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 Abstract—Session Initiation Protocol (SIP) has begun to be widely deployed for  multiple services such as VoIP, Instant Messaging and 

Presence. Each of these services uses different subsets of SIP messages, and depending on the value of a service, e.g. revenue, the 

associated messages may need to be pr ior itized accordingly. Even within the same service, different messages may be assigned different 

pr ior ities.  In this paper, we present the design and implementation of a programmable classification engine for  SIP messages in the 

L inux kernel. This design uses a novel algor ithm that in addition to classifying messages can extract and maintain state information 

across multiple messages. We apply the classifier  for  over load control using operator-specified rules for  categor izing messages and 

associated actions, augmented with a protocol-level understanding of SIP message structure.  When faced with loads beyond their  

capacity (e.g., dur ing catastrophic situations and major  network outages),   SIP servers must drop messages from the input stream.  I t is 

therefore desirable that the server  process high-value messages in preference to dropping lower-value messages. We evaluated our  in-

kernel classifier  implementation with a commonly-used open source SIP server  (SER) for  such an over load scenar io. The workload 

consists of a mix of call setup and call handoff SIP messages and the classifier  is programmed with rules that pr ior itize handoffs over  

call setups (reflecting typical message pr ior itization used by mobile service providers).   We show that, while SER can process about 

40K  messages/sec (in a FIFO manner), our  classifier  can examine  and pr ior itize about 105K messages/sec  dur ing over load.  With the 

classifier  operating at peak throughput, SER’s processing rate drops to about  31.6 K messages/sec, but it should be noted that the 

processed messages  reflect as much of the high-value messages as available in the input stream. 

I. INTRODUCTION 

Session Initiation Protocol (SIP) is a control plane for establishing, manipulating, and terminating multimedia sessions with 

one or more participants.  SIP is media agnostic and can establish voice, text, video, and other types of sessions.  SIP has gained 

widespread acceptance and deployment already among wire line service providers for introducing new services such as VoIP, 

within the enterprise for Instant Messaging and collaboration, and for push-to-talk service amongst mobile carriers. Service 
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providers ranging from cable companies to mobile providers are looking to deploy IP Multimedia Subsystem (IMS) as a common 

platform for deploying new services and applications [8].  SIP is an extensible protocol and extensions have been proposed for 

new functionality such as presence [4].  

In this study, we study the problem of how to classify SIP messages before they are processed by a SIP server. Today, SIP 

servers  process messages in a first-in-first-out manner. This does not lend itself to prioritizing messages before they are 

processed at the server. We design an efficient algorithm that takes as input  a set of user-defined rules, and morphs them into 

suitable data structures that enable fast matching of rules against the input message stream. The rules specify both how to identify 

specific subsets of messages, based on a combination of  message header values including complex functions such as set 

membership as well operations on the state amassed at the classifier from previous messages, and the actions to be executed on 

the matching packets.  Since the classifier is driven by these user-specified rules, it can be programmed to suit specific goals 

ranging from overload control to denial-of-service prevention  for SIP servers.  

We showcase overload control as a defining example for our classifier in this paper. Given the variety of usage contexts for a  

SIP server (e.g. Voice-over-IP, Instant Messaging, Presence,..), it is not surprising that each service provides a different value to 

the operator (e.g., revenue or customer satisfaction).  Moreover, different types of messages within a service can also provide 

different amounts of value (e.g., “411” information calls cost $1 on some mobile services). Thus, our classifier-based solution for 

overload control will aim to maximize the value of the messages processed by the server. SIP servers can become overloaded 

despite being provisioned correctly. During overload, only some requests can be handled and the rest are dropped to decrease the 

server load and bring the load down to maximum server capacity.  Rather than dropping requests randomly or in a FIFO fashion, 

our goal is to prioritize requests in order to maximize value for an operator. Additionally, each server operator may have a 

different notion of value attached to a specific type of request.  We demonstrate how our classifier prioritizes messages according 

to operator-specified metrics, so that under overload conditions, revenue is maximized by servicing the higher-value requests 

first. Additionally, the acceptable service delay could vary with the type of service request.  For example, instant messages may 

tolerate more delay than voice calls.  In that case, it is not sufficient to handle the requests in terms of highest value first, but 

rather a trade-off between delay and value is required. For now, our prototype assumes that the service delay is the same for all 

request types. 

 

II. SIP BACKGROUND 

As shown in Figure 1: SIP architecture, a SIP infrastructure consists of user agents and a number of SIP servers, such as 

registration servers, location servers and SIP proxies deployed across a network. A user agent is a SIP endpoint that controls 
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session setup and media transfer. [6] describes the SIP protocol in detail. 

 

Figure 1: SIP architecture 

All SIP messages are requests or responses. For example, INVITE is a request while “180 Ringing” or “200 OK” are 

responses.  A SIP message consists of a set of headers and values, all specified as strings, with a syntax similar to HTTP but 

much richer in variety, usage and semantics. For example, a header may occur multiple times, have list of strings as its value, and 

a number of sub-headers, called parameters each with an associated value. In the following example from [6] Alice invites Bob to 

begin a dialog: 

I NVI TE si p: bob@bi l oxi . com SI P/ 2. 0 

Vi a:  SI P/ 2. 0/ UDP pc33. at l ant a. com; br anch=z9h 

Max- For war ds:  70 

To:  Bob <si p: bob@bi l oxi . com> 

Fr om:  Al i ce <si p: al i ce@at l ant a. com>; t ag=192 

Cal l - I D:  a84b4c76e66710@pc33. at l ant a. com 

CSeq:  314159 I NVI TE 

Cont act :  <si p: al i ce@pc33. at l ant a. com> 

Cont ent - Type:  appl i cat i on/ sdp 

Cont ent - Lengt h:  142 

( Al i ce' s SDP not  shown)  

SIP messages are routed through SIP proxies to setup sessions between user agents. All requests (such as an INVITE) are 

routed by the proxy to the appropriate destination user agent based on the destination SIP URI included in the message. A session 

is setup between two user agents through an INVITE request, an OK response and an ACK to the response. This is shown in 

Figure 2 where the call setup is followed by media exchange using RTP. The session is torn down through an exchange of BYE 

and OK messages. 
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Figure 2: SIP Call setup and Media Path 

 

SIP separates signaling from the media – signaling messages are carried via SIP, whereas media is typically carried as RTP 

over UDP [3]. Signaling messages are routed through the different SIP servers while the media path is end-to-end. The body of a 

session setup message (e.g., INVITE) describes the session using Session Description Protocol (SDP) [3]. The IP address and 

port numbers exchanged through SDP are used for the actual data transmission (media path) for the session. Any of these 

parameters can be changed during an ongoing session through a re-INVITE message, which is identical to the INVITE message 

except that it occurs within an existing session. The re-INVITE message is used most often in mobile networks to support handoff 

of an existing VoIP call due to user mobility (and subsequent change of endpoint addresses).  

SIP messages primarily belong to three functional classes: (a) session setup/modification/teardown, (b) instant messaging and 

(c) event subscription/notification. RFC 3261 [6] defines the basic set of messages and interactions that define sessions, such as 

REGISTER (for registering a user agent), INVITE, and ACK for session setup, BYE for session teardown, and a variety of other 

control messages  such as OPTIONS. Additional messages have also been defined (e.g., INFO[9],  UPDATE [10], etc.).  The 

MESSAGE request is an extension for ‘paging-mode’ instant messaging [1] and the more recent, Message Session Relay Protocol 

(MSRP) [1] defines methods for session-mode instant messaging. Another set of extensions enable presence applications with the 

PUBLISH, SUBSCRIBE, and NOTIFY primitives for event notification [1]. 

SIP can operate over multiple transport protocols such as UDP, TCP or SCTP. Use of UDP is probably more prevalent today 

especially for proxy-to-proxy connections, but TCP usage is expected to grow down the road. Additionally, when using TCP, SIP 

can use SSL (secure sockets layer) for security and encryption. It may also use IPSec underneath any of the transport protocols as 

well. 

III. MOTIVATION 

Overload is an inevitable condition for servers.  Flash crowds, emergencies, and denial-of-service attacks can all initiate loads 

that exceed a server’s resources.  Therefore, servers must be designed with overload in mind.  Given that a server can not handle 

all of the requests it receives, it would be desirable for it to handle those requests which produce the most value for its operator.  
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For example, “911” emergency calls should take precedence over other calls; text or picture messages may generate more 

revenue than local calls; and dropped calls are more frustrating for users than “system busy” messages.  Furthermore, each 

operator may have different policies and values associated with each type of message. 

Our solution is to leverage the rich header information contained within SIP messages to classify the incoming stream of 

messages according to operator-defined rules; and then based on the classification deliver the highest priority messages to the 

server first.  We achieve this with a novel SIP message classification algorithm described in detail in Section �IV.  

A key motivation behind the design of our classification engine, which is an implementation of the above algorithm, is that it 

must be programmable with a set of user-specified rules. In this paper, we use the classification engine to provide overload 

control. The need for programmability for overload control arises from our earlier observation that SIP can be used to support 

multiple services / applications and each provider may offer a different subset of these services and assign a different set of values 

(e.g., revenue metrics) to their mix of offered services. Clearly then, the rules for overload control that aims to maximize value 

for an operator under overload, must be different, and rather than create a specialized engine for each operator, it is eminently 

better to program a common classification engine with different sets of rules. 

Because our classification engine is programmable, it can be used in multiple contexts besides overload control.  For example, 

the classifier can be used as a SIP-aware load balancer in front of a SIP server farm to provide either transaction affinity or 

session affinity. It could potentially be also used to prevent denial-of-service attacks by programming it with rules that drop 

undesirable messages.  The multiple different scenarios and their corresponding architectures where a fast, efficient classification 

engine could be useful, is currently under study.  In this paper, we will provide a brief sketch of one additional scenario, namely 

for use as a session-aware dispatcher of  requests for  a SIP server farm. 

Another key point of our classifier design is that it is independent of the underlying transport protocol. As mentioned earlier, 

SIP can operate over multiple transport protocols: our classification engine operates on SIP messages and assumes that the 

transport layer connections have been terminated and provide a single FIFO stream of messages as input to the classification 

engine. However, depending on the transport protocol used, additional transport-layer mechanisms will be needed. We discuss 

some of these issues briefly in Section �III.B.   In this paper, we assume that UDP is transport protocol used which requires no 

additional (transport-layer) mechanisms in order to apply our classification engine for overload control. 

We would also like to point out that the classification algorithm is independent of the queuing policy used. The end-result of 

the classification process is to place an incoming message in one of multiple categories. In case of overload control, the 

categories will be realized as queues and they may be serviced using one of many possible queuing schemes such as weighted 

round-robin or priority schemes. Furthermore, usage of classification in contexts besides overload control may benefit from 



 6 

schemes better suited for the specific context. Thus our design decouples the classification algorithm from the queuing 

mechanism/policy used.  

It is worthwhile also mentioning here that a SIP server would normally parse a SIP message before processing it. Thus, a key 

goal for our classifier design is not to duplicate server functionality, and instead extract only the needed information (to enable 

rule matching) from a subset of the message headers,   as will be described in detail in Section �IV. This is especially relevant for 

use in overload control for two reasons: (a) the classifier should take away as few processing cycles from the SIP server and yet 

provide a disproportionately higher return, (b) when messages need to be dropped, it is better to drop them earlier in the 

processing path. The second point (b) ties in with the positioning of the classification engine within the overall server system: as 

will be discussed in Section �III.C, the classifier engine is best positioned as an in-kernel module from a performance standpoint.  

We expect the usage of the classifier not require any modification to the SIP server application (proxy, redirect server, 

presence server etc), i.e. the classifier is self-contained with its own rules. However, we also expect configurations where a SIP 

server would cooperate with the classification engine by programming rules and/or input to the classifier, such as routing policies.  

An example of such cooperation is in using the classifier for VoIP denial-of-service (DoS) prevention, where the SIP server may 

use its own methods to detect onset of DoS attacks, and thereupon, insert rules in the classifier to detect and drop undesirable 

messages before they are processed by the server.   

Lastly, it should be noted that the classification-based overload control scheme is triggered only at the onset of overload, and 

not during normal operation. Since overload detection is non-trivial in itself, a detailed evaluation of detection schemes is outside 

this scope of this paper [22]. 

 

Figure 3: Overall context of classifier usage 

A. Target Network Scenarios 

We present three scenarios for our classification engine: (a) overload control for a SIP server servicing many clients, (b) 
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overload control for a SIP server interconnected with another SIP server, and (c) as a dispatcher for a SIP server farm. In (a), 

each client has a separate transport connection to a SIP server such as a proxy. The case for overload in this scenario arises when 

a proxy is supporting a large number of users, such as a VoIP service provider like Vonage, and clients come back up at roughly 

the same time after a regional loss of network connectivity (and thus requiring the clients to re-register). In (b), SIP servers in the 

core of a service provider network, for example, will receive requests from SIP servers in other administrative domains and/or the 

same domain, and this request volume is much higher than an access server which supports only user-agents. For a given server-

to-server interconnection, all messages are sent over a common transport connection. In both of these cases, our classification 

engine would be collocated on each server, and programmed with a set of rules to provide overload control (maximizing 

revenue). Additionally, servers in (a) or (b) may be organized as a server farm front-ended by a SIP-aware dispatcher, whose job 

is to distributed requests amongst the servers, maintaining for example, session affinity. In this scenario (c), the dispatcher can 

also be realized through the same classification engine, but programmed with a different set of rules (to ensure for example, the 

INVITE, 200 OK  and  ACK messages constituting a session setup are sent to the same server). The key point to be made here 

that since the classification engine is programmable; it can be used in multiple ways with appropriate configurations. This paper 

will focus on use of the classification engine for overload control.   

B. Impact of transport layer 

As mentioned earlier, SIP can use multiple transport protocols and optionally security support. When SIP is used over UDP, 

each SIP message is completely contained within a UDP packet [6] and messages from multiple hosts arrive on the same socket, 

i.e. the classifier can pick up messages from this single socket. In case of TCP, data is delivered to the SIP proxy through a socket 

interface as a byte-stream. The overload protection mechanism thus needs to be interjected between the TCP implementation and 

in-kernel socket data structures, so that the byte-stream coming out of the TCP connection can be  recognized as a series of 

messages which are then acted upon by the classifier (and re-ordered). Additionally, when TCP is used, each connection to the 

proxy results in a separate socket data structure. The classification of messages needs to be done across multiple connections.  

TCP connections could also be encrypted using SSL, especially for client-to-proxy connections. The classifier must inspect clear 

text (i.e., unencrypted) SIP headers to make its decisions, so SSL connections must be terminated by a component that is 

interposed between the user agent and the classifier. This component will terminate the SSL connections, and then forward 

unencrypted data to the classifier using a secure channel. Handling SSL connections is outside the scope of this paper:  multiple 

options exist such as simple user-space SSL termination [11], in-kernel SSL termination, or a dedicated SSL termination server. 

For server-to-server interconnections, a transport connection (TCP or UDP) is likely to be secured by IPSec. Because IPSec is 

implemented in the kernel, the classifier can analyze the SIP messages in the kernel. 
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C. User-level vs. in-kernel design 

The exact realization of this integration depends on whether it takes place as a user-space process, or in-kernel. However, 

executing the classifier in-kernel provides performance benefits because packets are not copied. In both cases, it should be noted 

that the classification algorithm remains exactly the same. 

When applied to overload control, a kernel-level implementation is preferable, because overload control generally entails 

dropping messages in order to reduce load. Clearly, message dropping needs to happen as early in the processing path of a 

message to minimize the amount of processing (CPU, I/O, etc.) resources spent on a message that will ultimately be dropped. For 

this reason, an in-kernel realization of the classification algorithm can be expected to provide higher performance gains than say 

integrating an overload control module within a SIP server (in user-space).  Additionally, a kernel-level implementation is more 

flexible and portable than a user-level implementation, because it can be applied to multiple unmodified SIP server 

implementations. 

IV. OUR CLASSIFICATION ALGORITHM 

The input to the classification algorithm is a set of rules, expressed as a conjunction of conditions. Our classification algorithm 

has a static and a runtime component.  The static component consists of rule parsing and creating several tables and bitmaps that 

allow the runtime portion to operate efficiently.  Our algorithm uses three tables: a header table, header value table and a 

condition table that store the required message headers, values of those headers and the conditions to evaluate, respectively.  We 

use a list of rules that are expressed as bitmaps, where each bitmap represents the conditions that must be true for the rule to be 

matched.  Each rule has an associated set of actions, one of which must be a priority for the packet. 

 The runtime component consists of extracting only those headers (and their values) from a SIP message that are present in the 

header table,  evaluating the conditions in the condition tables, storing the results of the condition evaluations in a bitmap, and 

then comparing that bitmap with each rule.  When a rule matches, a set of actions is applied.  We make use of   multi-pattern 

matching algorithms to extract only the necessary header values through a single scan of the message, i.e. we parse only the 

relevant headers and extract only the necessary sub-fields. 

A key feature of our algorithm is that by supporting user-defined data types (such as associative arrays); we are able to maintain 

user-specified state that can be updated as part of rule actions. 

 In the remainder of this section, we describe our algorithm in detail.  Section �IV.A describes message headers and Section 

�IV.B describes data types.  Classification rules are described in Section �IV.C, and their grammar in Section �IV.D.  The static and 

run-time phases of our algorithm are described in sections �IV.F and �IV.G, respectively. We illustrate the algorithm through an 

example in section �IV.H.  
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A. Message Header Types and Specification 

The header table consists of a list of SIP message headers, which we have classified according to three types: 

• Simple headers, which exist as such in SIP message, e.g. From, Via, and Call-ID. 

•  Pseudo-Headers: These headers do not appear as such in a SIP message, but allow us to refer to certain strings or 

characteristics of the message. For example, Method is a pseudo-header that we define to represent the type of the SIP 

message such as an INVITE or a 200 OK. 

• Derived Headers: These are constructed from one or more headers. The first kind of derived header is what we call as “sub-

header” and  comprise of pre-defined composite strings of the form X.Y where X represents a simple header, and Y 

represents either one of the  specified parameters [6] than can appear in the value for header X (e.g., the “tag” parameter of 

the From header), or a list of tokens that we defined to represent specific values of interest in the header (e.g., “From.URI” 

represents the URI portion of the From header value).  The second kind of derived headers consists of user-specified ordered 

list of Message headers (either simple headers or recursively, other derived headers).   For example, a SIP session dialog 

comprises of the tag parameter values of the From and To headers, and the Call-ID header value: 

Di al og= { Fr om. t ag, To. t ag, Cal l - I D}  

Here, From.tag and To.tag are sub-headers, and Call-ID is a simple header. Individual elements of a user-defined derived 

header are indicated by dotted notation, such as Dialog.From.tag or Dialog.Call-ID.  

B. Data Types 

In conjunction with user-defined derived headers, we also allow the user to specify complex data types such as structures and 

complex data variables such as associative arrays (hash tables), pointers and scalars. The basic data types are string and integer.  

Any time a user defines a derived header like Dialog, a type of the same name is also implicitly created. A structure is a data type 

consisting of a collection of data types. 

 For example: St r uct  Sessi on = { Di al og Di al og1,  St r i ng St at e}  

The element “State” stores the state of a dialog which could be “established”, “setup”, or “shutdown”. To differentiate 

variables, we prefix each variable with “$”, “*”, or “%” for scalars, pointers, and associative arrays, respectively.  Associative 

arrays must be defined in terms of a structure.  The first element of the structure is the key, and the remaining elements are the 

values.  A list can be created by using an associative array with keys, but not values.  Pointers can only reference elements within 

an associative array. 

All variables are assumed to be global in scope unless explicitly specified to be of local scope. A variable with a global scope 

exists for the lifetime of the classification process, i.e. it retains its existence across messages and can be modified as a result of 
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classifying individual messages. Global variables are typically used to maintain state that is dynamically generated and modified 

by the classifier (e.g. an associative array of dialog-ids for ongoing SIP sessions). In contrast, a locally scoped variable does not 

share its value across messages, and in fact, retains its value only within the context of a specific rule execution.  Moreover, 

multiple instances of a local variable can be concurrently instantiated (e.g., if the classifier is running on a multi-processor system 

it can process multiple packets at the same time).  Local variables such as pointers are used to extract an element of a globally 

scoped list that matches with some set of header values in the message currently under classification.  

For example, to maintain a count and an array of session information, three variables could be used.   

I nt :  $Act i veSessi onCount  

Sessi on:  %Act i veSessi ons 

Local  Sessi on:  * Cur r ent Sessi on  

A scalar integer suffices for the count. An array (Act i veSessi ons ) would use the Session structure previously defined, 

using a local reference (Cur r ent Sessi on). 

The classifier maintains a global variable table (GVT) and a per-message local variable table (LVT).  Each entry in the GVT or LVT 

can store a basic type (string, integer), tuple, or reference to a list entry.  The run-time classifier elements store only indices to the GVT or 

LVT (much like compiled code references variables by memory locations rather than names). 

C. Rules 

A rule consists of a conjunction (AND) of conditions resulting in an action, along with a priority for each rule. For example: 

C1 AND C2 AND C3 � A1, Priority 

Disjunctions (OR) do not need to be supported since disjunction of conditions can be expressed as separate rules, without loss 

of generality. Rules are applied sequentially, until a matching rule is found.  If no match is found, the packet is given the lowest 

possible priority. 

Conditions are of the form “Header op Literal.”  The header may be a simple header, pseudo-header, or a derived header.  The 

operator can be ==, subset, superset, or belongs-to.  The belongs-to operator also supports an optional assignment to a pointer.  

We also support negation for ==, subset, superset, and belongs-to (without assignment). String equality can only be used for 

headers that have a single value.  For multi-valued headers such as Record-Route, Via, or various authorization headers, the 

subset and superset operators are used.  For example to match messages that traverse only “host1.watson.ibm.com,” 

“host2.watson.ibm.com,” or both the condition, “Via subset {host1.watson.ibm.com, host2.watson.ibm.com}” is used.  To 

express set equality, the conjunction of subset and superset are used. 
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The belongs-to operator is used to find headers in the classifier’s state lists (i.e., a list of Dialog-IDs).  For example, “Dialog-

ID belongs-to %ActiveSessions” expresses the condition that Dialog-ID is a key in the associative array ActiveSessions. This 

operator returns a “true” value by returning a pointer to the element in the list that matches the Header; it returns a “false” value if 

no match is found. Thus, it serves a dual-use of evaluating the Boolean value of a condition and, in addition, returning a pointer 

value. Thus, we support a special assignment operator, =, that may prefix a belongs-to condition.  For example, “*CurrentSession 

= (Dialog-ID belongs-to %ActiveSessions)” assigns the found item to the *CurrentSession pointer. 

D. Actions 

The actions that an implementation classifier provides necessarily includes the ability to color messages with a category (e.g., 

the priority for overload control), but our classification algorithm does not define what the set of actions is.  We have chosen a 

general representation for our actions, an action table which is a series of actions represented as three-address code.    Each action 

consists of a type, left-hand side, right-hand side, and a next pointer.  The type of the action defines the instruction.  For example, 

our in-kernel implementation defines priority assignment; variable assignment; arithmetic operations such as addition, 

multiplication, division, and modulus; tuple allocation, assignment, and extraction; variable assignment; array insertion and 

deletion, and more.  The left-hand side of an action is a variable which may have side effects (e.g., for addition the left-hand-side 

serves as both an addend and where the result is stored).  As not all instructions affect variables, the left-hand-side may not be 

specified (e.g., priority assignment does not alter any variable).  The right hand-side is used as input and may be an immediate 

variable (e.g., the constant 1), a state variable (e.g., $ActiveSessionCount), or a header, sub-header, or derived header (e.g., 

From.tag).  For example, the action “ADD $ActiveSessionCount 1” adds one to the value of $ActiveSessionCount.  Each rule has 

a pointer to an action that is executed when the rule is matched, and each action has a next pointer to another entry in the table.  

To prevent loops only backward pointers are allowed and the first entry (i.e. 0) terminates the action.  For clarity, the rule 

compiler should allow actions to be specified using a richer and more complex syntax (e.g., “$A = $B + $C”), but should convert 

the complex action into a series of simpler actions (e.g., “ASSIGN $A $B”, “ADD $A $C”). 

E. Rules Set Specification Syntax 

A complete set of rules begins with type definitions, a list of user-defined headers, variable declarations, and finally an ordered 

list of rules and actions.  The BNF grammar of our rule language is shown in Figure 3.  We use Italics for grammar symbols, bold 

characters for string literals, and roman type for alphanumeric strings (e.g., identifiers). The starting symbol is “RuleSet”, which 

is made up of type declarations, variable declarations, and one or more rules. 
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Figure 3: Rule Grammar 

F. The Static Phase of the Algorithm 

1. Extract a set C of unique conditions from the rule set specified. 

2. From the set C, extract a set H of unique headers, which may  be pseudo-headers, simple headers and derived headers. For 

each derived header in this set, recursively include the list of simple (or derived) headers that comprise that derived header. 

For example, the Dialog derived header defined in Section �IV.B includes the derived headers From.tag and To.tag as well as 

the simple header Call-ID. The derived headers From.tag and To.tag would recursively lead to the inclusion of “From” and 

“To” in the set H. 

3. Create a table, Header Table, whose each row consists of a header from the set H. The format of each row is <Header, 

Header-Type, List of indices, fn> . Header is the actual string representation, such as “From”, or “From.tag”, “Dialog”, or 

“MSG_TYPE”. Header-Type refers to simple, derived or a pseudo-header. For derived headers, there is a corresponding 

ordered list of indices referring to the simple and pseudo-headers (or other derived headers) comprising a derived header, 

e.g. Dialog would refer to the indices for “From.tag”. “To.tag”, “Call-ID”. For pseudo-headers and derived headers, the 

element fn refers to a function that can extract the value of the header from the message (for pseudo-headers) or its 

component simple and derived headers (for derived headers). For example, the function pointer for Dialog encodes the 

necessary logic to create a dialog ID by walking through the associated list of indices.  The entries in the header table are 

ordered such that the components of a derived header are always computed before the derived header.  

4. Associated with the Header Table is  another table, Header Value Table, which for every header (index) in the Header Table 

will eventually hold a value in the Header Value Table, e.g. the “From” header in the Header Table will contain 

“sip:xiping@us.ibm.com” in the  associated entry for the Header Value Table. These values will be populated during run-

time, i.e. when a message is being classified. For pseudo-headers and derived headers, the associated function fn when 

RuleSet = TypeDeclaration VarDeclaration*  Rule+ 

TypeDeclaration = ( UserHeader|Structure)* 
UserHeader = TypeName = { ( Header| TypeName)  ( ,( Header| TypeName)  )  *  } 
Structure = Struct TypeName = { TypeName Fi el dName ( ,  TypeName Fi el dName)  *  } 
VarDeclaration = ( Local) ? TypeName: Kind Var Name ( , Kind Var Name)  *  
Kind = $|%|* 
Rule = Condition ( AND Condition)  * �  Action ( , Action)  * 
Condition = Header  ( ==| !=)  St r i ng)  |   Header  ( subset| superset)  {St r i ng ( , St r i ng)  *} |  
     Header  belongs-to %Li st  |  Var Name = (Header  belongs-to %Li st ) 

Action = ( Assi gnment  |  Funct i on |  Pr i or i t y)  + 
Assignment = ( Var Name = Val ue |  Var Name.Fi el dName = Val ue)  
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executed will place the result (value) of the execution in the corresponding location/index in the Header Value Table. Each 

row, in addition to the value, also contains a type of value which could be a string, list of strings, tuple, integer, or NULL.    

5. Create a table, Condition Table, whose each row represents a condition from the set C and consists of: 

<operator, header, literal,,  Assignment-variable>  

The aim is to efficiently represent conditions by storing pointers to header values of a SIP message under classification. At 

run time, the requisite header values can be referenced in constant time for efficient evaluation of these conditions. In 

general, header is an index to a header table, and the literal is a fixed operand that the header is compared to. The operator 

is one of the operators defined earlier:  

a) For string (in)equality operators, literal refers to the literal string that is being compared to a specific SIP message header 

value, which is specified by an index (header) in the Header-Table (HT). The fourth element of the row is unused.  An 

example of this type of entry is < ==, 0, “ Charles” , NULL >   

representing the condition “ From  == ‘Charles” .  Where, HT[0] represents the header “From”. 

b) When the operation is belongs-to, op1 refers to a header value and op2 refers to a list. For example, the condition with 

assignment, “*S1=(Dialog belongs-to %L1)” , will be represented by a row in the condition table as <belongs-to, 5, %L1, 

*S1>.  Where, HT[5] refers to the derived header Dialog (defined earlier). 

c) For subset and superset operators, header is a message header that is list-valued such as “Via”, while literal is a list of 

values. For example, a condition such as “Via subset {proxy1, proxy2}” will be represented as <subset, 3, {proxy1, 

proxy2}, NULL>  where HT[3] is the entry in the header-table representing the "Via" header. 

6. Bit vector representation: The set of conditions C is efficiently represented as a bit-vector (Condition bit-vector), where bit i 

refers to the ith condition in the Condition-Table, and will be set 1 iff  that condition is true for a message being classified. 

Additionally, for each rule, create a Rule bit-vector where the ith bit is 1 iff the rule specification includes the ith condition. 

G. Run-time: classification actions per-message 

1.  For each header in the header table, determine whether the header exists in the SIP message and if so, return a pointer to the 

header value in the message.  This determination can be done by using an efficient multi-pattern string matching algorithm like 

SBOM [15] [16] or even a simple switch statement (as there are a limited number of pre-defined SIP headers). The advantage of 

doing this is (a) while the entire message needs to be scanned (with sliding window that can step over multiple characters at a 

time as dictated by the SBOM state machines), the entire message is not parsed. The end-result of this step is to populate each 
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header entry in the header value table with a pointer to the position in the SIP message corresponding to the value of the matching 

header. For pseudo-headers and derived headers, we perform limited parsing of the extracted simple headers and store the result 

in the corresponding index in the header table. 

2. Walk through each row (condition) in the Condition table and set the corresponding bit in the Condition bit-vector to 1 if the 

condition is true or 0 if the condition is false.  As was indicated earlier, our data structures were carefully designed to make 

evaluating the condition at run-time efficient: each entry in the Condition Table has pointers to the condition’s operands (i.e. a 

literal and a header). For the belongs-to operator, the literal operand in the previous section is an associative array, i.e. a hash-

table which enables us to evaluate this operation efficiently. We store references to assignment variables as integer indexes into 

the global or local variable table, thus retrieving and storing variables is efficient. 

 3. Next, we compare the Condition bit-vector (CBV) to each rule bit-vector.  A rule matches the SIP message under 

classification, if and only if (R & CBV) == R, where R is the rule bit vector for that rule and “&” is the bitwise and operation. In 

words, if the ith bit is 1 in the bit-vector for rule R, then the same bit must be 1 in the condition-bit-vector.  If R contains the ith 

condition, then the value in the matching header of the SIP message must cause this condition to be true, in order for R to apply.  

Because the rule-bit-vectors are sorted according to priority, the matching process can be stopped after the first matching rule 

(because that is the highest-priority matching rule) 

H. Data Structure Example 

We now sketch an example using the following rules: 

� Met hod==“ I NVI TE”  AND To. t ag==NULL � Hi gh 

� Met hod==“ I NVI TE”  AND Fr om. URI ==“ si p: car ol ”  �  Medi um 

� Fr om. URI  == “ s i p: al i ce@at l ant a. com”  � Low 

The set of headers H for this rule set is initially “Method”,  

To.tag”, and “From.tag.” Because “To.tag” and “From.tag” are derived from “To” and “From”, respectively, the “To” and 

“From” headers are added to H forming the set “Method”, “To”, “From”, “To.tag,” and “From.tag.”  The unshaded portion of the 

following table represents the static portion of the header table. 

Index Parent Header Value 

0  Method INVITE 

1  To Bob <sip:bob@biloxi.com> 

2  From Alice 
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<sip:alice@atlanta.com>;tag=192 

3 1 To.tag NULL 

4 2 From.URI sip:alice@atlanta.com 

 

The conditions are Method == “INVITE”, To.tag == NULL, From.URI == “sip:carol”, and From.URI == 

“sip:alice@atlanta.com”. The unshaded portion of the table below represents the static portion of the condition table. 

Index Op Header Literal Value 

0 == 0 (Method) INVITE 1 

1 == 3 (To.tag) NULL 1 

2 == 4 (From.URI) sip:carol 0 

3 == 4 (From.URI) sip:alice@atlanta.com 1 

Note that headers and conditions that are duplicated within the rule set are only expressed in the header and condition tables a 

single time.  Using the condition table, the rules can be expressed as a bitmap.  For example Method == “INVITE” AND To.tag == 

NULL is expressed as 1100, with each bit corresponding to an index in the condition table.  Similarly, Method== “INVITE” AND From.URI 

== “sip:carol” and From.URI == “sip:alice@atlanta.com” are expressed as 1010 and 1001, respectively. 

The shaded columns in the tables represent the run time state for the message, using the sample message from Section II.  The 

value column in the header table is the header value table, and the values from the condition table represent the condition bit 

vector, 1101. The condition vector is compared to each of the rules in turn.  The first rule matches because 1101 & 1100 == 

1100, so processing may stop.  

This condition bit vector does not match the second rule, because bit 3 is not set (1101 & 1010 != 1010).  The third rule does 

match (1101 & 1001 == 1001), but is not executed because the second rule already matched. 

Next, we show a skeleton example of using state in the classifier. The following two rules describe how state consisting of the 

dialog-ids of ongoing sessions, is updated each time a new session starts or an existing session terminates. The first rule detects a 

new session and adds it to a dialog session list. Once the session is completed upon receipt of BYE message, the session is 

removed from the session list. (Clearly, additional rules will be needed for completeness.) 

� Met hod==" I NVI TE"  AND Di al og- I D ! bel ongs- t o %Act i veSessi ons)  �  addDi al og( Di al og- I D,  

%Act i veSessi on)  

 

� Met hod==" BYE"  AND Di al og- I D bel ongs- t o %Act i veSessi ons  �   del et e( Di al og- I D,  

%Act i veSessi ons)  
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V. OVERLOAD CONTROL IMPLEMENTATION 

A. Classifier Prototype 

We have developed a prototype classifier for overload control that consists of three components: (1) the core of the classifier a 

Linux kernel module responsible for parsing and classifying messages, (2) a user-level rule parser, and (3) a kernel patch that 

provides an extensible priority queue for UDP sockets.  The kernel module is 3,425 lines of code, provides support for parsing all 

defined SIP headers using a switch statement, associative arrays using linear hashing [21], all of the types, operators, and actions 

described in the previous section, and several additional actions.  The user-level rule parser is 2,121 lines of C code that parses a 

set of rules and compiles them into a header table, condition table, rule list, and three-address-code action set.  Our kernel priority 

queuing extension adds 626 lines of kernel code that adds a new socket option (SO_QDISC) which allows servers to specify 

which classification rule set should be used.  When a packet is received over the network it is classified using our kernel module, 

and then inserted into one of n queues.  When the server reads from the socket, higher priority messages are returned first.  

Additionally, if sufficient room is not available in the socket’s buffer, lower priority messages are dropped in favor of higher-

priority messages. 

B. Testbed /  Workload Used 

We ran our classifier and SIP Express Router (SER) 0.9.6 on a dual 3.0 GHz Xeon with 4.5GB of RAM.  We used two 

identical 1.7 GHz Pentium IVs with 512MB of RAM to send and receive the messages. All machines were connected via a 

1Gbps Ethernet network.   

The workload we used to evaluate our classifier is reflective of what would be typically used by a mobile service provider 

during call overload, which is to reduce the number of dropped calls due to handoffs in preference to new call setups. Call setup 

is modeled via SIP INVITE messages; while a call handoff is modeled via re-INVITE messages. The re-INVITE message is 

structurally same as an INVITE but with a non-empty value of the “tag” parameter in the To header. Prioritization of call-

handoffs (re-INVITE) over call setup (INVITE) is accomplished via the actions associated with the rules that match one or the 

other message type. 

We evaluated our classifier by sending a sequence of SIP messages to it that consists of INVITEs and re-INVITEs from one 

SIP client to another through SER with and without our classifier.  We configured our classifier with the following set of rules 

that (a) differentiate re-INVITE vs. INVITE messages using the To.tag field and (b) prioritized re-INVITE messages over 

INVITE messages :  

10:  Met hod == " I NVI TE"  && To. t ag == NULL - > Col or  1 

20:  Met hod == " I NVI TE"  && NOT To. t ag == NULL - > Col or  0 
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30:  NOT ReqResp == NULL - > Col or  1 

40:  ReqResp == NULL - > Col or  2 

Rule 10 matches INVITE messages without a To.tag field (i.e., the INVITE messages) and assigns them to color 1 (the highest 

priority is zero).  Rule 20 matches INVITE messages with a To.tag, and assigns them priority 0 (i.e. the highest priority).  Rule 30 

matches all other SIP messages and assigns them to the same priority as INVITE.  Finally, rule 40 matches any non-SIP or 

malformed messages and assigns them the lowest priority. 

When overload occurs, some messages are dropped.  We record the number of messages of each type received.  We compare 

the total number of messages received, the number of INVITEs received, and the number of re-INVITES received.   We 

measured our classifier using from 10,000-120,000 messages/sec (in increments of 10,000 messages/ second), which 

demonstrates its behavior both with and without overload. 

C. Observed results 

Fig. 4 shows the results our experiment with a mix of 75% INVITEs and 25% re-INVITEs (i.e. a handoff-ratio of 25%). We 

selected these ratios as in practice call handoffs happen less often than call setups.  As can be seen in the figure, before overload 

is reached our classification engine has no impact on the number of messages processed by SER.  However, after overload is 

reached, the number of messages/sec processed decreases by 8.8% for 40,000 messages/sec to between 18.7-23.3%  for 60,000-

120,000 messages/sec.  The reason that throughput is decreased is that the classifier must process all incoming messages, and we 

observed that the classifier was able to handle 104,891 messages/sec at its peak, more than 2.6 times as many as SER could 

handle at its peak; at the same time SER was processing 31,616 messages/sec. 

 Because the classifier was able to process so many more messages than SER alone, it was able to select the high-value 

messages in this workload for processing, increasing the number of hand-offs processed by 50.9% for 60,000 messages/sec to 

160.2% for 120,000 messages/sec.  Of course this comes at a cost, a corresponding number of setup messages can no longer 

processed, and thus the call setup throughput decreased between 11.7% and 79.5%. 
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Figure 4: 75% INVITEs, 25% re-INVITEs 

The performance of the classifier is dependent on the incoming stream of messages; therefore we also ran the same experiment 

using handoff ratios of 0%, 25%, 50% and 100% and recorded the maximum number of call handoffs that were processed.  The 

results are shown in Figure 5, Maximum handoff operating region, as a function of the input stream.    The region between the 

peak handoff capacity of SER and the peak handoff capacity of our classifier is the additional operating region provided by the 

classifier.  As can clearly be seen, the peak number of handoffs scales linearly with the ratio for SER, because the messages SER 

processes are randomly selected from the input stream. The classifier is able to select the high-priority handoffs from the message 

stream and processes all of the available handoffs until the SIP server itself is saturated at 40,000 messages/sec, at which point no 

more capacity is available for additional hand-off messages to be processed.  

It is important to note that the classifier can provide no benefit at ratios of either 0% or 100%, because there are no high-

priority messages to select or no low priority messages to discard, respectively.  As expected, the classifier is most effective, 

when the offered load is higher than the server’s capacity, but number of offered high-priority messages is below the servers 

capacity (in this case a handoff ratio of 37.5%). 



 19 

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

Ratio of Call Handoffs

M
ax

im
u

m
 A

ch
ie

ve
d

 H
an

d
o

ff
s 

(M
es

sa
g

es
/s

ec
o

n
d

)

Classifier

SER

 

Figure 5: Maximum handoff operating region, as a function of the input stream. 

VI. USE OF CLASSIFIER AS A  SIP-AWARE    DISPATCHER  

As mentioned before, the programmability of the classifier through rule-sets makes it applicable to multiple scenarios. We have 

described one such scenario, namely overload control and demonstrated the performance gains achievable with the classifier. In 

this section, we briefly outline a second use-case for the classifier, and describe a partial rule-set to program the classifier.  

In many configurations, it is necessary for functional correctness to dispatch all messages that belong to the same transaction to 

a common server1 (e.g, messages that comprise the INVITE/OK/ACK three-way handshake for a call setup).  Moreover, for 

correct accounting, it may be necessary to dispatch all messages related to the same call to the same server.  This use-case 

consists of a set of SIP servers that is front-ended by a dispatcher, as shown in Fig. 5.  A SIP-unaware dispatcher is not suitable, 

because for proxy-proxy interconnections many sessions will operate over a single connection.  We construct a SIP-aware 

dispatcher using our classifier to determine which server a message should be sent to.  After the message is tagged with a server 

by the classifier, the existing dispatcher framework can forward it as normal. 

This is accomplished by programming the classifier that creates state in the classifier for the first message in a call or call setup 

transaction), based on the Call-ID message header. The call-ID header value is required to be unique for each call and is the same 

 
1 SIP message exchanges consist of transactions such as INVITE/OK/ACK, and such transactions can be either stateful or stateless. When stateful, all 

message for a a transaction need to be handled by the specific server that maintains state for that transaction. A session consists of a sequence of transactions, 
such as INVITE/OK/ACK followed by BYE/ACK.  
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across all messages in a transaction [6] (and also across a session). This state is represented by the Session structure in the rules 

below, and includes the specific server id to which the INVITE will be forwarded. All succeeding messages for this transaction 

(e.g. RINGING, OK, ACK),   matching this call-id, will be dispatched to the same server, thereby providing transaction affinity. 

The key aspect of the classifier that is being leveraged is the ability to dynamically maintain classification state through an in-

kernel associative array [21]. 

 

Figure 5 : SIP Dispatcher 

The following annotated rule set demonstrates how state can be used.  First, a session structure is defined and an associative 

array named %ActiveSessions is created with ID as the key.  Two local variables are also required: (1) $NewSession, which is a 

temporary entry that can be inserted into %ActiveSessions, and (2) *CurrentSession which is used as a pointer into the 

%ActiveSessions Array. 

St r uct  Sessi on = {  St r i ng I D,  I nt  Ser ver ,  I nt  Expi r e }  

Gl obal  Sessi on:  %Act i veSessi ons 

Local  Sessi on:  $NewSessi on,  * Cur r ent Sessi on 

We also define three integers: (1) $MyServer which is the server the current packet should be sent to, (2) $CurrentServer is a 

round-robin counter to evenly distribute the load across servers, and (3) $nServers is the number of servers in the server farm. 
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Local  I nt :  $MySer ver  

Gl obal  I nt :  $Cur r ent Ser ver ,  $nSer ver s 

The Init function is used to initialize variables (e.g., setting the number of servers to three), and create a kernel thread to remove 

array entries that are no longer needed.  

I ni t  - > $Cur r ent Ser ver  = 0,  $nSer ver s = 3,  Expi r yThr ead( %Act i veSessi ons,  Expi r e)  

Rule 10 matches calls that have an entry in the %ActiveSessions array, and its action sets the Expire element of the entry to the 

current time plus 15 minutes (900 seconds).  Finally, the message is colored with the Server element of the entry, so that the 

dispatcher knows to use the same server as the previous messages in this call. 

10:  * Cur r ent Sessi on = Cal l - I D bel ongs- t o %Act i veSessi ons 

- > * Cur r ent Sessi on- >Expi r e = Now( )  + 900 

Col or  * Cur r ent Sessi on- >Ser ver  

Rule 20 matches calls that do not have an entry in the %ActiveSessions array.  First, a server is selected and stored in MyServer 

using a round-robin algorithm.  Next, a new session structure is allocated and inserted into the %ActiveSessions array, using the 

Call-ID as the key.  Finally, the $MyServer variable is used to color the packet, thus indicating which server should be used by 

the dispatcher. 

20:  NOT Cal l - I D bel ongs- t o %Act i veSessi ons  

- > $MySer ver  = $Cur r ent Ser ver ++ % $nSer ver s 

$NewSessi on = ( Cal l - I D,  $MySer ver ,  Now( )  + 900)  

I nser t ( %Act i veSessi ons,  $NewSessi on)  

Col or  $MySer ver  

Rather than using expiration only, it is possible to modify the rules such that messages which indicate the end of a transaction 

trigger state deletion.  For example, the following rule removes entries when a final response is received for non-invite 

transactions (INVITE transactions require an ACK as well): 

5:  Response >= 200 && CSeq. Met hod ! = “ I NVI TE”  

&& * Cur r ent Sessi on = Cal l - I D bel ongs- t o %Act i veSessi ons 

 - > Remove( %Act i veSessi ons,  * Cur r ent Sessi on) ,  Col or  * Cur r ent Sessi on- >Ser ver  

Of course, a timer to purge old state is still required as some transactions may never complete, and additional rules will be needed 

for corner cases (e.g., dropped messages, INVITE transactions, etc.). 

VII. FUTURE PLANS 

Programmability of the classifier lends itself for use in multiple scenarios. Our current work revolves around developing support 

for such scenarios, including design and evaluation of the corresponding rule sets, e.g. denial-of-service protection for VoIP. This 
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includes identifying scenarios where the classifier and SIP server work cooperatively. Additional systems-level work includes 

incorporating support for TCP connections as well as  SSL[11]. We are also investigating better methods of detecting 

overload[22], and specializing the classifier for specific SIP servers such as a Presence server, which receive a narrower class of 

SIP messages, but with richer information in the payload (such as the Presence Information Document).  We believe this work 

opens up a rich set of possibilities to enhance SIP server performance. DoS 

VIII. RELATED WORK 

Related work primarily includes IP packet classification,   HTTP header inspection in web-proxies, and parsing of SIP 

messages within SIP proxies/servers such as SIP Express Router (SER) [12]. We are not aware of any earlier work on SIP 

message header classification per se.   SIP proxies and libraries, use efficient parsing techniques such as lazy parsing which 

include parsing up to a required header and/or incremental parsing.  However, in our case, the classification engine needs to 

extract a (small) subset of the header values and thus, multi-pattern matching algorithms are better suited [15] [16]. Additionally, 

extraction of information from the SIP message is only one aspect of our algorithm. We share a similar bit-vector representation 

for rules as in  [7]; however, unlike  [7], we operate on string-based header value pairs, with no predetermined ordering of 

headers, and our basis for creating rules by extracting a common set of conditions from the rules is  conceptually different from 

creating numeric ranges of interest (e.g. port numbers, IP addresses). SIP messages are syntactically similar to HTTP headers; 

however the diversity, scope and semantics of SIP headers are much larger than HTTP. Web proxies typically use the content 

URL in a HTTP request for forwarding it to the right web server; since the number of headers in HTTP requests is fairly small, 

they usually simply inspect all headers.  

A key feature of our classifier is its ability to create, manage and update state across multiple messages in a very general 

fashion. None of the related work cited support this feature since there was not any need for that. However since the notion of 

transactions and session being an integral part of SIP, this feature is an essential requirement for SIP classification. 

There has been recent related work on overload control of SIP servers. The solution proposed in  [17]  uses queue-length  

thresholds within a SIP proxy to determine congestion, and during  congestion, it separates INVITE messages from the rest and 

returns a 503 “service unavailable”. Current discussion in the IETF  [18] [19]  centers on creating an overload control framework 

and adopting appropriate new message headers to convey additional information beyond just sending a 503 response. The 

approach taken in   [20]  leverages the fact that throughput of a SIP proxy is higher when processing requests in a transaction-

stateless manner, and thus their solution consists of handling a subset of requests statelessly during onset of congestion, thus 

trying to avoid overload.  In contrast to the aforementioned work, our focus is on creating a mechanism in the form of a 

programmable engine that enables specific user-defined policies to be executed efficiently, without requiring any modification of 
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the SIP server per se. 

IX. CONCLUSION 

In this paper we have presented an algorithm for efficiently classifying SIP messages using a programmable set of rules, and 

applied it for overload control.  Our algorithm consists of a static phase and a run-time phase.  In the static phase, we define a 

header table that is a list of attributes to extract from the message and a condition table.  These tables eliminate redundancy that is 

often found in classification rule sets.  At run time, classification consists of directed parsing to extract only the relevant headers 

from the message, evaluating each unique condition, and efficient rule matching using bit vector representation for rules. We 

implemented an in-kernel Linux prototype of the algorithm and programmed the classifier prototype with rules to prioritize 

handoff messages over call setup messages.  Our detailed performance evaluation shows that the in-kernel classification engine is 

able to process more than twice as many messages than the application-level SIP server, thus significantly extending the operating 

capacity of the server for high-value messages in a transparent manner. 
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