
RC24014 (W0608-005) August 2, 2006
Computer Science

IBM Research Report

Relational Blocks: Declarative Visual Assembly of Enterprise
Applications

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Relational Blocks: Declarative Visual
Assembly of Enterprise Applications

Avraham Leff James T. Rayfield

Abstract

Relational Blocksis a visual programming language, editor, and runtime that enables developers

to create enterprise applications without adding any non-visual or imperative code. This is possible

because the model, controller, and view language primitives use a compatible relational API and

have the same visual representation. Unlike many other visual programming languages,Relational

Blocksis general-purpose and oriented towards building transactional applications that have signifi-

cant amounts of business logic which interacts with the application’s view and model.

We believe that usingRelational Blockscan greatly enhance developer productivity because of

the higher levels of abstraction used to develop the application and because the GUI is developed

visually. To evaluate this claim, we compare aRelational Blocksversion of a non-trivial application

to a Java version, and show that the unified approach ofRelational Blockscan considerably simplify

application development.

Index Terms

relational blocks, visual programming languages, declarative programming, relational algebra,

relational model, application assembly, visual application design.

I. I NTRODUCTION

A. Motivation for Relational Blocks

Relational Blocksis a visual programming language, editor, and runtime that enables devel-

opers to create enterprise applications without adding any imperative code.Relational Blockshas

the following characteristics:

IBM T.J. Watson Research Center email: avraham@ibm.com
IBM T.J. Watson Research Center email: jtray@ibm.com

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 2

• Relational Blocksuses the same relational API and visual representation for all of the lan-

guage primitives: model, algebra (controller), and widget (view) blocks.

• Composite blocks use the same relational API and visual representation as primitive blocks.

• Applications are assembledvisuallywith a visual editor with no imperative code required

from the developer.

• Relational Blocksis a general-purpose (rather than domain-specific) language, and is in-

tended for use in developing transactional enterprise applications.

• Relational Blocksapplications may be directly executed from the visual editor.

Our motivation for buildingRelational Blocksis to increase developer productivity. Developer

productivity is increased because:

• Visual portions of an applications are developed visually, rather than by using imperative

code or text-based declarative languages like HTML.

• A visual editor is used to assemble the application, and all of the application’s components

(“blocks”) use the same API and have the same visual representation. Because blocks have

a common interface, they are easily combined to produced the desired effect. Developers

are not forced to use different languages to develop different parts of the same application.

• Because business logic is expressed in a two-dimensional canvas, developers have more

freedom to express application interconnections than with the one dimension allowed by

the standard text editor. Interconnections between blocks need not be labeled, so no effort

is expended on naming data flows whose semantics are apparent from the visual layout.

• Understanding the language semantics requires only understanding the well-known rela-

tional algebra concepts. The fact that the relational algebra has a precise mathematical

definition (set theory) is another advantage.

• The “code, test, and debug” development cycle is reduced because applications are directly

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 3

executed from the visual editor. Incremental construction is encouraged because only a

small set of blocks is required to bootstrap a working application. Blocks may be added,

removed, or rewired at any time, and the application can be immediately validated and

re-executed.

B. Background & Related Work

Because it uses visual representations (blocks and wires) to accomplish all of what is done

textually in conventional languages,Relational Blocksis visual programming language (VPL). In

addition,Relational Blocksis a strongly “declarative” (in contrast to “imperative”) language as can

be seen from the lack of explict flow-control mechanisms, its use of a high-level relational algebra,

and in the stateless nature of its algebra blocks [19]. The contribution ofRelational Blockscan

therefore best be understood by contrasting it to both non-visual, imperative approaches, and with

other VPLs.

In general, the use of programming abstractions increases developer productivity. Well known

examples of such abstractions include procedural (relative to unstructured) programming, and

object-oriented (relative to procedural) programming. Similarly, increasing an application’s ra-

tio of declarative (specifyingwhat) to imperative (specifyinghow) programming [19] increases

productivity. In fact, declarative programming techniques have been successfully applied inparts

of enterprise application assembly. For example, in the domain of GUI construction, HTML is

successfully used to build Web pages: programmers describe only what the Web page should look

like; web-browsers are responsible for providing the algorithms that render the page onto a dis-

play’s pixels. In the domain of defining an application’s Model, relational database schema can be

described by the DDL subset of SQL [8], and XML document structure can be specified by schema

[21]. Finally, application logic can be described in declarative fashion using functional languages

(e.g., Haskell and Lisp), logic-based languages (e.g., Prolog), and constraint-based languages (e.g.,

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 4

Fig. 1. Requirement to Integrate Different Model/View/Controller Domains

Oz). XML document instances can be manipulated in declarative fashion using languages such as

XSLT [24], and navigated using query languages such as XPath [22] and XQuery [23].

Although successful in limited application domains, most current approaches require varying

degrees of imperative code when assembling enterprise applications. The task of integrating non-

trivial view, model, and controller portions of an enterprise application is so complex that the

fine-grained control afforded by imperative techniques is assumed to be necessary.

Consider Figure 1 which shows the front-end of an application that allows a user to create

{Name, Value} records (rows) in a database system. The user enters anamein the Name text box,

a valuein the Value text box, and presses the Create button to create the record. Even this trivial

bit of function requires that the following tasks be integrated in a single application:

1. view construction

2. event handling (to read the state of the name and value text boxes and thus bridge the view

and the controller domains)

3. model definition (to access the database table and insert the new record)

4. business logic (to handle the case where a record with that key already exists).

At one extreme, developers code theentireenterprise application using a single language such

as Java. Widget-technologies such as Swing or SWT are used to define the UI panels, text-entry

fields, and button. Event-handler code is attached to the widgets to bridge the view and model

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 5

domains and to specify the business logic. The advantage of this “all imperative” approach is de-

velopers can use a single language to code the entire application. The most obvious problem with

this approach is that an intrinsically visual activity (defining the application’s view) is done in a

non-visual medium. The developer is typically required to hand-code the size of the windows, the

placement of all the widgets, the widget modifier flags (e.g., “resizable”), and so forth. Devel-

opers often resort to drawing the view by hand on graph paper in order to determine the correct

parameters for the imperative code!

This disadvantage is sufficiently great to motivate the use of hybrid approaches in which

declarative or visual techniques are used to define the view portion of an application while im-

perative code is used to bridge the view to the rest of the application. For example, tools such

as Dreamweaver [17] and IBM Rational Application Developer [15] allow users to define views

visually. Some tools ([15]) even enable the visual design of model components using the relational

model: relational tables are represented as “tables”, with a column displayed for each attribute.

Microsoft’s XAML [1] similarly allows programmers to declaratively define a view layout of text,

images, and controls, using a visual editor or XML. This approach is satisfactory for static views

which are not coupled with model and controller logic (e.g., static HTML pages). However, it does

not extend well to dynamic views, where the contents of the view have a significant dependency on

the current state of the model. For example, most visual HTML tools do not allow the displayed

table size to be based on the current contents of the model at runtime. More fundamentally, only

view construction and model definition (via DDL[8]) is done declaratively: event handling and

business logic is done through imperative code.

Cocoa Bindings ([10]) provide a means for keeping Model and View values synchronized. It

provides a “binding” such that a change in one is reflected in the other. Cocoa Bindings support

straightforward synchronization between View widgets and Model properties (e.g. a preferences

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 6

<def:Code>
<![CDATA[

void ButtonClick(object el, ClickEventArgs cea)
{

Button btn = (Button) el;
FlowPanel parent = (FlowPanel) btn.Parent;
parent.Children.Remove(btn);
parent.Children.Insert(1, btn);

}
]]>

</def:Code>

Fig. 2. Non-Visual, Imperative Code Accessing Declarative Widgets

editor), but do not support more complex interactions.

In the case of XAML, for example, controller logic must be implemented in a standard im-

perative language such as C#, either embedded in the application XML or in a “code behind” file.

Widgets must call imperative event-handlers when interesting events occur; the event handler code

must access widget state using labels and graph navigation. Both of these patterns are shown in

Figure 2 (excerpted from [1], Figure 7), which illustrates an event-handler for a Button click. In

this example, clicking the Button causes it to move into the second position in the View. Note

that the XAML only declares theinitial View; after a Button is pressed, the View must be updated

using imperative C# code, and no longer corresponds to the View described by the XAML.

Such hybrid approaches resembleRelational Blocksin the way that visual or declarative tech-

niques are used to construct the application’s view. UnlikeRelational Blocks, they suffer from

an impedance mismatch caused by the need to mix declarative and imperative programming in

the same application. Even worse, the hybrid approaches tends to discourage strict encapsulation.

Looking at the XAML example in Figure 2, the imperative controller code must have a deep un-

derstanding of the details of the view, because the view API is accessed at the widget level. Thus,

small changes to the view may require rewriting the controller code.

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 7

Thus,Relational Blockscan be explained as an approach that not only constructs an applica-

tion’s view visually, but that also uses the same visual representation and API to code the model

and controller portions of the application.

Relative to other VPLs, it is important to first note thatRelational Blocksis language that

supportsgeneral purposeprogramming, in contrast to VPLs intended to support domain-specific

tasks such as simulation [2] or programming-by-example [18]. In this sense,Relational Blocks

resembles VPLs such as VIPR [5] and Prograph [7].Relational Blocks, however, differs from such

VPLs in two important ways. First, it is a declarative, rather than an imperative, language; we have

discussed this aspect previously in the context of non-visual languages. Second,Relational Blocks

is not an object-oriented language, although it incorporates ideas from the latter with its emphasis

on “encapsulation”.

Relational Blocksimposes a strict encapsulation on block primitives (Section II) and on the

composite blocks that developers assemble from the primitives. TheRelational BlocksAPI en-

sures a complete separation of interface from implementation. Well-known benefits follow from

this approach including: reducing complexity by hiding information; separation of concerns; and

ensuring that changes to a component’s implementation do not ripple-through the rest of the ap-

plication. Relational Blocksis technology neutral: even though it is implemented in Java, the

implementation can be replaced with another language without changing the semantics. In fact,

Relational Blockscan be considered the extension of the object-oriented approach to application

assembly, such that current approaches to declarative application assembly are augmented with

encapsulation.Relational Blocks, however, differs from the classic object-oriented approach in

that the base construct is a block whose input and output arerelationsrather than anobject. There

are several reasons for our approach. First, we wish to leverage the huge existing base of relational

data and applications. Relational database technology is mature, and provides persistence, trans-

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 8

actions, and security. More fundamentally, we believe that relational algebra is the most natural

way to express application logic in a declarative fashion. Finally, we are convinced that attempts

to mapsingleobject instances toentirerelational tuples are fatally flawed (see [9], chapter 2). This

is not a problem that is specific toRelational Blocks, but affects most object-relational mappings.

(See [16] for a brief review of previous efforts in this area.) Note, however, thatRelational Blocks

easily accommodates objects when they are used as attribute (column) values.

In summary, then,Relational Blocksis a VPL for the assembly of general-purpose appli-

cations, specifically transactional applications with a requirement to integrate non-trivial model,

view, and controller portions. It is a strongly declarative language which emphasises encapsulated

application design. The most novel aspect ofRelational Blocksrelative to other VPLs is its use of

a relational API to integrate application components.

C. Evaluating Relational Blocks

Although our motivation for buildingRelational Blocksis to increase developer productivity,

it is very difficult to directly evaluate the effectiveness of this work. Many, many alternatives exist

for building enterprise applications: doing controlled experiments to measure the “productivity im-

provement” metric therefore requires tremendous outlay of resources. The problem is exacerbated

because developers already know many of the alternatives toRelational Blocks, so thatRelational

Blocksdevelopment incurs a learning curve penalty that is difficult to control for properly.

In this paper we therefore use application complexity as a proxy to the productivity metric,

with the assumption that less complex applications (of equivalent functionality!) increase produc-

tivity by reducing development and maintenance costs. Furthermore, we use application “size”

to approximate application complexity, and measure the size of a visual program by the size of

its serialized representation. We useCRUD++ (below) as an example of a non-trivial enterprise

application that is still small enough to be described in detail within the scope of this paper. As we

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 9

Fig. 3. TheCRUD++ Example

show how the visual editor is used to assembleCRUD++ (Section V) we will also compare it to the

equivalent Java (used because it is a well-known, non-visual, imperative programming language)

rendering.

We useCRUD++ as a sample application to make our discussion more concrete. This applica-

tion allows users to perform any of the classic “CRUD” (C(reate), R(etrieve), U(pdate), D(elete))

operations applied to a set of{Name, Value} associations maintained in a persistent database ta-

ble. The ability to perform such CRUD operations is a minimal requirement for any approach to

building enterprise applications. In addition,CRUD++ allows users to increment a named value

when the value is represented as an integer; an attempt to increment non-integer values is invalid,

and causes an exception to be displayed to the user.CRUD++ includes this somewhat contrived

operation because it requires more controller logic than the other operations. Figure 3 is the GUI

displayed to the user. For example, a new{Name, Value} association is created by entering aname

in the Name text box, avaluein the Value text box, and then pressing the Create button.

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 10

Value

Enable
Transform

Fig. 4. A Single “Block”

D. Paper Structure

The remainder of this paper explains theRelational Blockslanguage, runtime, and visual editor

in detail. Section II introduces the basic language constructs, Section III discusses the runtime, and

Section IV explains the more advanced features needed to assemble enterprise applications. With

this background in place, Section V is a detailed walk-through of the process of assembling the

CRUD++ sample usingRelational Blocks. Section VI discusses on-going challenges that we are

currently addressing to makeRelational Blocksscale to support larger applications.

II. BASIC LANGUAGE CONSTRUCTS

Before explaining how anRelational Blocksapplication is assembled, we discuss the (visual)

language constructs and their semantics.

A. Block Primitive

Figure 4 shows a single block with three pins: two input pins, named “value” and “enable”; and

an output pin, named “transform”. An input pin implies that the block can receive relation-valued

input from other blocks. An output pin implies that the block can transmit relational-valued output

to other blocks. Model-update blocks have an “enable” pin; these are boolean-valued relations,

and Model-update blocks only update if the enable input pin is true.

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 11

Value

Input1

Input0
Transform

Value

Fig. 5. Blocks and Wires

B. Wires

Figure 5 shows how wires are used to specify relational data-flow between two blocks. Wires

connect input pins to output pins: in this Figure, the two blocks on the left – each with an output

pin named “value” – transmit data to the rightmost block’s input pins. For more complicated

connections, wires may be used like wires in an electrical circuit. That is, any set of pins may

be connected by wires, as long as exactly one pin from the set is an output pin. All input pins in

the set will receive the data from this output pin. No other restrictions are imposed on the circuit

topology. A block’s semantics specify a well-defined transformation from its inputs to its outputs.

For example,JOIN is an algebra block that computes the relationalAND of two input relations and

places the result on its output pin.

C. Primitive Block Types

Relational Blockscontains a set of pre-defined block prototypes, which can be in one of

three flavors:model, widgets, andalgebra. These correspond, respectively, to the well-known

Model/View/Controller paradigm. A salient point ofRelational Blocksis thatall block types have

a compatible relational API and visual representation. This enables a visual representation of a

complete application to correspond to an integrated relational algebra application.

• Model: Visually, a Model block is represented as a mathematical table, as in existing visual

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 12

tools for relational database design. Model blocks may be backed by persistent or transient

state: this is an application design issue; theRelational Blocksparadigm makes no distinc-

tion between persistent and transient Models. Model blocks have an output, which is the

current state of the relation, and an input, which is the desired next state of the relation.

One problem faced byRelational Blocksis that the relational algebra by itself does not

provide a means toupdatea model block, since relational algebra expresses a set of time-

invariant relationships between outputs and inputs. TheUPDATE and INSERT operations

found in SQL are therefore not found in a relational algebra such as Relational A. One

approach to handling updates is to use an imperative programming language ([9], Chapter 5,

Tutorial D). Relational Blockstakes a different approach: it treats model blocks as the state

of a Relational State Machine. Thus, the execution of the State Machine causes model (and

widget) blocks to be updated. The State Machine is typically “clocked” (makes transitions)

on GUI events.

• Widgets: GUI widgets are is expressed visually, by laying out widgets to form the desired

user interface screen. Program-writeable widgets have an input, expressed as a relation.

For example, a label might have a single tuple withtext and font attributes. Program-

readable widgets have an output, expressed as a relation. A slider might have a single tuple

with a single attributevalue in its output. Note that read/write widgets (e.g., text boxes)

contain portions of an application’s model since they act as a tiny (transient) database.

More complicated widgets such as tables and lists are multi-tuple relations. Widget blocks

are thus directly compatible with model and algebra blocks.

• Algebra: an application’s controller logic is described declaratively using relational algebra.

We have chosen a formulation of the relational algebra that is based onRelational A([9],

chapter 4). Relational algebra is in many ways a perfect match for a Model represented by

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 13

a relational database, since relational algebra provides a declarative description of the data

that should be extracted from the relational Model and how it should be manipulated [6].

Also, relational algebra operations are reasonably simple in isolation, small in number, and

can be easily composed to form more complex operations. Relational algebra also maps

nicely onto a visual representation of interconnected blocks, similar to an electronic circuit.

The operations defined by Relational A are:NOT (set complement),REMOVE (remove an

attribute),RENAME (rename an attribute),AND (natural Join),OR (generalized union), and

TCLOSE(transitive closure).

Input to an algebra block can include the current state of model blocks or the current values

of the readable widgets. An algebra block’s output can be the next state of a model block

or the next state of a writeable widget block.

D. Composite Blocks

Developers can assemblecompositeblocks, which are arbitrary graphs of the primitive block

types discussed above. A composite block can be itself embedded in another composite in a nested

paradigm. Composite blocks have exactly the same relational API and visual representation as

primitive blocks. The assembled blocks form a directed graph which is maintained by theRela-

tional Blocksruntime (Section III). Although the functional (algebra) portions of the graph must

be acyclic, cycles are allowed to pass through model and widget blocks, because the cycles are

“broken” by the clocked nature of these blocks. Finally, note that an application is simply a self-

contained composite block with no input or output pins.

III. RUNTIME

These basic language constructs suffice to explain almost all of theRelational Blocksruntime

behavior. The static structure of aRelational Blocksapplication graph’s state changes only when

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 14

a “clock tick” (typically a GUI event) occurs. Execution of anRelational Blocksapplication is

event-driven, typically by a user interacting with a GUI widget (e.g., clicking the “Create” button).

(We have not closely examined alternative event sources such as database triggers.) Every event

executes the following algorithm:

1. Evaluate the inputs to all model blocks. Typically this is a recursive process, because

the inputs depend on the outputs of other algebra blocks, widget blocks, and model block

outputs.

2. Each model block then updates its state, using the values just calculated in step 1. In this

step, the Relational State Machine transitions to the next state. In the example above, the

Model will insert the new{Name, Value} tuple iff the “Create” button was pressed. Future

evaluations of model block outputs will equal this new state.

3. All writeable widget blocks update their state based on their current inputs. Note that the

GUI is thus updated synchronously by the event-handler, and asynchronously by the user.

The approachRelational Blocksuses for event handling is consistent with its overall declara-

tive approach. In general, most declarative approaches offer weak support for programming actions

in response to events. WithRelational Blocks, event handling is simply a (widget) block output

indicating, for example, that a button was clicked or an entry was made to a text field. (Forms/3 [4]

takes a similar approach of treating “events as values”.) Events are given special treatment only in

the sense that they are recognized to be asynchronous input to the current application state which

therefore represent a “clock tick” to the Relational State Machine.

TheRelational Blocksruntime therefore has a different model of computation from the concept

of aprogram counterused in imperative languages. A program counter indicates exactly where the

flow of execution is at all times. (Note that multithreaded models will have one program counter

per thread.) This is made explicit by the way that imperative-language debuggers allow developers

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 15

to setbreakpointsfor an application’s execution so that the application is suspended when the flow

of execution reaches that point. In contrast,Relational Blocks, in common with other declarative

approaches, does not have a concept analogous to a program counter. Instead,Relational Blocks

uses an event-driven state-machine model: on each event, the next state is evaluated functionally,

and the state machine is then advanced.

A. Transactions

Relational Blockssupports the design and execution oftransactionalapplications: i.e., ap-

plications that access and update shared state using the well-knownACID semantics [14]. A key

issue, therefore, is how to transactionally scope an application’s activities. Frameworks such as

Enterprise JavaBeans [12] declaratively associate transaction semantics on aper-methodbasis. De-

velopers can specify, for example, that the invocation of thesetAccountBalance()method should

start a transaction, unless a transaction is already active. This approach is unsuitable forRela-

tional Blocksbecause the notion of a “method” does not exist. More fundamentally, we believe

that transactions should not be scoped at method granularities, but rather should be controlled by

user-initiated activities. Users expect that transactions are initiated (and soon committed) when

they click the “submit” button after filling out a form (e.g., a funds-transfer screen). It seems

more useful, therefore, to specify transactional boundaries based on user interactions. (In practice,

transaction boundaries for imperative application development are also usually based on user in-

teractions. With EJBs, each user interaction typically calls a top-level method which declaratively

begins and commits the transaction.)

Since declarative applications have no explicit flow-of-control, developers cannot insert trans-

action begin, commit, and rollback statements at certain points in the flow. Instead,Relational

Blocksimplicitly begins a transaction with each user-interaction event, and commits the transac-

tion immediately after processing the event. A specialROLLBACK block is available to control

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 16

transaction rollback. If the input to theROLLBACK block is TRUE, the transaction is aborted in-

stead of being committed. This allows the application designer to specify conditions under which

the database updates should not take place. InCRUD++, the developer will not want an illegal

value (e.g. “4t2”) to be incremented. A typical application design would detect the illegal value

and enable theROLLBACK block. Alternatively, the application designer could detect error condi-

tions and use them to disableall Model blocks. If done correctly, this is functionally equivalent to

forcing a rollback, although it is probably more complex and error-prone.

IV. A DVANCED LANGUAGE FEATURES

We discuss some of the advanced features of theRelational Blockslanguage in this section.

A. Flexibility

One capability which is needed for more complex applications is a general function-evaluation

mechanism. For example, suppose the type of thevalueattribute is changed to type integer instead

of string. (This is required by the “increment” function inCRUD++.) Reference [9] (Appendix A)

discusses a theoretical approach to implementing functions using relational algebra operations:

1. Create a constant-valued relation with attributes for all of the function’s inputs and outputs.

With respect to our example, Table I defines the attributevaluestring as the string-valued

input, andvalue integeras the integer-valued output, the latter being the equivalent integer

representation of the former.

2. Perform anAND operation between the function inputs and the constant relation. The result

is a relation with a new attribute,value integer, which is the desired function result.

The problem with the theoretical approach is that many useful functions require that the con-

stant relation be of infinite size. Thus, in our example, there are an infinite number of strings which

express legal integer values.Relational Blockstherefore implements theequivalentfunctionality

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 17

TABLE I

RELATION TO CONVERT STRING TO INTEGER

valuestring value integer
“0” 0
“1” 1
“2” 2

. .

. .

. .

by allowing the developer to specify functions in terms of expressions. ARelational BlocksFUNC-

TION BLOCK macro is specified by:

1. The name of the function output attribute. In our example, this isvalue integer.

2. An expression that is applied to the function input attribute(s) to produce the function

output attribute. In the example above, the expression is

integer value(value string) .

For each input tuple, the function-evalution block produces a new tuple which is equal to the input

tuple extended with the function-output attribute. Thus, the block output is the same as would be

produced by anAND with a function expressed as a constant relation.

Internally, the expressions are parsed and represented as expression trees, as is typically done

by compilers. The expression tree for the string-to-integer conversion example is shown in Figure

6. Expression-tree terminal nodes may be constants or input attributes. Expression-tree non-

terminal nodes may be unary functions, such as integervalue(), unary minus, etc., or binary func-

tions, such as arithmetic sum, concatenate, etc.Relational Blocksprovides a library of node imple-

mentations to support commonly used functions and operators. If desired, additional node imple-

mentations can be implemented in an imperative language (Java, in the current implementation).

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 18

integer_value()

value_string

value_integer

Fig. 6. Expression Tree forvalue integer= integervalue(valuestring)

B. Exception Handling

Under any application design paradigm, errors can be divided into two classes: those that

can be detected before runtime, and those which are detected only at runtime. The vast majority

of Relational Blockserrors can be detected while designing the application, before running the

application. All Model specification errors can be detected before runtime. Also, note that all

block interconnections carry information about their Relation Headers: that is, the set of attribute

names and types which flow on the connection. This enables theRelational Blocksdesign tools

to validate, before runtime, that output connections are compatible with the inputs that they are

connected to. For example, if the relation header of theinsert input to theINSERT block does

not match the relation header of the block’s model,Relational Blocksdetects an error and does not

allow the application to be executed. Similarly, an attempt toRENAME or REMOVE an attribute

that does not appear in the input relation header, can be detected at design time.

The only errors which cannot be detected before runtime manifest themselves during execution

of FUNCTION BLOCKs. For example, the string “4t2” is not a legal string version of any integer,

and therefore does not appear anywhere in thevaluestring column of Table I. Thus aFUNCTION

BLOCK which attempts to convert this to an integer will yield the empty relation. Intuitively, it

is desirable forCRUD++ to detect that the user has input an illegal value (a string that cannot be

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 19

converted to an integer), and to recover gracefully.

Relational Blockscannot use the exception model of imperative languages such as C++ and

Java. Like other declarative languages,Relational Blocksdoes not have a “flow of control” that can

be altered by an exception. More specifically, the Controller semantics is fixed by the relational-

algebra blocks which make up the application design. Algebra blocks cannot “refuse” to produce a

relation output, because the downstream blocks are depending on that output. BecauseRelational

BlocksimplementsFUNCTION BLOCKs with expression trees, some allowance must be made for

expression nodes which are provided with invalid inputs.

We considered an approach in which, given illegal input, the expression-tree evaluation yields

no output, and thus does not appear in theFUNCTION BLOCK output. However, in order to make

it easier to detect and handle such problems,Relational Blocksuses a “Replacement Model” ap-

proach [25]. In this approach, the output of an expression with invalid inputs is replaced by a fixed

value, with the fixed value specified as a property of theFUNCTION BLOCK.

Also, theRelational BlocksFUNCTION BLOCK outputs contain an additional attribute called

invalid domain, which indicates whether an output tuple corresponds to an input tuple whose at-

tribute value(s) were invalid inputs to theFUNCTION BLOCK expression. A distinguished value for

the invalid domainattribute indicates that the expression evaluated successfully. TheFUNCTION

BLOCK thereforealwaysprovides a result tuple for each input tuple. The result tuple(s) contain an

attribute indicating an expression-input error, if one occurred; if an error did occur, the value of the

function-output attribute is the statically-configured property value.

Downstream blocks may check the value of theinvalid domainattribute. They can also check

whether the function’s output is the value that signifies an error, and generate a popup or status-line

message as desired. Such checking must be part of the application design itself; it is not provided

by theRelational Blocksframework. We resisted the temptation to use NULL [8] as the output

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 20

value that signals an exception. Partly because the semantics of the NULL value is overloaded,

and for other reasons [9] (Chapter 7), we decided thatRelational Blocksshould not use the NULL-

based approach for handling exceptions.

In Relational Blocks, only the framework or expression-nodeimplementationcan actually

throw imperative exceptions (due to programming errors or database communication errors). If

thrown, these exceptions are caught in the top-level processing loop (Section III), an appropriate

message is sent to the user, and the application’s current transaction (Section A) is rolled back.

V. BUILDING CRUD++ WITH Relational Blocks

We have built a prototype implementation ofRelational Blocksin Java, specifically building

the visual editor with the Graphical Editor Framework (GEF) [13], an Eclipse [11] tools project.

GEF allowed us to easily create a rich graphical editor that maps theRelational Blocksapplica-

tion model to a graphical editing environment. GEF consists of two Eclipse plug-ins. The first,

draw2d, is an SWT-based drawing plug-in that provides a layout and rendering toolkit for display-

ing graphics. The second,gef, provides a framework for common graphical editor operations based

on a model-view-controller architecture. Developers provide the application model: by using GEF,

they are able to apply changes made to the view (via the editor) to the model; conversely, changes

made to the model can be immediately applied to the view. GEF is completely application neutral

and we used it to build theRelational Blocksprototype fairly quickly.

As shown in Figure 7, the editor is structured with the set of available applications on the far

left; a palette providing a small set of widget, model, and algebra prototype blocks in the center-

left; a property-sheet view on the bottom; and the application-design canvas in the center. The

property-view is used to modify properties such as the database name and the table names of a

INSERT block. Properties such as function expressions are edited textually, others such as relation

headers are edited with a UI dialog. Developers assemble applications by dragging blocks from

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 21

the palette to the application-design panel. By selecting the “connect” palette entry, developers can

wire one block to another. The editor displays the “pin” names, and does not allow illegal wirings

to be constructed.

In this section, we show how theCRUD++ sample (Section I.C) is assembled with the pro-

totype. We also compare theRelational Blocksversion of CRUD++ with one done in Java, a

well-known, non-visual, imperative language. Note that the serialized versions of theRelational

Blocksapplication areneverdirectly manipulated by the developer: they are used only to provide

persistence, and we show them only to give a sense of the application size.

Comparing the actualCRUD++ GUI produced by theRelational Blocksruntime (Figure 3) to

the version sketched in theRelational Blockseditor (Figure 7), we see that the prototype is not

currently focused on rendering a polished (WYSIWYG) UI. The editor allows users to sketch the

GUI by laying out widgets such as labels, buttons, and text-entry fields on the screen. (We plan to

extend the set of available widgets to include more complicated types such as tables and lists. One

approach, which would also make the sketched version look more realistic is to use the Eclipse

Visual Editor[20] technology.)

Two text-entry fields are used to input and output the desirednameandvalue, and are labeled

with corresponding labels. The user clicks on one of five buttons to invoke the desiredCRUD++

operation. Finally, the developer drags a “popup” widget to the application-design so that the user

can be informed when an exception occurs.

Code sample 1 is an abbreviated Java (Swing) program that buildspart of the CRUD++ GUI.

It specifies a “create” button, a “name” label, and a “name” text field, and embeds the widgets in a

top-level frame. We contend that (1) the visual approach to building the GUI is far more intuitive

than the non-visual approach and (2) the complexity and size of the imperative Java code is bigger

than theRelational Blocksversion (see code sample 2 which is the serialized XML representation).

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 22

Fig. 7. Using theRelational BlocksEditor to Sketch an Application GUI

These advantages are actually larger since the actualCRUD++ GUI contains four more buttons, and

an additional label and text field.

Note that Label widgets have neither inputs nor outputs. In contrast, Button widgets have a

boolean valued output relation which will transmit aTRUE value when the user has clicked the

button, and will otherwise beFALSE. In Figure 8 the developer wires these “selected” pins to the

“enable” input pin of the corresponding model blocks (e.g., the “create” button enables the “insert”

model operation, and if not clicked, will implicitly disable that part of the circuit). Also, because

the “increment” button can cause an exception, its output pin is wired to the “popup” widget. The

property editor is used to specify the database table that provides persistence to the model blocks.

Code sample 3 shows how a{Name, Value} tuple is deleted using the Java APIs. The actual

code flows are even more complicated than this, because the database access code must be added to

the event-handling code associated with a widget (as in code sample 1). In contrast, theRelational

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 23

Code Sample 1Creating Some of theCRUD++ Widgets in Java

JLabel name = new JLabel("Name");
JButton createButton = new JButton("Create");
JTextField nameTextField = new JTextField(20);

// Similar code attached to each of the operation buttons
createButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
// Access TextField State: e.g., the nameTextField
// Do a JDBC "insert" of the "name, value" to the database table

}
});

JPanel pane = new JPanel(new GridLayout(0, 1));
pane.add(createButton);
pane.add(name);
pane.setBorder(BorderFactory.createEmptyBorder(30,30,10, 30));
JFrame frame = new JFrame("SwingApplication");

SwingApplication app = new SwingApplication();
Component contents = app.createComponents();
frame.getContentPane().add(contents, BorderLayout.CENTER);

frame.pack(); // Display the window.
frame.setVisible(true);

Code Sample 2Creating theRelational BlocksWidgets (Serialized Version)

<H id="create_button" type="Button" text="Create">
<L h="75" w="157" x="143" y="293" />

</H>
<H id="name label" type="Label" text="Name:" i="text" >

<L h="54" w="109" x="32" y="56" />
</H>
<H id="name textfield" type="TextField" i="text" o="NAME" >

<L h="80" w="144" x="161" y="33" />
</H>

Blocksversion (see code sample 4) requires only that the text fields output be wired to theJOIN

block that feeds into theINSERT block and that the “delete” button enable theDELETE model

block.

Figure 9 is the fully-assembled application. Consider what happens when the user interacts

with the GUI. For example, when the “create” button is clicked, the contents of thenameandvalue

text boxes are merged into a single tuple by being fed to aJOIN block. The new tuple is wired to

the “insert” input pin of theINSERT block which has also been enabled by the user’s action. As a

result, a new{Name, Value} association is inserted into the database. Similar flows occur when the

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 24

Fig. 8. Using theRelational BlocksEditor to Connect the GUI to the Model

Code Sample 3Using Java APIs to Delete a{Name, Value} Tuple From a Database Table

String url = "jdbc:db2:databasename";
Connection connection = DriverManager.getConnection(url, "", "");
Statement stmt = connection.createStatement();
ResultSet rs;

rs = stmt.executeQuery("SELECT VALUE FROM NAME_VALUE WHERE NAME = ’xxxx’");
boolean isRow = rs.next();
rs.deleteRow();
if (rs.next())

throw new Exception ("More than one value associated with name");

conn.close();

Code Sample 4Deleting a Database Row inRelational Blocks(Serialized Version

<DBInfo db="db2" name="mvcchip" />
<H id="delete_pmodel" type="Persistent Delete" schema="mvcchip"

table="crudpp" >
<L h="-1" w="-1" x="705" y="252" />
<I inpin="enable" outpin="selected">delete_button</I>
<I inpin="delete" outpin="output">name textfield</I>

</H>

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 25

other CRUD buttons are clicked. The most complicated part of the circuit involves the “increment”

operation. In the far left, aJOIN block first does a lookup of thevaluethat is currently associated

with thenamespecified by the user in the text entry widget. The resulting{Name, Value} tuple is

fed to aFUNCTION BLOCK on the bottom of the circuit which:

1. Attempts to convert the string representation of thenameattribute into the corresponding

integervia the integerlibrary function.

2. Increments the integer.

3. Converts the integer into the corresponding stringvia thevarchar library function.

4. Transmits an error message to the “popup” widget if the increment logic generates an

exception.

If the “increment” operation succeeds, it outputs a tuple which contains an integer-valued

valuePlus1attribute in addition to the original{Name, Value} attributes. By feeding the new tuple

to thePROJECT+RENAME block, a tuple with the right{Name, Value} relation header can be input

to the “update” model block. The originalvalueattribute is “projected” out; the originalname

attribute is left “as is”; and thevaluePlus1is renamedvalue.

In summary, our comparison ofRelational Blocksto a non-visual, imperative, programming

language shows thatRelational Blocksapplications are less complex because:

• they are smaller for GUI portions of the application, and about the same size for other

portions

• operations such as database access operations are expressed at a higher level of abstraction

• code that performs one function (e.g., database operations) does not require detailed knowl-

edge of other code (e.g., the widgets event handlers).

Developers can, at any time, invoke the “validate” or “execute” functions by clicking on the

corresponding editor icon. Although the editor enforces some part of theRelational Blocksse-

mantics through its property-sheet dialogs and forbidding illegal wiring, this is done only on a

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 26

Code Sample 5Incrementing a Value using Java APIs

String url = "jdbc:db2:databasename";
Connection connection = DriverManager.getConnection(url, "", "");
Statement stmt = connection.createStatement();
ResultSet rs;

rs = stmt.executeQuery("SELECT VALUE FROM NAME_VALUE WHERE NAME = ’xxxx’");
boolean isRow = rs.next();
String value = rs.getString("VALUE");
if (rs.next())

throw Exception ("More than one value associated with name");
try {

int valueAsInt = Integer.parseInt(value, 10).intValue();
valueAsInt++;
String incrementedValue = new String(valueAsInt);
stmt.executeUpdate("INSERT INTO NAME_VALUE " +

"VALUES ("’+xxxx+"’, incrementedValue+")");
}
catch (Exception e) {

throw new Exception ("Problem converting value to int: "+e);
}

conn.close();

Code Sample 6Incrementing a Value UsingRelational Blocks(Serialized Version)

<H id="inc_exception" type="Exception Popup"
message="Cannot increment a non-numeric value">

<L h="-1" w="-1" x="372" y="475" />
<I inpin="enable" outpin="selected">inc_button</I>
<I inpin="input" outpin="output">inc_value_function</I>

</H>
<H id="inc_value_function" type="Function"

expression="varchar(integer(VALUE) +1)"
o="valusPlus1" invalidDomainValue="deadbeef">

<L h="-1" w="-1" x="241" y="575" />
<I inpin="input" outpin="output">model_name_join</I>

</H>
<H id="project_rename" type="Project + Rename">

<L h="-1" w="-1" x="518" y="509" />
<I inpin="input" outpin="output">inc_value_function</I>
<ProjectRename>

<P_R old_name="NAME" new_name="NAME" />
<P_R old_name="valusPlus1" new_name="VALUE" />

</ProjectRename>
</H>
<H id="update_valueinc" type="Persistent Update" schema="mvcchip"

table="crudpp">
<L h="-1" w="-1" x="708" y="452" />
<I inpin="update" outpin="output">project_rename</I>
<I inpin="enable" outpin="selected">inc_button</I>
<WhereClauseAttributes><Attribute name="NAME" /></WhereClauseAttributes>

</H>

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 27

Fig. 9. Fully AssembledCRUD++ Application in theRelational BlocksEditor

per-block basis. Validation looks at the “whole picture”, and reports whether each of the blocks is

valid, has warnings, or has errors. An error implies that the application cannot be executed in its

current state. A warning indicates that the application will execute, but that the behavior might not

be as desired (e.g., a text-box output left unconnected).

Executing the application is a superset of validation, since it constructs a graph comprised

of runtime blocks, each of which corresponds to a design-time block displayed in the visual edi-

tor. Further semantic checks are performed, and if valid, a concrete version of the application is

constructed. Several tasks are performed at this point. First, a runtime graph (Section III) is con-

structed such that a directed edge exists from runtime blocka to runtime blockb iff an design-time

wire connects an output terminal of design-time blocka to an input terminal of design-time blockb.

Second, view widgets are mapped to concrete SWT widgets in a layout that conforms to that dis-

played in the visual editor. An SWT event-handler is constructed for each SWT widget that dele-

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 28

Fig. 10. Direct Execution of the Application from theRelational BlocksEditor

gates all event handling to the runtime graph’sprocessEvent() method.processEvent()

performs the state-machine clocking. Finally, database connections are established as necessary to

the relational database tables that correspond to the model blocks. At this point, the application is

displayed to the user, and can be executed “as is”. Figure 10 shows the result (the small overlay

window at center-left).

Figure 11 shows what happens if a user attempts to increment a non-integer value. The ex-

ception logic (Section B) in the lower portion of Figure 9 detects the error, and enables a popup

widget. The runtime then instantiates a popup that displays an appropriate error message to the

user.

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 29

Fig. 11. Processing a User-Generated Exception

VI. T HE SCALING CHALLENGE

Thescaling-upproblem for visual languages is defined in [3] as the fact that “making visual

languages suitable for solving large programming problems seems to require the very complexities

VPLs try to remove or simplify”. Relational Blockssuccessfully addresses some of the issues

discussed in [3], and is beginning to address other scaling issues.

Relational Blocksprovides (in the visual editor) a static representation of the application which

facilitates reviewing the application, analyzing it, and explaining it to others. The notion of data

and procedural abstraction is also built-in toRelational Blocksin the “block and pins” constructs.

As discussed above,Relational Blocksprovides declarative event handling to support interaction

with the GUI, and provides static type checking (of relations) with explict (attribute) types of data

flowing from an output pin to an input pin. Finally, by (de)serializing to (from) XML,Relational

Blocksprovides data persistence so that an application persists beyond a single editor session.

The single most important scaling issue thatRelational Blocksmust solve relates to the effec-

tive use of screen real estate: i.e., how can the visual editor be an effective front-end to a large

application? This issue manifests itself in two ways. First, application complexity implies that

Relational Blocksdesigns will grow too large to be effectively displayed on a single screen. A

complicated GUI which takes up all the screen real estate cannot be presented in the visual editor

together with its algebra and model blocks. Second, virtually all significant applications require

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 30

multi-page navigation.,Relational Blocksmust therefore be extended with language and editor

constructs that express the concept of navigation between an application’s multiple GUI pages.

We are considering addressing this issue through the composite block construct discussed

earlier. Composites introduce the notion of hierarchy into anRelational Blocksapplication: the

top-level design of the application can then fit on a single screen, while designers can “drill down”

as necessary to lower levels of the design to see more detail.Relational Blocksmust supply its

own set of composite prototypes, and more importantly, enable developers to introduce their own

composites as “first-class citizens” of the visual editor.

Finally, we are beginning to consider how designers may integrateRelational Blocksappli-

cations (or portions of applications) with existing, non-relational-block, components. We prefer

an approach in which a thin relational shell is wrapped around these components. This approach

seems plausible as many of the visual editor’s prototype blocks are similarly wrapped versions of

SWT widgets and JDBC artifacts.

The current power and flexibility of theRelational Blockslanguage, editor, and runtime are

sufficiently promising to encourage us to solve these challenges.

REFERENCES

[1] Avalon. http : //msdn.microsoft.com/msdnmag/issues/04/01/Avalon/

default . aspx , 2006.

[2] Alan Borning. The programming language aspects of thinglab, a constraint-oriented simu-

lation laboratory. ACM Transactions on Programming Languages and Systems (TOPLAS),

3(4):353 – 387, 1981.

[3] I. Burnett, M.J. Baker, C. Bohus, P. Carlson, S. Yang, and P. Van Zee. Scaling up visual

programming languages.Computer, 28:45 – 54, March 1995.

[4] M.M. Burnett and A.L. Ambler. A declarative approach to event-handling in visual program-

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 31

ming languages.Proc. IEEE Workshop on Visual Languages, pages 34–40, 1992.

[5] Wayne Citrin, Michael Doherty, and Benjamin Zorn. Formal semantics of control in a com-

pletely visual programming language.Proc. Symposium on Visual Languages, pages 208–215,

1994.

[6] E. F. Codd. A relational model of data for large shared data banks.Communications of the

ACM, 1970.

[7] P.T. Cox, F.R. Giles, and T. Pietrzykowski. Prograph: a step towards liberating programming

from textual conditioning.IEEE Workshop on Visual Languages, pages 150 – 156, 1989.

[8] C. J. Date and Hugh Darwen.A Guide to SQL Standard. Addison-Wesley, 4rth edition, 1996.

ISBN: 0201964260.

[9] C.J. Date and H. Darwen.Foundation for Object/Relational Databases: The Third Manifesto.

Addison-Wesley, Boston, MA, 1998.

[10] James Duncan Davidson.Learning Cocoa with Objective-C, Second Edition. O’Reilly, Se-

bastopol, CA, USA, 2002.

[11] Eclipse Project.http : / / www . eclipse . org / eclipse , 2006.

[12] J2EE Enterprise Javabeans Technology.http : //java.sun.com/products/ejb/ ,

2006.

[13] Graphical Editing Framework.http : / / www . eclipse . org / gef , 2006.

[14] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kauf-

mann, San Francisco, CA, USA, 1993.

[15] IBM Rational Application Developer for Websphere Software Version 6.0.http : / /

www-8.ibm.com/software/includes/pdf/rat app dev LoRes.pdf , 2006.

Publication number GC34-2464-00.

[16] Comparing LINQ and Its Contemporaries. http : / / msdn . microsoft .

August 1, 2006—5 : 08 pm DRAFT

RELATIONAL BLOCKS 32

com / library / default . asp ? url = /library / en-us / dndotnet / html /

linqcomparisons . asp , 2006. T. Neward.

[17] David McFarland.Dreamweaver MX 2004: The Missing Manual. O’Reilly Media, 2003.

ISBN: 0596006314.

[18] B. A. Myers. Visual programming, programming by example, and program visualization: a

taxonomy.Special issue: CHI ’86 Conference Proceedings, 17(4):59 – 66, 1986.

[19] Peter Van Roy and Seif Haridi.Concepts, Techniques, and Models of Computer Program-

ming. MIT Press, Cambridge, Mass, 2004.

[20] Visual Editor Project.http : / / www . eclipse . org / vep / WebContent / main .

php , 2006.

[21] XMLSchema.http : / /www.w3.org/XML/Schema , 2006. See also ’XML Schema’

published by O’Reilly.

[22] XPath. http : / / www . w3 . org / TR / xpath , 2006. See also ’Xpath and Xpointer’,

published by O’Reilly.

[23] XQuery. http : / / www . w3 . org / XML / Query/ , 2006.

[24] XSLT. http : / /www.w3.org/TR/xslt , 2006. See also ’Learning XSLT’, published

by O’Reilly.

[25] S. Yemini and D. Berry. A modular verifiable exception handling mechanism.ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 1985.

August 1, 2006—5 : 08 pm DRAFT

