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Abstract. The CELL architecture has one Power Processor Element
(PPE) core, and eight Synergistic Processor Element (SPE) cores that
have a distinct instruction set architecture of their own. The PPE core
accesses memory via a traditional caching mechanism, but each SPE
core can only access memory via a small 256K software-controlled local
store. The PPE cache and SPE local stores are connected to each other
and main memory via a high bandwidth bus. Software is responsible for
all data transfers to and from the SPE local stores. To hide the high
latency of DMA transfers, data may be prefetched into SPE local stores
using loop blocking transformations and static buffers. We find that the
performance of an application can vary depending on the size of the
buffers used, and whether a single-, double-, or triple-buffer scheme is
used. Constrained by the limited space available for data buffers in the
SPE local store, we want to choose the optimal buffering scheme for a
given space budget. Also, we want to be able to determine the optimal
buffer size for a given scheme, such that using a larger buffer size results
in negligible performance improvement. We develop a model to automat-
ically infer these parameters for static buffering, taking into account the
DMA latency and transfer rates, and the amount of computation in the
application loop being targeted. We test the accuracy of our prediction
model using a research prototype compiler developed on top of the IBM
XL compiler infrastructure.

1 Introduction

The design of computing systems is trending towards the use of multiple pro-
cessing units working collaboratively to execute a given application, with com-
munication interfaces that enable high bandwidth data transfers between the
processor and memory elements of the system. The CELL architecture[4] is one
example of such a system, primarily designed to accelerate the execution of me-
dia and streaming applications. It includes two kinds of processing cores on the
same chip: a general-purpose Power Processor Element (PPE) core that supports
the Power instruction set architecture, and eight Synergistic Processor Element
(SPE) cores that are based on a new SIMD processor design[3].

1.1 CELL Architecture

Figure 1 shows the elements of the CELL architecture and the on-chip data paths
that are relevant to the discussion in this paper. The PPE includes the Power
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Fig. 1. The CELL Architecture

Execution Unit (PXU) that accesses main memory via its L1 and L2 caches.
Each SPE includes a Synergistic Processor Unit (SPU), a Local Store (LS), and
a Memory Flow Controller (MFC). Load/store instructions executed on an SPU
can only load from and store to locations in the LS of that SPE. If an SPU needs
to access main memory or the LS of another SPE, it must execute code that will
issue a DMA command to its MFC explicitly instructing the MFC to transfer
data to or from its LS. All the SPE local stores, the PPE’s L2 cache, and the
Memory Interface Controller (MIC) that provides access to the off-chip main
memory, are inter-connected via a high bandwidth (16 Bytes/cycle on each link)
Element Interconnect Bus (EIB). It is possible for a DMA transaction on the EIB
that involves the LS of one SPE to be initiated by another SPU or by the PXU.
However, the code transformations discussed in this paper only involve DMA
transactions between main memory and an SPE LS that have been initiated by
the corresponding SPU.

The hardware architecture maintains coherence between copies of data in the
main memory, data in the PPE caches, and data being transferred on the EIB.
However, the hardware does not keep track of copies of data residing in an LS,
and software is responsible for coherence of this data. Each LS is a small 256KB
memory that is completely managed in software. It contains both the code and
data used in SPU execution. The latency of DMA operations between an LS and
main memory is quite high, approximately in the order of 100-200 SPU cycles[9].
However, for consecutive DMA operations, it is possible to overlap the latency
for the second operation with the DMA transfer of the first, as the MFC can
process and queue multiple DMA requests before they are issued to the EIB.

1.2 DMA Buffering

The example code in Figure 2(a) shows a loop that iterates N times, and in each
iteration it loads the ith element of array A, multiplies this value by a scalar
S, and stores the result in the ith element of array B. If this code is targeted
to execute on an SPE, the elements of A and B must be located in the LS for
the SPU to be able to operate on them. However, A and B maybe allocated in
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for (i=0; i<N; i++) {
    DMA get A[i] to tA;
    tB = tA * S;
    DMA put tB to B[i];
}

/* S, tA, and tB reside in LS */

(b) Naive Buffering

/* A and B are in main memory */
/* S is a scalar residing in LS */

for (i=0; i<N; i++) {
    B[i] = A[i] * S;
}

(a) Example Code

    n = min(ii+bf, N);
    DMA get A[ii:n] to tA;
    for (i=ii; i<n; i++) {
        tB[i] = tA[i] * S;
    }
    DMA put tB to B[ii:n];
}

for (ii=0; ii<N; ii+=bf) {

(c) Single Buffering

n = min(bf, N);

t = (t+1) % 2;

for (ii=0; ii<N; ii+=bf) {
    n = min(ii+bf, N);
    m = min(ii+2*bf, N);
    DMA get A[ii+bf:m] to tA[t], tag=t;
    t = (t+1) % 2;
    DMA wait, tag=t;

    for (i=ii; i<n; i++) {
        tB[t][i] = tA[t][i] * S;
    }

    DMA put tB[t] to B[ii:n], tag=t;
}
DMA wait, tag=t;

t=0;

DMA get A[0:n] to tA[t], tag=t;

/* Uses non−blocking DMA */

(d) Double Buffering

/* Decides buffer 1 or buffer 2 */

Fig. 2. Example to Illustrate DMA Buffering

main memory, perhaps because they are also being accessed by other cores, or
because they are too large to fit in the limited LS space. In this case, the code is
modified to include DMA operations to get elements of A into a temporary buffer
tA in the LS, and put elements of B from a temporary buffer tB in the LS to
main memory, as illustrated in Figure 2(b). Since the latency of DMA transfers
is high, it is more efficient to transfer multiple array elements in a single DMA
operation, effectively pre-fetching data for computation. Figure 2(c) shows how
the example code is transformed to do this by blocking the loop using a blocking
factor of bf, buffers tA and tB of size equivalent to bf array elements instead
of a single array element, and one DMA get and one DMA put operation per
iteration of the outer blocked loop.

The problem with the code in Figure 2(c) is that it allows no overlap be-
tween DMA transfer time and SPU computation time. Each instance of the
inner blocked loop must wait for the preceding DMA get operation to com-
plete before the inner loop can execute. This restriction can be overcome using
a double-buffer scheme, as illustrated in Figure 2(d). Instead of using one bf-
element buffer for each array data stream, the code uses two such buffers for
each data stream. Before the SPU starts computing with the data fetched in one
buffer, it initiates a DMA transfer using the other buffer to get data that will be
used in the next iteration of the outer blocked loop. This transformation requires
that there be no loop-carried flow dependencies among the iterations within one
instance of the inner blocked loop. The DMA operations used are non-blocking
versions, and they are tagged with an integer identifying the LS buffer being
used in the DMA transfer. The SPU can continue execution of the inner blocked
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loop while a DMA transfer is in progress. To wait for specific DMA operation(s)
to complete, the code calls a DMA wait function with the tag corresponding to
a previously issued DMA operation passed as a parameter.

The double-buffer scheme can be extended to use k buffers for each data
stream to increase the amount of DMA that is overlapped with the computation
in one instance of the inner blocked loop.

1.3 Problem Description

Execution time of a loop blocked for DMA buffering varies with the amount of
DMA overlapped with computation. For a k-buffer scheme, the amount of DMA
overlap increases both with the value of k, and with the size of the buffers used.
In the SPE, all the buffers occupy space in the LS, which is only 256KB in size.
This limited LS space is a prime resource, since it is being used for both code
and data, and the available space limits the applicability of optimizations that
increase the code size or require more space to buffer data. Due to the LS size
constraint, a restricted amount of space is available for DMA buffering.

The problem we address in this paper is that given a budget for the amount
of space to be used for DMA buffering, determine the buffering scheme that will
result in the best execution time performance. Since the total buffer size is fixed,
performance of a k-buffer scheme needs to be compared with the performance
of a (k + 1)-buffer scheme that uses individual buffers of a size smaller than the
buffers used in the k-buffer scheme. Once the optimal buffering scheme is known,
it may be the case that all possible DMA overlap is attained using a buffer size
smaller than the maximum buffer size allowed by the total buffer space budget.
Note that there is a limit to how much performance can be improved using DMA
overlap before the application becomes computation-bound. Thus, we want to
determine both the optimal buffering scheme and the smallest buffer size that
maximize performance, when constrained by the total buffer space available.

We find that the performance of DMA buffering depends on several factors,
including the set-up time for each DMA operation, the DMA transfer time,
the amount of computation in the loop, the number of buffers being used, and
the size of each individual buffer. We develop a model to relate each of these
factors to the execution time, and use this model to predict the relative merit
of using different buffering schemes and different buffer sizes. Also, we obtain
performance numbers for a small set of applications running on a CELL chip
using single-, double-, and triple-buffer, and various buffer sizes. We correlate the
experimental data with our model. Our experiments are restricted to consider
only the innermost loop in a loop nest, where this loop operates on a number of
array data streams, has a large iteration count, has no loop-carried dependences,
and has no conditional branches within the loop body.

The rest of this paper is structured as follows. In Section 2, we develop the
model used to predict performance for a given buffering scheme. In Section 3, we
describe how the model can be used to determine the optimal buffering scheme
and buffer size in a compiler transformation that implements static buffering.
In Section 4, we describe the experiments we performed to validate our model
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against actual performance data. We discuss related work in Section 5, and
conclude in Section 6.

2 Modeling Buffering Schemes

2.1 Assumptions

We assume that a loop is a candidate for DMA buffering optimization if it
satisfies the following conditions:

– The loop operates on array data streams. The buffering optimizations con-
sidered are not interesting for scalar data, or data accessed through unpre-
dictable indirect references.

– There are no loop-carried dependences between accesses to elements of the
array data streams. This enables the loop to be transformed for any k-buffer
scheme since the DMA get and put operations can be freely moved out of
the inner blocked loop.

– There is no conditional branch statement within the loop body. This is im-
portant to be able to accurately gauge the amount of computation in the
loop body, which is one of the factors that determines relative performance
of different buffering schemes.

– Elements in the array data streams that are accessed in consecutive loop
iterations are contiguous in memory, or not spaced too far apart. This is to
ensure that when buffers are used to DMA contiguous memory locations in a
single operation, the majority of the data being transferred is in fact useful.

– DMA buffers are assigned such that each buffer is only used for a single array
data stream, and no buffer is used in both DMA get and put operations. This
is a conservative assumption to ensure that a DMA operation on one buffer
does not have to wait for a DMA operation on another buffer to complete.

– The loop iteration count is large enough that any prologue or epilogue gen-
erated when the loop is blocked has a negligible impact on performance.

– The array data streams are aligned on 128-byte boundaries, and this align-
ment is known at compile-time. If this is not the case, then code has to
be generated to explicitly check alignment at runtime, and to issue DMA
operations such that misaligned data is correctly handled. This changes the
DMA set-up time, which is one of the factors used to determine the relative
performance of different buffering schemes.

2.2 Latency of DMA Operations

We approximate the latency of one DMA operation with the formula S + D ∗ b,
where S is the set-up time for one DMA operation, D is the transfer time for
one byte, and b is the number of bytes transferred by this DMA operation.

When two non-blocking DMA operations for b1 and b2 bytes are issued in
sequence, the set-up of the second DMA operation can be overlapped with the
data transfer of the first, as illustrated in Figure 3. When the set-up of the second
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DMA operation (S2) is less than or equal to the set-up of the first DMA operation
(S1), it can be completely overlapped. In this case, the combined latency of the
two DMA operations will be S1 + D ∗ (b1 + b2). For different values of S1 and
S2, the amount of overlap of set-up time with transfer time will be different.

In the CELL architecture, the value of S is different for DMA get and put
operations[9]. The DMA get operation has a higher value of S because it includes
the main memory access time to retrieve data, whereas a DMA put can complete
before data is actually written to its main memory location.

In general, a sequence of n DMA transfers will have latency S + D ∗ (b1 +
... + bn), where S is a function of S1, ..., Sn.

2.3 Latency for Single-Buffer

Figure 4 illustrates the execution sequence for the code in Figure 2(c). Ignoring
the prologue and epilogue, and clubbing together consecutive DMA operations,
each iteration of the outer blocked loop comprises of a DMA put corresponding
to the previous iteration, a DMA get to fetch data for the current iteration, and
the computation of one instance of the entire inner blocked loop. Note that non-
blocking DMA operations can be used, with a DMA wait inserted just before
the inner blocked loop. Thus, the latency of one iteration of the outer blocked
loop is the latency of all the DMA transfers plus the computation latency of
the inner blocked loop. Let N be the iteration count of the original loop, and
assume the loop has been blocked using a blocking factor of bf . Let C be the
computation time for one iteration of the inner blocked loop. Also, let D1 be
the DMA transfer time for one byte, b be the number of bytes transferred in all
DMA operations corresponding to one iteration of the outer blocked loop, and S
be the composite set-up time for the sequence of non-blocking DMA operations
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corresponding to one iteration of the outer blocked loop. Then the total latency
of the entire loop is: ((S+D1∗b∗bf)+C ∗bf)∗(N/bf) = (S/bf +D1∗b+C)∗N
For simplicity, let D = D1 ∗ b be the DMA transfer time for all data accessed in
one iteration of the inner blocked loop. Thus, latency for single-buffer is (S/bf +
D + C) ∗ N .

2.4 Latency for Double-Buffer

In the following discussion, the terms N , bf , C, S, and D have the same meaning
as in the single-buffer case discussed earlier. For clarity, the following examples
refer to DMA for one pair of buffers. However, the discussion also applies to
examples using a set of double buffers, with S corresponding to the set-up delay
for a composite sequence of non-blocking DMA operations issued for each set.

Case 1: DMA-Bound Figure 5 illustrates the case when double-buffer is used
and the application is DMA-bound. In this case, there is no delay between any
two successive DMA operations. The sequence of DMA operations and compu-
tations alternate between using the first buffer and the second buffer. The first
and second DMA operations are issued successively before any computation be-
gins. The third DMA operation is issued only after the first computation of the
inner blocked loop finishes. If there is to be no delay between the second and
third DMA operations, then the time to complete the first computation (point
B in the figure) must be less than or equal to the time to complete the first two
DMA operations (point A in the figure). This translates to the condition:
(S + D ∗ bf + C ∗ bf) ≤ (2 ∗ D ∗ bf), or D ≥ (S/bf + C)
When this condition holds, the execution pattern repeats throughout the loop
and the application is DMA-bound. The latency for the entire loop is approxi-
mated by the time taken by all the consecutive DMA operations, i.e. S +D ∗N .
When N is large, this can be simplified to D ∗ N .

Case 2: Computation-Bound Figure 6 illustrates the case when double-
buffer is used and the application is computation-bound. In this case, there is no
delay waiting for DMA to complete between any two successive computations
of the inner blocked loop. The sequence of DMA operations and computations
alternate between using the first buffer and the second buffer. The first and
second DMA operations are issued successively before any computation begins.
The third DMA operation is issued only after the first computation of the inner
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blocked loop finishes. If there is to be no delay between the second and third
computations, then the time to complete the third DMA operation (point B
in the figure) must be less than or equal to the time to complete the first two
computations (point A in the figure). This translates to the condition:
(S +D ∗ bf +C ∗ bf +S +D ∗ bf) ≤ (S +D ∗ bf +2∗C ∗ bf), or D ≤ (C−S/bf)
When this condition holds, the execution pattern repeats throughout the loop,
and the application is computation-bound. The latency for the entire loop is
approximated by the time taken by all the consecutive computations, i.e. C ∗N ,
when N is large.

Case 3: Incomplete Overlap A loop that is neither DMA-bound nor computation-
bound has incomplete overlap of DMA operations with computation. We analyze
this case by splitting it into two sub-cases: when C ≤ D < (C +S/bf), and when
(C − S/bf) < D < C. The total latency of the loop in both cases is the same:
(S/bf + D + C) ∗ N/2.

Case A: When C ≤ D < (C+S/bf): Figure 7 illustrates this case. Here, the
set-up of the third DMA operation is not fully overlapped with the second DMA
transfer. Also, there is a delay between the first and second computation, waiting
for the second DMA transfer to complete. The second computation finishes at
point B in the figure, and it can only start after the second DMA transfer has
completed. From the beginning (point A in the figure), the latency for the second
computation to finish is S + 2 ∗ D ∗ bf + C ∗ bf . From a DMA point of view,
the earliest that the fourth DMA operation can start is after the third DMA
transfer reaches point C. The third DMA transfer can start only after the first
computation finishes. The latency from point A in this case is S+D∗bf+C∗bf+
D∗bf . The two latencies from A to B and A to C are the same, which means that
the fourth DMA starts at the same point that the second computation finishes,
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and the execution repeats the pattern illustrated in the figure. The delay between
the second and third DMA operations is S + D ∗ bf + C ∗ bf − 2 ∗ D ∗ bf =
S+(C−D)∗bf . The total latency of the loop is the latency of all DMA transfers
plus the extra delays due to incomplete overlap that occur after every two DMA
operations. This latency is given by:
N ∗ D + (S + (C − D) ∗ bf) ∗ N/bf/2 = (S/bf + D + C) ∗ N/2.

Case B: When (C − S/bf) < D < C: Figure 8 illustrates this case. Here,
the set-up of the third DMA operation is not overlapped with the second DMA
transfer. Also, there is no delay between the first and second computation, but
there is a delay between the second and third computation, waiting for the third
DMA transfer to complete. The data for the fourth computation will be ready
at point B in the figure, made available only after the first DMA transfer, the
first two computations, and the fourth DMA transfer have completed. From the
beginning (point A in the figure), the latency for the fourth DMA transfer to
complete is S + D ∗ bf + 2 ∗ C ∗ bf + S + D ∗ bf . From a computation point
of view, the third computation will finish at point C in the figure, and it can
start only after the third DMA transfer completes. The third DMA can start
only after the first computation finishes. The latency from point A in this case
is S + D ∗ bf + C ∗ bf + S + D ∗ bf + C ∗ bf . The two latencies from A to B and
A to C are the same, which means that the fourth DMA completes at the same
point that the third computation finishes, and the execution repeats the pattern
illustrated in the figure. The delay between the second and third computations
is S + D ∗ bf − C ∗ bf = S + (D − C) ∗ bf . The total latency of the loop is the
latency of all computations plus the extra delays due to incomplete overlap that
occur after every two computations. This latency is given by:
N ∗ C + (S + (D − C) ∗ bf) ∗ N/bf/2 = (S/bf + D + C) ∗ N/2.

2.5 Latency for k-Buffer

Case 1: DMA-Bound Analogous to the case of double-buffer, we can derive
the condition for a k-buffered loop to be DMA-bound, i.e. if the first computation
finishes and starts up the (k +1)th DMA operation in time less than or equal to
the time it takes to transfer data for k DMA operations. This condition evaluates
to D ≥ (C+S/bf)/(k−1). The initial pattern repeats throughout the loop when
D > C. Thus, the loop is DMA-bound when D ≥ max(C, (C + S/bf)/(k − 1)).
The latency of the entire loop is approximated by D ∗ N .
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Case 2: Computation-Bound Analogous to the case of double-buffer, we
can derive the condition for a k-buffered loop to be computation-bound, i.e. if
the DMA transfer corresponding to the (k + 1)th computation finishes in time
less than or equal to the time it takes to complete the first k computations
occuring consecutively one after another, without any intervening delays due to
DMA waits. This condition evaluates to D ≤ (k − 1) ∗ C − S/bf . The initial
pattern repeats throughout the loop execution when D < C. Thus, the loop is
computation-bound when D ≤ min(C, (k − 1) ∗ C − S/bf). The latency of the
entire loop is approximated by C ∗ N .

Case 3: Incomplete Overlap Analogous to the case of double-buffer, the
latency of a k-buffered loop that is neither DMA-bound nor computation-bound
is (S/bf + C + D) ∗ N/k. We do not discuss details of this case here.

3 Compiler Analysis

In this section, we describe how the latency formulae derived in Section 2 can
be applied to determine the optimal buffering scheme and buffer size for a loop
with limited amount of memory available for buffer space. We expect that the
algorithm described here will be used in a compiler that automatically transforms
code for DMA buffering. In the following discussion, we restrict the choice of
buffering schemes to single-, double-, or triple-buffer.

Assume that the amount of memory available for buffering is specified in
terms of the largest block factor (say B) that can be used when transforming
the loop for a single-buffer scheme1. Then the maximum block factor for double-
buffer is B/2, and for triple-buffer is B/3.

The performance of a loop will be optimal if it is computation-bound or
DMA-bound. Therefore, a DMA-bound double-buffered loop (latency D ∗N) or
a computation-bound double-buffered loop (latency C∗N) should be better than
a single-buffered loop (latency (S/B + D + C) ∗ N . When the double-buffered
loop has incomplete overlap, its latency will be (S/B/2 + D + C) ∗N/2. In this
case, the difference between the latencies of double-buffer and single-buffer is
(D + C) ∗ N/2 > 0. Therefore, double-buffer should always outperform single-
buffer.

The algorithm in Figure 9 shows how to choose between double-buffer and
triple-buffer. When the same performance can be achieved by different buffering
schemes, the scheme with less number of buffers is preferred for its smaller
code size. When D > C, the double-buffer scheme becomes DMA-bound when
D ≥ C + S/B/2, which is the same as S/(D − C) ≤ B/2. In this case, we
choose the double-buffer scheme since it is DMA-bound and optimal. Similarly,
when D < C, the double-buffer scheme becomes computation-bound for D ≤

C − S/B/2, which is the same as S/(C −D) ≤ B/2, and we choose the double-
buffer scheme. In all other cases (when there is incomplete DMA overlap for

1 Therefore, in the case of single-buffer, the actual size of an individual buffer will be
B times the size of an array element
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Algorithm: bool  Choose_Double_Buffer (C, D, S, B) {

    float C: the computation per iteration;
    float D: the DMA transfer time per iteration;

    int B: buffer space constraint in terms of the maximum 

    if (D > C) {

            return TRUE;
    } else if (D < C) {

            return TRUE;
    }

    return FALSE;
}

    float S: the set−up latency for DMA;

              block factor used in a single−buffering scheme;

        if (S/(D−C) <= B/2)

        if (S/(C−D) <= B/2)

Fig. 9. Algorithm to Choose Between Double- and Triple-Buffer Schemes

double-buffer), we choose the triple-buffer scheme since it can provide a greater
amount of overlap.

Once the loop becomes DMA-bound or computation-bound, performance will
not improve with increasing buffer sizes. In such cases, memory resources can
be saved by choosing the smallest buffer size that is optimal. The memory space
saved can then be used by other components contending for it, e.g. more local
memory can be assigned to the outer blocked loops to increase data re-use, or
the size of code buffers can be increased to reduce the frequency of swapping
code partitions to and from the SPE LS. Based on the analysis in Section 2, the
block factor for double-buffer need not be larger than S/abs(D−C). The block
factor for DMA-bound triple-buffer need not be larger than S/(2 ∗D −C), and
for computation-bound triple-buffer need not be larger than S/(2 ∗ C − D).

4 Experiments

To verify how precise our analysis models are, we performed experiments on a
CELL blade. The clock rate for the PPU and SPU in the blade is 3.2G Hz.
All our experiments were run using a single SPE. We use the IBM XL CELL
single-source compiler [2] to automatically apply single-, double-, and triple-
buffer schemes to a set of test applications. This compiler uses OpenMP di-
rectives to decide what parts of the code will execute on the SPE(s), and it
automatically handles DMA transfers for all data in an SPE LS.

We adapted a simple streaming benchmark to obtain a set of test kernels
with varying amount of computation in the loop2. Currently, we report results
for 4 test cases: t1, t2, t3, and t4. The amount of computation in the kernel
loop increases from t1 to t4. Each test case has only one OpenMP parallel
loop that has a very large iteration count (15 million), and is invoked multiple
times. The four test cases use the same data types, and have the same data
access pattern: two reads and one write. Performance is measured in terms of
throughput (MB/s).

2 We plan to include results for a larger set of test cases in the final version.
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Fig. 10. Performance of Applications with Varying Buffer Schemes and Buffer Sizes

In order to apply our formula, we have to determine the value of constants
D, S, and C. For constants D and S, we ran code that only performs a large
number of DMA operations, and inferred the values of D and S using linear
regression analysis on the performance results of this code. To determine C for
each test case, we use a profiling tool called PARAVER that was developed at the
Polytechnic University of Catalunya, Spain. We use PARAVER to instrument
code and determine the amount of computation time spent in each iteration of
the outer blocked loop. This is done for each test case using a single-buffer scheme
and a large block factor to amortize the overhead. The value for C is expressed as
(Cinner +Couter/bf), where bf is the loop blocking factor, Cinner is the compute
time for each iteration of the inner blocked loop, and Couter is the overhead per
iteration of the outer blocked loop. Couter primarily includes the function call
and runtime checking overhead in compiler-generated code for DMA transfers.
The constant values that were determined are S=130ns, D=0.0877ns per byte,
Couter=300ns (for all test cases), Cinner=0.51ns(t1), 1.73ns(t2), 2.83ns(t3), and
3.93ns(t4). All of these benchmarks need to transfer 24 bytes of data per iteration
of the inner blocked loop, so the D per iteration is 2.112ns.

The performance of single-buffer (1b), double-buffer (2b), and triple-buffer
(3b) for the four test cases are shown in Figure 10. The x-axis is the block
factor, while the y-axis is the performance. Each graph shows the performance
of one test case. Here, different buffer schemes are compared when they use the
same block factor. First, we notice that double-buffer and triple-buffer have a
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Fig. 11. Comparison of Buffering Schemes Using a Fixed Space Constraint

similar performance curve, while the performance of single-buffer is much lower.
We also observe that the performance of double-buffer and triple-buffer becomes
flat when the block factor becomes large enough. t1 and t2 reach almost the
same peak performance. Since their values of Cinner are smaller than the value
of D per iteration, they should become DMA-bound. On other hand, the values
of C in t3 and t4 are larger than the value of D, and they become computation-
bound. Their peak performance is determined by the amount of computation,
C. Thus, they have different peak performance. The overall performance trend
conforms to our model.

In Figure 11, we compare the performance of different buffering schemes with
a fixed amount of space available for buffering. The x-axis is the block factor
of the single-buffer scheme. Within the same available space, the corresponding
block factor for double-buffer should be half, and one-third for triple-buffer. For
large block factors, the performance trend conforms to our analysis. However, for
small block factors, in all 4 test cases, single-buffer outperforms double-buffer and
triple-buffer. This is contradictory to the analysis presented earlier. In Section 2,
we assumed C to be constant, but it actually depends on the block factor. When
the block factor is small and the overhead of issuing a DMA request is high3,
the Couter/bf component of C dominates. With fixed space, triple-buffer has to
use a smaller block factor than double-buffer and single-buffer. This results in
lower performance for triple buffer, as observed.

3 There is scope to significantly reduce the amount of this overhead (Couter) by further
optimizing the automatically generated compiler code.
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Fig. 12. Actual and Predicted Performance for Double-Buffer

In Section 3, we discuss how to choose the block factor so as to avoid wasting
memory resources. Figure 12 shows the actual and the predicted performance
of double-buffer when using different block sizes. Overall, the prediction is quite
precise in terms of the shape of the performance curve. The relative performance
of each test case is correctly predicted. However, the absolute performance of all
test cases is over-estimated by about 15%.

The values of S and D need to be determined just once, and precise values for
these constants can be obtained empirically on a given machine. However, the
value of C is application-specific, and may need to be estimated by the compiler.
To investigate the sensitivity of our prediction to the value of C, we also plot
in Figure 12 the performance predicted using a value of C that is 10% less and
10% more than the value determined by profiling. We observe that the variation
in predicted performance is 6% on average, and 15% maximum.

5 Related Work

The use of loop stripmining and unrolling to optimize network communications is
studied in [5]. This work focuses on determining the minimum size for stripmining
to avoid performance degradation. In [10], the dependencies and communication
time between tasks in a parallel execution are modeled with the aim of identifying
possible computation-communication overlap. In our work, we optimize both
performance and local memory usage.
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In [1], remote accesses in UPC programs are optimized in the compiler by
coalescing smaller accesses into one large access, and by using one-way communi-
cation supported in the underlying network layer. The work in [6] also discusses
optimization of remote accesses in UPC programs, using runtime synchronization
and scheduling. In [8], a stream programming model is used to inform the com-
piler of the high-level structure of the program, and the compiler then uses this
information to optimize scheduling and buffering for execution on the Imagine
stream processor. A compiler-based loop transformation optimization targeted
to improve the communication-computation overlap is described in [7].

In [9], the performance of DMA on a CELL chip is studied, and the latencies
of DMA operations for different workload characteristics are determined.

6 Conclusion

We have developed a model to predict the performance of different buffering
schemes and the optimal buffer size for DMA buffering in the CELL SPE local
stores. We compare the predicted and actual performance for a set of kernels
with varying amounts of computation in the loop, and observe a high degree of
correlation between the two. In this work, we have considered the use of a single
SPE, but we plan to extend our model to multiple SPEs in future work.
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