is linear
for L2 and DRAM accesses with small b that can be ignored
and is unaffected within L1.

DCU is linear with cycle time within L1, almost constant
with high amount of L2 accesses and linear with frequency
with a large constant with dominant DRAM accesses.

Again, to identify the threshold for the transition from
constant to power scaling with respect to frequency and the
exponent we solve for them by minimizing the sum of square
of the normalized errors. Doing so, we end up with Equa-
tion 8 for predicting DCU.

DCU ′ =

8>>><
>>>:

DCU · (f/f ′), DCU < .001
DCU · (t′/t), DCU ≥ .001 and

DCU/DPC < .005
DCU · (t′/t) · (f ′/f).27, DCU ≥ .001 and

DCU/DPC ≥ .005
(8)

4.2 Evaluating Activity Models
For our evaluation, we initiate a change from S to S′, esti-

mate the activity rates (A) for that change and compare the
measured activity rates (Am(S′)), versus estimated activity
rates (Ae(S

′)).
All observations are taken with the SPEC CPU2000 bench-

mark. For each pair of activity rates {IPC, DCU} and
{DPC, DCU}, the benchmark suite was executed three times
– one where only frequency changes are initiated every 1
second for unthrottled operation, one where only throttling
changes are initiated every second for 2000 MHz opera-
tion, and one where both frequency and throttling levels
are changed every second. The timer for activity rate sam-
pling was set with 33 ms periods; the actual duration of each
sample period is subject to the Windows timer variability.

To remove the impact of changing application character-
istics (and consequently, changing activity rates) from when
we make the observation A(S) to when we measure A(S′) we
impose two conditions. One, the application has to be in a
relatively steady state at the time of observation A(S). We
implement this by checking the recent history of the activ-
ity rates before changing S(f, t). Two, we observe activity
through a sequence of S → S′ → S. The second observation
at S should be comparable to the original A(S) to ensure
that the difference in activity rate is due to the change in
state and not due to change in application behavior. If the
repeated observation at S differs by more than 10% from
the original S observation, we invalidate that sample. Only
valid samples are included in the evaluation analysis.

4.3 Results

Table 2 summarizes the main results from the evalua-
tion. There are three columns for each activity metric—f
and t, f, and t—containing the statistics for the different
runs as described above. The first row contains the aver-
age absolute percentage error across all the predictions for
that run, the second row its standard deviation, and the
third row the percentage of the population in the interval
[mean− stddev,mean+ stddev]. The next row contains the
number of observations. All the other rows summarize the
error distribution which is a normal-like distribution (uni-
modal, roughly symmetric about the mean). When only
frequency or throttling levels are changed, the total run du-
ration is shorter than when both are changed as the system
runs unthrottled or at maximum frequency, correspondingly.
This results in fewer number of observations when only one
mechanism is used compared to when using both.

Table 2 shows the average error predicting across both
frequency and throttling level changes is just under 10%
for both the instruction rate metrics. For both, predict-
ing impact of throttling level changes is more accurate than
predicting frequency change impact.

The average error for predicting DCU changes is higher
at 22.45%. Predicting the impact of throttling level change
is less accurate than predicting frequency change impact be-
cause the linear approximation for DCU versus duty cycle
relation has slightly higher errors than a linear approxima-
tion for the instruction rate versus duty cycle relations.

The relatively high proportion of the population within
[µ − σ, µ + σ] suggest that knowing the µ and σ values for
these estimations provides a reasonable summary of the re-
sults. For a normal distribution, only 68% of the population
would be within this range.

The values for the error prediction median and range
(maximum over-prediction to maximum under-prediction)
show that all predictions—but for DCU prediction with just
frequency changes—are negatively centered. The fact that
the medians are quite close to zero while the distribution
means are more negative suggest that the distributions are
negatively centered more from a larger magnitude of over-
prediction errors than from a larger incidence of such errors.

We also found that the results did not change much when
we used the same SPEC data set observations used in the
validation to also derive the parameter values used in the
activity-estimation models (i.e. fit the models to the test
data set). This is primarily a fall-out of our model devel-
opment approach that minimized the number of parameters
that were dependent on the model input data set.

5. ACTIVITY-BASED POWER MODELING
In this section, we address model development and evalu-

ation for the task of estimating the power from activity rates
for each processor state S(f, t).

5.1 Power Model Development
Pentium M performance counters defines 92 event types,

but only two may be observed simultaneously. For real-
time, low-overhead, online estimation, we use a maximum
of two counters in the power model. We examined 13 coun-
ters likely to be useful for power prediction, including in-
structions completed, micro-operations retired, instructions
decoded, bus transactions to memory, and several cache-
related counters. We correlated counter values with mea-
sured power recorded during microbenchmarks executing at

IPC Prediction DPC Prediction DCU Prediction
f and t f t f and t f t f and t f t

Mean absolute error (m) 9.53% 7.17% 4.89% 9.79% 8.58% 6.29% 22.45% 13.17% 16.26%
Std. dev. absolute error (s) 13.97% 14.7% 6.66% 16.74% 15.88% 9.35% 33.87% 9.72% 29.22%
Pop. within [m − s, m + s] 90.54% 91.55% 89.06% 97.28% 89.02% 93.98% 92.6% 83.98% 90.24%
Number of observations 2970 734 905 2826 774 963 2826 774 963
Error distr. mean (µ) -2.63% -2.94% -1.14% -3.46% -3.22% -1.34% -5.61% 0.62% -4.61%
Error distr. std. dev. (σ) 16.7% 16.08% 8.19% 19.08% 17.76% 11.19% 40.24% 16.35% 33.12%
Pop. within [µ − σ, µ + σ] 83.77% 88.28% 84.09% 86.02% 86.18% 83.8% 86.34% 68.6% 85.67%
Error distr. median -0.61% -0.32% -0.35% -0.36% -0.18% -0.24% 0.31% 2.53% -0.41%
Maximum over-prediction 151% 179% 54% 168% 113% 84% 389% 76% 289%
Maximum under-prediction 54% 41% 47% 71% 47% 45% 82% 50% 82%

Table 2: Results for prediction.

frequency α β γ R2 Se

(MHz)
600 0.34 0.88 1.70 0.94 0.04
800 0.54 1.28 2.28 0.94 0.07
1000 0.77 1.68 2.81 0.93 0.09
1200 1.06 2.16 3.44 0.93 0.13
1400 1.42 2.80 4.15 0.93 0.16
1600 1.82 3.44 5.00 0.93 0.22
1800 2.36 4.08 6.10 0.91 0.33
2000 2.93 4.64 7.47 0.90 0.46

Table 3: 1-Counter Model Coefficients and Regres-
sion Statistics

the highest user priority. We chose to use Decoded Instruc-
tions per cycle (DPC) in the power model for three rea-
sons. First, DPC is well-correlated with power, with cor-
relation factors ranging from 0.82 at 600 MHz to 0.93 at
2000 MHz. Second, DPC captures power-consuming activ-
ity due to speculative instructions that similar counters such
as instructions completed (IPC) do not. Third, decoded or
dispatched instruction events are widely available on other
platforms so similar models may be constructed for many
other systems.

While instruction rates are good indicators for power con-
sumption, the system operating frequency and supply volt-
age also have a significant impact on power. The dynamic
power equation:

Powerdynamic = αCV 2f (9)

where C is the capacitance, α is the switching activity
factor, V is the voltage and f is the frequency, shows the
quadratic influence of voltage on the dynamic portion of
power dissipation. Because voltage also has a technology-
specific influence on leakage power, we chose to develop
power estimation models specific to each frequency-voltage
pair. We list only frequency in the following discussion as
shorthand notation for the f, V pair. Figure 4(a) illustrates
the benefit of developing frequency-specific models that fit a
narrower distribution of points, which significantly reduces
the fitting error.

We constructed a 1-counter power model, shown in Equa-
tion 10, to describe the relationship between measured power
and DPC, including the reasonably linear effect of clock
throttling, t.

Power1−c = α · DPC + β · throttle + γ (10)

To build the model, we applied linear regression to power

and counter data collected with micro-benchmarks and de-
termined one set of coefficients for each frequency. Ta-
ble 3 lists the 1-counter model coefficients. Figure 5(a)
shows the estimated power versus the corresponding mea-
sured power and indicates model fit. Lower frequencies
and more-throttled settings result in less workload variation
than higher frequencies and less throttled conditions. The
frequency-dependent variation is reflected in the regression
statistics; the regression R2 value decreases and the error
sum of squares, Se, increases with increasing frequency, in-
dicating that the linear model better reflects the relation-
ship between the DPC counter and power at lower frequen-
cies. The 1-counter linear prediction deviates from a perfect
fit by 2.3 watts,16%, in the worst-case, with an average of
absolute-value error of 0.31 watts.

Figure 4(b) shows that memory hierarchy usage allows
further subdivision within a given frequency. From the memory-
related counters available on the Pentium M, we chose DCU -
MISS OUTSTANDING (DCU), which tracks the number of
cycles of outstanding misses for the data cache unit. The
ratio of DCU:DPC counters gives us an indication of the
memory stall time per instruction. Very small ratio values
indicate accesses primarily to the L1, which allow the core
to work continuously and generally consume more power.
Large ratio values indicate off-chip memory accesses, when
the core will be stalled a significant amount of the time
and typically use less power. Intermediate values indicate
accesses to the L2 cache and a corresponding intermediate
power range.

The counter ratio can be used to generate a piece-wise
model corresponding to the three levels of the memory hier-
archy, as shown in Equation 11. Model A is used for samples
with a counter ratio less than or equal to threshold 1, model
B is for samples with ratios between thresholds, and model
C is for samples above threshold 2.

Power2−c = α · DPC + β · DCU + γ · throttle + δ. (11)
We used linear regression in conjunction with two thresh-

old values to build the A, B, and C model components. The
model employs thresholds that resulted in the minimum to-
tal error, threshold 1 = 0.08 and threshold 2 = 1.08. Ta-
ble 4 lists the coefficients for Equation 11. Like the 1-counter
model, the 2-counter model contains separate predictors for
each frequency.

Figure 5(b) illustrates the 2-counter model applied to the
micro-bench training data. Prediction trends are similar to
the 1-counter model; the regression fit is better for low fre-
quencies and low throttle levels where there is little variation
among benchmarks, and the model has more error at the
higher frequencies and unthrottled conditions where appli-

Figure 4: Power versus Decoded Instructions per Cycle

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

es
tim

at
ed

 p
ow

er
 (

w
at

ts
)

measured power (watts)

worst case error: 2.3 watts, 16% error

average error: 0.31 watts

600 MHz

800 MHz

1000 MHz

1200 MHz

1400 MHz

1600 MHz

1800 MHz

2000 MHz

perfect prediction

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

es
tim

at
ed

 p
ow

er
 (

w
at

ts
)

measured power (watts)

worst case error: 1.7 watts, 12% error

average error: 0.13 watts

600 MHz

800 MHz

1000 MHz

1200 MHz

1400 MHz

1600 MHz

1800 MHz

2000 MHz

perfect prediction

(a) 1-counter model (b) 2-counter model

Figure 5: Power models fit with MS loops training data

f Model A (core-bound) Model B (intermediate) Model C (memory-bound)

MHz α β γ δ R2 Se α β γ δ R2 Se α β γ δ R2 Se

600 0.13 1.82 1.20 1.70 0.982 0.06 0.18 -0.20 1.36 1.69 0.996 0.03 0.65 0.028 0.64 1.67 0.986 0.03

800 0.22 2.96 1.68 2.30 0.979 0.10 0.31 -0.19 1.92 2.30 0.996 0.05 1.09 0.031 0.88 2.25 0.986 0.05

1000 0.31 4.07 2.32 2.83 0.977 0.14 0.45 -0.05 2.48 2.83 0.994 0.07 1.66 0.032 1.2 2.78 0.983 0.08

1200 0.34 5.40 3.20 3.48 0.979 0.17 0.66 0.22 2.96 3.46 0.996 0.08 2.41 0.031 1.52 3.37 0.987 0.09

1400 0.50 6.70 4.08 4.20 0.979 0.22 0.91 0.55 3.60 4.19 0.996 0.10 3.38 0.037 1.92 4.08 0.989 0.10

1600 0.59 8.37 5.12 5.11 0.978 0.30 1.26 1.05 4.08 5.07 0.994 0.15 4.60 0.043 2.40 4.83 0.990 0.13

1800 0.79 11.09 6.24 6.32 0.961 0.47 1.70 1.87 4.40 6.21 0.984 0.30 5.96 0.042 2.96 5.80 0.986 0.19

2000 0.76 13.13 7.68 7.81 0.947 0.66 2.12 2.88 4.64 7.60 0.973 0.42 7.51 0.049 3.36 7.03 0.981 0.46

Table 4: 2-Counter Model Coefficients and Statistics

cation behavior differences are more pronounced. However,
the model is better able to capture workload memory behav-
ior and the model fit degrades less at higher frequencies than
the 1-counter model. Regression statistics in Table 4 show
that the regression R2 decreases slightly with frequency for
models B and C. Model A fits the data less well than
the other two components, due in part to a larger number
of benchmarks that are classified as model A and also due
to the wider variation in behavior among core-bound bench-

marks than memory-bound benchmarks. Overall, the worst-
case error for the two-counter model is about 1.7 watts, with
an average absolute-value error of approximately 0.13 watts.

5.2 Model Evaluation
We evaluated each model by analyzing its accuracy for

predicting power of the SPEC CPU2000 benchmark suite.
All the SPEC benchmark programs were run with their ref-
erence input sets. Due to to execution time considerations,
we evaluated a subset of the power management settings: 3

frequencies { f = 600 MHz, 1600 MHz, 2000 MHz}, and 3
throttle levels { t = 37%, 75%, 100%} for a total of 9 power
management settings per benchmark. We collected power
and performance-counter traces for each SPEC CPU2000
benchmark, then averaged their values for each 100ms of
execution time to form a series of data samples for each
benchmark.

For evaluation, we generated power estimates for each in-
terval of the SPEC CPU2000 performance-counter data (for
a total of nearly 200,000 samples) for the 1- and 2-counter
models and compared the result with measured power data.

5.3 Results
The average absolute value errors are both in the range of

the measurement error with 0.35 watts for the 1-counter
model and 0.45 watts for the 2-counter model. Overall,
the 1-counter model was slightly more accurate than the
2-counter model. We believe that the 2-counter model re-
sulted in over-fitting for the MS loops data and consequently
showed larger errors when evaluated with the a different
(SPEC CPU2000) test data set.

AOur models have higher average error at higher fre-
quency and throttle levels. We examine the 2000MHz case
in more detail to highlight the problems associated with the
larger variation when more processor resources are available.
Errors for the original 2-counter model built with micro-
benchmarks and applied to 2000 MHz SPEC CPU2000 bench-
mark data resulted in an average error of 0.95 watts Us-
ing SPEC CPU2000 data to build and evaluate a 2-counter
model at 2000 MHz reduced the average error to 0.67 watts.
Removing the train-test differences reduced the average er-
ror, approaching the level of measurement-error, but addi-
tional sources of error still exist.

We find that a minimal set of performance counters can
provide power estimates based on monitored activity rates.
The prediction accuracy is limited by several factors, includ-
ing measurement error, incomplete power information cap-
tured by the restricted number of counters, and differences
between test and training data sets.

Despite the constraints, the 1-counter and 2-counter static
models presented here provide a low-complexity power esti-
mate with small average error. The simple equations, small
amount of state to store for coefficients, and small number
of performance counters to track make these static models
a practical alternative to more complex power estimates in
power-management applications. We envision two orthogo-
nal approaches to increase the accuracy of such estimation
approaches: (a) increase number of and/or customized event
tracking counters for even higher activity-power correlation,
and (b) dynamically adapt models to current execution char-
acteristics, using power measurement feedback. We are cur-
rently investigating the latter for potential improvements in
estimation accuracies.

6. MODEL USES
Here, we briefly present prototypes of two new dynamic

power management applications enabled by our models -
Performance Maximizer (PM) and Power Saver (PS). The
two usage scenarios are applied to the ammp benchmark.
For both scenarios, one of the models is used to make pre-
dictions every 10ms and the system operating point S(f, t =
unthrottled) is changed in response to these predictions.
While the prototypes in the examples below present only fre-

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700

W
at

ts

M
H

z

seconds

unconstrained power
power < 14 W

power < 12 W

2 GHz 1.8 - 2 GHz
1.6 - 1.9 GHz

power - 2 GHz
power - PM(14 W)
power - PM(12 W)

Figure 6: Performance Maximizer with ammp: un-
restricted, 14-W limit, and 12-W limit

.

quency changes, our models can obviously be used to make
throttling decisions too.

6.1 Performance Maximizer
The Performance Maximizer (PM) seeks to maximize per-

formance within a power limit. The PM is implemented as
high-priority user-level software. It monitors the DPC and
DCU performance counters and uses them in the 2-counter
power model to estimate power consumption at multiple
frequencies. PM then dynamically chooses the highest fre-
quency for operation that will still allow the processor to
operate under the specified power limit. This application is
dynamic in adapting to both changes in workload conditions
as well as changes in power limits.

Figure 6 shows the PM application managing to power
limits for ammp. The figure has three sections for differ-
ent power limits, all showing both power estimates (lower
half/left y-axis) and frequency (upper half/right y-axis) with
time. The leftmost plot shows ammp running at 2 GHz when
there is no power limit. The middle section shows ammp un-
der a 14W limit - PM adjusts the frequency as the workload
changes to always adhere to the limit, and the third plot
shows how PM adapts to a still lower limit of 12-W exploit-
ing even lower frequencies. Viewed from right to left the
sections show how PM can adaptively increase performance
when power limit is increased with execution time decreasing
from 256.2s (12W), 234.8s (14W), 226.9s (unconstrained).

PM’s ability to continuously choose the maximum fre-
quency that meets power constraints is enabled by moni-
toring counter events for relevant workload information and
using our power models at each interval to make the right
decisions.

6.2 Power Saver
The Power Saver (PS) provides the ability to save power

for a given constraint on tolerable performance loss. Imple-
mented on the same infrastructure as PM, it monitors per-
formance counters (IPC and DCU) each interval to assess
the workload characteristics and performance (Instructions
Retired per Second - IPS). The activity models are used to
determine peak performance possible and to identify the fre-
quencies that can sustain an IPS within the specified bound
from the peak. The lowest frequency that can satisfy that
bound is then selected because it would consume the least
power.

Figure 7 shows a snapshot from the execution of ammp

 0

 500

 1000

 1500

 2000

 2500

 82 82.5 83 83.5 84 84.5 85

In
st

ru
ct

io
ns

 p
er

 s
ec

on
d

M
H

z

seconds

1.8 GHz

0.8 GHz

core bound
 region

memory bound
 region

IPS at 2 GHz
IPS using PS(80%)

frequency

Figure 7: Power Saver with ammp at a performance
requirement of 80% of maximum

.

when the system is allowed to reduce performance down to
80% of maximum possible performance i.e. 80% of perfor-
mance at 2 GHz.

PS selects frequency with the lowest power (lowest fre-
quency) that the performance activity models estimate will
have an IPS value of at least 80% of the IPS at 2GHz. In the
core-bound region shown in the figure, PS chooses 1.8 GHz
to meet the performance requirement. In the middle phase,
ammp swings quickly between compute- and memory-bound
behavior, and PS responds by adjusting the frequency be-
tween 1.8 and 0.8 GHz. In the consistently memory bound
region, where performance is impacted much less by lower
frequencies, PM chooses 800MHz as a steady operating point.
Considering the full execution, the execution under PS meets
the performance constraint finishing in 275.1s compared to
an unconstrained execution time of 226.9s (82% of maximum
performance) at an average power of 9-W which is lower than
the unconstrained execution’s average power consumption of
13.5-W.

The performance activity models allow the PS application
to tailor the CPU frequency to the current workload and
exploit opportunities to save power while preserving perfor-
mance at the required level.

7. CONCLUSIONS
In this paper, we address the estimation of power and

performance across processor execution state changes used
by dynamic power management solutions. Our methodol-
ogy for this incorporates (a) activity-based models for power
and performance across different S(f, t), and (b) run time
monitoring of required activity rates through widely avail-
able processor performance counters. Because of the low-
overheads for counter access and prevalence of the mecha-
nism across different processor architectures our approach is
widely applicable and easily portable.

We develop models to estimate power and performance
from monitored activity rates for this purpose. Our effort
is distinguished from previous work in focusing on models
suitable for online deployment – we can apply our estimation
solution using a single observation of involved activity rates.
Further our prediction models work across multiple power-
management mechanisms, more specifically the two most
prevalent ones, dynamic voltage and frequency scaling and
clock throttling.

We prototype our approach with an Intel Pentium M
processor-based system and validate it using an experimen-

tal approach keyed towards assessing the model effectiveness
for real-time power management. We identify the activity
rates to be monitored for power and performance estimation
on this platform as IPC, DPC, and DCU. Developed using
a custom suite of simple micro-benchmarks our models are
validated using the SPEC CPU2000 benchmarks suite. We
achieve reasonable prediction accuracy for power and perfor-
mance. Further, we demonstrate how our models enable new
adaptive power management solutions presenting prototype
implementations of two new dynamic power management
applications.

8. REFERENCES
[1] C. Lichtenau, M. Recktenwald, T. Pflueger, R. Hilgendorf, and

P. A. Sandon, “Powertune: An energy-efficient high
performance multi-processor powerpc system architecture,” in
ACEED, 2003.

[2] D. Bodas, “New server power-management technologies address
power and cooling challenges,” Intel Magazine, Sept. 2003.

[3] C. Poirier, R. McGowen, C. Bostak, and S. Naffzigr, “Power
and temperature control on a 90nm itanium-family processor,”
in IEEE International Solid-States Circuits Conference 2005,
March-April 2005.

[4] Compaq Computer Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., and Toshiba
Corporation, “Advanced configuration and power interface
specification (ACPI) revision 2.0b.”
http://www.acpi.info/DOWNLOADS/ACPIspec-2-0b.pdf, Oct.
2002.

[5] Intel Corp, “Enhanced Intel SpeedStep technology.”
http://support.intel.com/support/processors/mobile/pm/sb/
CS-007981.htm, Jan. 2006.

[6] Advanced Micro Devices, “PowerNow with optimized power
management.”
http://www.amd.com/us-en/0,,3715 12353,00.html, Jan. 2006.

[7] K. Flautner and T. Mudge, “Vertigo: Automatic
Performance-Setting for Linux,” in Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI), pp. 105–116, December 2002.

[8] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and
R. Rajkumar, “Critical power slope: Understanding the
runtime effects of frequency scaling,” in Proceedings of the
International Conference on Supercomputing (ICS), 2002.

[9] B. Brock and K. Rajamani, “Dynamic power management for
embedded systems.” IEEE International SOC Conference,
September 2003.

[10] S. Ghiasi, T. W. Keller, and F. L. Rawson, “Scheduling for
heterogeneous processors in server systems,” in Proceedings of
the International Conference on Computing Frontiers (CF
2005), May 2005.

[11] F. Bellosa, “The benefits of event-driven energy accounting in
power-sensitive systems,” in ACM SIGOPS European
Workshop, October 2000.

[12] A. Weissel and F. Bellosa, “Process cruise control:
Event-driven clock scaling for dynamic power management,” in
Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES
2002), pp. 238–246, October 2002.

[13] G. Contreras and M. Martonosi, “Power prediction of intel
xscale processors using performance monitoring unit events,” in
2005 International Symposium on Low Power Electronics
and Design, August 2005.

[14] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime
identification of microprocessor energy saving opportunitites,”
in International Symposium on Low Power Electronics and
Design (ISLPED), August 2005.

[15] Radisys Corporation, “Endura LS855 Product Data Sheet.”
http://www.radisys.com/oem products/ds-
page.cfm?productdatasheetsid=1158, Oct. 10
2004.

[16] A. Petitet, C. Whaley, J. Dongarra, and A. Cleary, “HPL - a
portable implementation of the high-performance linpack
benchmark for distributed-memory computers,” tech. rep.,
University of Tennessee, Jan. 20 2004.

