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Abstract—Business Process Execution Language for Web 
Services (BPEL4WS) is a kind of concurrent programming 
languages with several special features that raise special 
challenges for verification and testing. This paper proposes a 
graph-search based approach to BPEL test case generation, 
which effectively deals with BPEL concurrency semantics. This 
approach defines an extension of CFG (Control Flow Graph) - 
BPEL Flow Graph (BFG) - to represent a BPEL program in a 
graphical model. Then concurrent test paths can be generated by 
traversing the BFG model, and test data for each path can be 
generated using a constraint solving method. Finally test paths 
and data are combined into complete test cases. 

Keywords-BPEL; test generation; test path generation; graph-
search 
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A. 

 INTRODUCTION 
SOA (Service Oriented Architecture) is being adopted in 

various industries. Business Process Execution Language for 
Web Services [1] (BPEL4WS, abbr. BPEL) is a key element of 
the SOA protocol stack, and offers a standards-based approach 
to build flexible business processes by choreographing multiple 
Web Services. 

In today’s software development lifecycle, testing remains 
largely a manual work whose effectiveness and efficiency 
mainly depend on human skills and experience. Among all the 
testing related activities, test planning and test case design are 
most time-consuming because they usually have little 
automation support. It’s no exception in the BPEL case. To test 
a BPEL program thoroughly, we need to cover different 
execution scenarios. Human test case design is tedious and 
difficult, especially for large and complex BPEL processes. So 
it is highly desirable to introduce automation support in BPEL 
test case design. Automatic test generation is the right 
technology to fulfill this requirement by searching execution 
paths, generating required test data and combining them into 
test cases in a systematic and highly-automated way. 

Test generation research for concurrent programs has a long 
history. BPEL has constructs that express concurrency and 
synchronization, thus can be regarded as a kind of concurrent 
program. In the area of testing concurrent programs, many 
existing research works are based on reachability analysis. A 
common method is to construct a reachability graph (RG) of 
the program under test [2]. This method is limited in practice 

due to state space explosion problem. To overcome this 
deficiency, our approach will not construct a RG and 
enumerate all the serialized paths. Instead, we only count 
concurrent path that represents a partial order list of BPEL 
activities. 

Some test generation methods based on path analysis are 
also proposed for testing sequential and concurrent [3][4] 
programs. These methods firstly select local paths for 
individual tasks, then compose global paths with these local 
paths. They are applicable to programs consisting of 
communication processes or tasks, like those written in Ada or 
CSP, but inappropriate for BPEL, which has neither explicit 
separation of individual processes nor synchronization via 
rendezvous. 

Furthermore, BPEL has unique features in both syntax (e.g. 
flow with activity synchronization, join condition) and 
semantics (e.g. dead-path-elimination) that need special 
treatment. 

This paper proposes a graph-search based approach to 
BPEL test case generation, which effectively deals with BPEL 
special features. This approach defines an extension of CFG 
(Control Flow Graph) - BPEL Flow Graph (BFG) - to represent 
a BPEL program in a graphical model. Then concurrent test 
paths can be generated by traversing the BFG model, and test 
data for each path can be generated using a constraint solving 
method. 

This paper is organized as follows. Some BPEL basics and 
features will be introduced in the next Section, then the 
proposed test generation method is elaborated in Section 3. 
Some complexity analysis is shown in Section 4. Section 5 
follows with related works. Section 6 concludes the paper with 
future work predictions. 

BPEL LANGUAGE 

BPEL Basics and Features 
Like any programming language, BPEL has typical control 

structures including sequence, switch, while, etc. In addition, 
BPEL uses the flow construct to provide concurrency and 
synchronization. Synchronization and concurrency among 
activities are provided by means of links. Each link can have a 
source activity and a target activity. Furthermore, a transition 



condition, which is a Boolean expression, is associated with 
each link and is evaluated when the source activity terminates. 
As long as the transition condition of a link has not been 
evaluated, the value of the link is undefined. Each activity of a 
flow has a join condition, which consists of incoming links of 
the activity combined by Boolean operators. Only when all the 
values of its incoming links are defined and its join condition 
evaluates to True an activity is enabled and can start. Otherwise 
if the join condition evaluates to False, the activity will not be 
executed and this effect will be propagated downstream to 
subsequent activities, so-called Dead Path Elimination (DPE). 

Fig. 2 is an example of BPEL program describing a loan 
approval process. This process begins by receiving a loan 
request. For low amounts (less than $20,000) and low-risk 
individuals, approval is automatic. For high amounts or high-
risk individuals, each credit request needs to be studied in more 
detail. The use of risk assessment and loan approval services is 
represented by invoke elements, which are contained within a 
flow, and their (potentially concurrent) behavior is staged 
according to the dependencies expressed by corresponding link 
elements. Note that the transition conditions attached to the 
links determine which links get activated, all the join 
conditions use default setting. Finally the process responds 
with either a “loan approved” message or a “loan rejected” 
message. Note that this example is adapted from the original 
loan approval process in the BPEL specification [1].  A 
transition condition is modified from getVariableData('request', 
'amount')<10000 to getVariableData('request', 'amount')<20000 
to demonstrate current test path generation method in dealing 
with multiple-choice workflow pattern. 

Due to the DPE semantics, when a BPEL program is run, 
there can be three different states for an activity or link: 
executed, un-executed, and dead path, which are shown in Fig. 
1. 

With flow and link constructs, BPEL can easily support a 
workflow pattern named “multiple-choice” [5]. This pattern 
specifies that from an activity, there can be multiple outgoing 
flows enabled simultaneously, which represents a concurrent 
behavior. Which and how many outgoing flows are enabled 
depend on the transition conditions of the outgoing links. So if 
an activity has n outgoing links, there are at most 2n possible 
execution scenarios. 

Executed Dead path Executed Un-executed
assign

case2 otherwise……

a!=’ low’ a=’ low’

case1

switch

Start Transform BPEL Generate 
concurrent test 

Figure 1.  

B. 

Figure 2.  

III. BPEL TEST GENERATION 
In this Section, we’ll elaborate the proposed BPEL test 

generation method. This method contains four steps as 
illustrated in Fig. 3. 

Step1: Transform the BPEL program to an intermediary 
model - BFG. 

This step is critical because BPEL is a highly compact and 
expressive language that is hard to analyze. BFG can be seen as 
a “partially executed” representation of BPEL and functions in 
the same way as CFG does in traditional sequential program 
testing. Compared to the BPEL program, BFG has the 
following differences to facilitate test path searching. Firstly, it 
unravels the folded structures of BPEL (e.g. while loop, dead 
path elimination) into unfolded structures that are directly 
traversable in graph searching. Secondly, it turns implicit, 
disjoint control flows (e.g. exception handling) into explicit, 
connected control flows. Thirdly, it reduces the quantity of 
control structure types - some control structures are represented 
uniformly according to their similar semantics (e.g. switch and 
pick both express branching control flow, thus will share the 
same notation in BFG). BPEL can be viewed as a graph 
composed of nodes (activities) and edges (implicit sequence 
concatenations, links), and BFG is also defined as a graph. In 
the transformation, each activity or link in BPEL is transformed 
to a corresponding node in BFG or a sub-graph composed of a 
set of normal nodes, control nodes and edges. 

 Three states of BPEL control logic 

BPEL Example 

 Loan approval process 
End 

to BFG paths on BFG

Generate test data 
for test paths

Combine test 
paths and data 
into test cases

Figure 3.   Process of the proposed test generation method 



Step2: Traverse the BFG to generate test paths. 

It is easy to find a set of test paths on BFG to satisfy a 
specific coverage goal, such as branch coverage and some user-
specified coverage goals. A BPEL test path is a partially-
ordered list of basic activities that are executed during a 
specific test run. BPEL activities in a test path are classified 
into three types: one is “input-type” (receive, the receiving 
direction of 2-way invoke, etc); another is “output-type” (the 
sending direction of 2-way invoke, reply, 1-way invoke, etc); 
the third is “dataHandling-type” (assignment, etc). 

Step3: Filter infeasible test paths, and generate test data for 
feasible test paths. 

After test paths are found, test data should be generated to 
make the test path executable. Not all the test paths found in 
Step 2 are feasible, however. A test path is feasible if there 
exists at least one set of test data that satisfies all the conditions 
(described as Boolean expressions) in this path. We can use 
constraint solving (CS) tools [7] to solve the formulas of 
inequalities and equalities derived from each test path. If no 
solution is found, the path is infeasible and filtered; otherwise 
the path is feasible, and a solution is also at hand. Typically the 
data constraints and the solution only cover part of the required 
data. The rest can be derived using random data generation 
tools automatically or by human manually. 

Step4: Generate abstract test cases by combining test data 
and paths. 

To generate a test case, the “dataHandling-type” will be 
removed, as it is useless in test case execution, while both 
“input-type” and “output-type” logic will remain to be 
populated with real test data. Part of the input-type data can be 
automatically generated based on the constraint set. However, 
output-type logic should be manually prepared in a form of 
either exact data values or invariable assertions, which are 
commonly called “test oracles”.  

Note that the resulted test cases are abstract, in a sense that 
they are not directly executable. They must be transformed to a 
program written in a specific programming language to be able 
to execute in some testing environment, where the behavior of 
the program under test is verified, and unexpected behaviors 
are reported to the user. Therefore, our abstract test case is a 
kind of platform independent model of the tests. 

A. 

B. 
1) 

BFG Definition 
BFG is proposed as an intermediary model to facilitate the 

test generation work. It is an extension of Control Flow Graph 
and adds some concurrency related syntax.  It contains not only 
structural information, which specifies all control flow 
information of a BPEL program and enough data flow 
information for test data generation, but also semantic 
information such as dead paths. 

The structural definition of BFG is as follows: 

BFG=<N, E, s, F>, where 

N is a set of nodes, 

E is a set of edges, 

s is the start node, and 

F is a set of final nodes. 

N={ni}, 1<=i<=p, p is the number of BFG nodes, where 

n1=s, ni∈{NN, DN, MN, FN, JN} where the meaning of 
NN, DN, MN, FN, JN is shown in Table 1. 

E={ej}, 1<=j<=q, q is the number of BFG edges, where 

ej=<a, b>, a, b∈N, ej∈{TE, FE} where the meaning of TE, 
FE is shown in the Table 1. 

The extension of BFG to CFG is both on syntax (e.g. FN, 
JN) and semantics (e.g. FE/DP) to express concurrency and 
dead path elimination, which is explained as follows. 

If the condition associated with an edge is evaluated False, 
which means a dead path, the False value should be propagated 
downstream till a join node. The condition of the outgoing 
edges of the join node will be evaluated when all the status of 
incoming edges have been determined. 

Transform Multiple-choice to Exclusive-choice 
Transform multiple-choice to all conditions of 

exclusive-choice. 
To facilitate test path searching, we transform the multiple-

choice pattern in BPEL to exclusive-choice structure in BFG. 
Suppose an activity has n outgoing links, the following 
transformation is performed one by one. 

 We add one decision node, 2n fork nodes, and n merge 
nodes between the considered activity and the target activities 
of these links. 

 An edge is added between the decision node and each of 
the fork nodes, representing all the possible execution scenarios. 

 Each merge node will be connected to a target activity, 
representing that multiple incoming edges merge here and then 
connect to the target activity. 

 Between the fork nodes and the merge nodes, edges are 
added to reflect the 2n execution scenarios. For each scenario, 
we may add two types of edges. If a link is enabled in this 
scenario, we add a True edge between the fork node and the 
merge node leading to the target activity of the enabled link. If 
a link is disabled in this scenario, we add a False edge between 
the fork node and the merge node leading to the target activity 
of the disabled link. Associated with each scenario there will be 
a condition, which is the conjunction of the following two 
expressions: transition conditions of the enabled links, the 
negation of the transition conditions of the disabled links. 

Fig. 5 gives a pictorial representation of this transformation 
for the multiple-choice pattern in the loan approval process 
example. 

 

 

 



TABLE I.  DEFINITION AND DENOTATION OF BFG 

getVariableData(‘ request
’ , ‘ amount’ )>=10000

10000<=getVariableData(‘ re
quest’ , ‘ amount’ )<20000

getVariableData(‘ reques
t’ , ‘ amount’ )<10000

getVariableData(‘ reques
t’ , ‘ amount’ )>=20000

receive

invokeassessor

 

2) 

C. 

Figure 4.  

Remove invalid scenarios. 
In most cases, there are not so many scenarios because most 

of the scenario conditions can not hold, for example, 
getVariableData(‘request’, ‘amount’)<10000 && 
getVariableData(‘request’, ‘amount’)>=20000. If we can 
decide in BFG construction time whether the condition is 
satisfy-able or not, the generated scenarios can be reduced 
greatly. 

We can use some simple approaches, e.g. interval analysis, 
to identify the feasible scenarios. For the example in Fig. 2, the 
value domain of “amount” can be divided into three intervals: 
(0, 10000), [10000, 20000), [20000, INFINITE). Thus there are 
only three feasible scenarios, which are shown in BFG 
denotation in Fig. 4. For more complex conditions, we can use 
the constraint solving method. 

Transform BPEL to BFG 
There are two kinds of control flow representations in 

BPEL: One is explicit control flow defined by links and the 
other is implicit one defined in sequence. To facilitate the 
unified handling of these two control flows, we first replace all 
the “sequence” structures with “flow” structures wherein the 
links have TRUE transition conditions. Then we map BPEL to 
BFG structures, which include basic activities (receive, reply, 
invoke, assign, throw, terminate, wait, empty) and structural 
activities (sequence, flow, switch, while, pick, etc). The 
following mapping rules are referenced in the transformation. 

Rule 1. BPEL basic activities are mapped to BFG nodes. 

Rule 2. BPEL structural activities are mapped to BFG 
nodes and edges. Depending on activity types, several sub rules 
are needed. 

Rule 2.1. Switch and pick. Map the <switch>-</switch> 
pair to a <DN>-<MN> pair (the definition of <DN><MN> can 
be referred to Table 1). The target links of the switch activity 
are mapped to edges that connect to the decision node, and 
edges are also added to connect the decision node and the 
nodes mapped from “case” branches of the switch activity. 
Similar mapping applies to the pick activity. 

Rule 2.2. While. For loop control flow that may repeat 
many times, it is common practice to assume a 0-1 criterion in 
test case generation, where only two samples are used. One is 
zero repetition, which corresponds to no-execution of the 
contained activity, and the other is one repetition, which 
corresponds to one execution of the contained activity. 
Similarly, the <while>-</while> pair is mapped to a <DN>-
<MN> pair. One outgoing edge of the decision node connects 
to the merge node directly, and the other connects to the node 
mapped from the contained activity. 

Node and edge description Name 
Abb. Definition Legend 

Normal Node NN The node with only one incoming and only one outgoing edge. 
 

Decision Node DN The node with one incoming edge and multiple exclusive outgoing edges. 
 

Merge Node MN The node with multiple incoming edges and one outgoing edge. Any incoming 
edge will enable the outgoing edge.  

Fork Node FN The node with one incoming edge and multiple concurrent outgoing edges.  

Join Node JN The node with multiple concurrent incoming edges and one outgoing edge. Only 
when all the incoming edges have been arrived, can the outgoing edge starts.  

True Edge TE Edge with True condition value.  

False Edge/Dead 
Path 

FE/DP Edge with False condition value. Also called dead path (DP).  

 Exclusive-choice example in BFG 
getVariableData(‘ request
’ , ‘ amount’ )<20000

getVariableData(‘ request
’ , ‘ amount’ )<10000

getVariableData(‘ request
’ , ‘ amount’ )<20000

getVariableData(‘ reques
t’ , ‘ amount’ )>10000
getVariableData(‘ reques
t’ , ‘ amount’ )>=20000

getVariableData(‘ request
’ , ‘ amount’ )<10000

getVariableData(‘ request
’ , ‘ amount’ )>=20000

receive

invokeassessor

Figure 5.  A general transformation of BPEL multiple-choice in BFG 



TABLE II.  BFG CONDITION AND RELATION INFORMATION  
Conditions and relation 

Node 
Id Preconditio

ns 

Relation 
among 

preconditions 

Post-
conditions 

Relation 
among post-
conditions 

1 NULL  E1-2  

2 E1-2  E2-3, E2-4, 
E2-5 or 

3 E2-3  E3-6, $E3-7 and 

4 E6-14, 
E12-14 and E14-15  

Rule 3. Flow. The handling of “flow” is the most complex. 
The <flow>-</flow> pair is mapped to a <FN>-<JN> pair. 
Besides this mapping, there are also similar mapping for 
activities inside a “flow”. For any activity, let m denote the 
number of its target links, and n denote the number of its 
source links. If m>1, insert a join node between the edges 
mapped from the target links and the node mapped from the 
considered activity. If n>1, insert a fork node between the node 
mapped from the considered activity and the edges mapped 
from the source links. Then, we have to process the outgoing 
edges of every fork node to transform multiple-choice structure 
to exclusive-choice structure, as has been described in Section 
3.2. Finally, for an edge with a transition condition that may 
evaluate to either True or False, it should be further 
transformed to two edges. One is with transition condition of 
True, the other is with transition condition of False. Fig. 6 
shows the BFG transformed from the loan approval process 
example. 

 

Figure 6.  

Figure 7.  

D. BFG Traversing Method for Test Path Searching 
The path searching method on BFG can be based on Depth 

First Search (DFS) algorithm. It scans the BFG and processes 
each node and edge. There are four kinds of processing for 
different node types to find paths based on branch coverage: (1) 
for normal node or merge node, it adds the node to the current 
path; (2) for decision node, it duplicates the current path to n 
paths (n is the number of outgoing edges from the decision 
node), and adds the following n nodes to the n paths 
respectively; (3) for fork node, it searches n sub-paths (n is the 
number of outgoing edges from the fork node) and adds all the 
sub-paths to the current path; (4) for join node, it awaits all the 
incoming edges to be processed, and then evaluates the join 
node based on the join condition. 

The path searching algorithm can be implemented in a 
matrix transformation method, which contains five steps: 

Step1: Mark each node in BFG with a unique number. The 
labeled BFG is shown in Fig. 6. 

 BFG node labeling  

Step2: Record the preconditions and post-conditions of 
each node, and the relation among these conditions. For 
example, table 2 shows some of the preconditions and post-
conditions and their relation for Fig. 6. 

Step3: Determine the start node and the final nodes. The 
node whose precondition is null is the start node, while whose 
post-condition is null are the final nodes. To find a path on 
BFG is to find a path from start node to any of the final nodes. 

Step4: Find paths by matrix transformation. The row and 
column index of the matrix represents BFG node number, and 
the element in matrix[i][j] represents the BFG edge <Ni, Nj>. 
An element takes its value from the space of {-1, 0, 1}, where 0 
denotes that the edge is not been visited currently, 1 denotes 
that a normal edge is visited, and -1 denotes that a dead edge is 
visited or that the edge is on a dead path. All elements in the 
matrix have an initial value 0. The path searching begins with 
processing the outgoing edges of the start node, i.e. the post-
conditions of the start node. The searching process continues 
by finding elements with value 1 or -1, for example  

Handling of join node and fork node 

 



Figure 8.  

E. 

Handling of decision node 

matrix[2, 3], and recording the second dimension, for example 
3, as the node number for next round processing after the said 
elements are reset to value 0. In this procedure some rules are 
applied when handling different types of nodes. The searching 
process stops when meeting the nodes whose post-condition is 
null, i.e. meeting the final nodes. The searching process should 
follow three rules: 

Note we leave the element in matrix empty to represent 
value 0. 

 When a node to be processed next, we need to examine 
its “relation among preconditions”. If the relation is an 
expression, the node cannot be selected to process until all the 
precondition edges are marked as 1 or -1 in the matrix. 
Otherwise the node will be selected for next processing, and all 
the precondition edges will be reset to value 0, as shown in Fig. 
7a. 

 When a node is being processed, we need to examine its 
“relation among post-conditions”. If the relation is “and”, all 
the post-condition edges will be marked in the matrix. If the 
relation is “or”, the current matrix will be duplicated n times 
where n is the number of post-condition edges, and each post-
condition edge is marked in a duplicate matrix respectively, as 
shown in Fig. 8. Then the searching process is also forked into 
n processes. 

 If a post-condition edge of the current processing node is 
a dead edge, the corresponding element is set to value -1 in the 
matrix. In the following transformation, all the edge value on 
the dead path will be -1, as shown in Fig. 7b. 

Step5: Collect all the test paths. A complete test path on the 
BFG is composed by the elements that are ever marked with 
value 1 or -1 in the searching process. Every generated test path 
can be marked in the BFG, for example a test path shown in 
Fig. 9 with bold lines. 

Test Data Preparation 
After the test paths are found, the next step is to attach test 

data to each path, which can be done manually or (semi-
)automatically. A test path may consist of two types of path 
segments: those consisting of True edges, and those denoting 
dead paths. In test data generation, we only generate data for 
the first type of path segments because they contain the 
activities that will be really executed. 
 
Figure 9.  

F. 

  A test path denoted on BFG 

In terms of automatic test data generation, there are many 
existing methods. For example, a common method is to collect 
all the constraints on a test path into a constraint system, which 
is then solved to get a solution. Test data generated cover input 
messages only, or also cover output messages. In the former 
case, the output messages will be provided manually. For the 
latter case, the output messages will usually be reviewed and 
modified by human. In both cases, there are parts of messages 
that are not used in the constraint system. These parts can be 
seen as free variables, and thus can be generated using random 
distribution methods. 

For the test path in Fig. 9, we only need to generate test 
data for the path segments marked with bold lines. The 
constraint system is: 

10000<=getVariableData('request', 'amount')<20000 

getVariableData('riskAssessment', 'risk')!='low' 

A solution is: 

getVariableData('request', 'amount')=10001 

getVariableData('riskAssessment', 'risk')='high' 

Test Case Generation 
When test paths and test data are ready, they can be 

combined into test cases automatically. The test cases contain 
the test control logic and data that are sufficient for test 
execution. Compared to test paths, test cases remove some 
irrelevant information, including “dataHandling-type” 
(assignment, etc) nodes, assistant nodes (decision, merge, fork, 
join, etc), and dead path segments. The key of this 
simplification is to get only the information sufficient for test 
execution. Here, we give a representation of a test case, 
expressed as an xml schema in Fig. 10. 

In the schema each test path is described in a TestPath 
element, wherein test data are grouped in an attribute. All the 
activities on a test path are recorded as sub-elements of 



TestPath. Each activity includes an operation and a set of links. 
Each operation can have up to two values: input and output, 
which should be populated in a test case. 

Fig. 11 shows an example of test case expressed in the 
exemplary model. 

The resulted test cases are abstract - in a sense that they are 
not directly executable - and must be transformed to a program 

written in a specific programming language to execute in some 
testing environment. To get executable test cases, it only need 
to add one more step - generate executable test cases to current 
approach. We have implemented a module to generate 
executable test cases automatically from abstract ones in Java 
code and integrated the function to a testing environment. 

 

<test
<act ndPurchaseOrder" times="1"> 

<ope

atype="datatypes/PurchaseOrder" value="sendPurchaseOrder_input.xml"/> 
Parts> 

</
e="PrepareRejection" times="1"> 

</
<act

ername="sendPurchaseOrder" porttype="wsdl:ProcessPortType"> 
 datatype=" XMLSchema:string" value=" sendPurchaseOrder_output.xml"/> 

tion> 
</activity> 

</testPath> 

Path datagroup="datagroup0, datagroup1, …" id="0"> 
ivity name="Se

ration opername="sendPurchaseOrder" porttype="wsdl:ProcessPortType"> 
<inputParts> 

<part dat
</input

</operation> 
activity> 

<activity nam
<operation/> 
activity> 

ivity name="PrepareInvoice" times="1"> 
<operation op

<return
</opera

Figure 10.  ma of the test case model 

Figure 11.  An example test case of the loan approval process 

A sche



IV. COMPLEXITY ANALYSIS 

A. 

B. 

V. 

VI. 

Evaluation of Node Explosion on BFG 
The BPEL to BFG transformation step unravels the folded 

structures of BPEL (e.g. loop of while) and introduces many 
additional nodes and edges. Taking the loan approval process 
as an example, the BPEL graph has 5 nodes and 6 edges while 
the transformed result BFG has 18 nodes and 25 edges. 

For this transformation method, we can estimate the worst-
case complexity of node explosion in BFG, which depends on 
the activities that have more than one outgoing link. 

Assume in a given BPEL file, there are m activities that 
have more than one outgoing link and each activity has Ai 
outgoing links, then the worst-case complexity of nodes 
number explosion is: 

O(2A1+A2+…+Am) 

But in most situations, the worst case will not hold and the 
transformed result BFG will not have so many nodes for two 
reasons: 

 In the worst case, each BPEL activity is assumed to be 
transformed to 2Ai execution scenarios. But in most cases, the 
2Ai scenarios can be reduced greatly by removing those invalid 
ones. 

 In the worst case, the nodes number is calculated by 
multiplication. But in most cases, the number is calculated by 
addition. 

Evaluation of Test Paths 
When BPEL is transformed to BFG, we can estimate the 

number of test paths, which depends on the number of decision 
nodes in BFG. 

Assume in a BFG there are m decision nodes and each 
decision node has Ni outgoing edges, then the worst case 
complexity of the test path number is: 

O(N1*N2*…*Nm) 

Actually, the test path number will be greatly reduced by 
two means: 

 The calculation by multiplying outgoing flows of 
different decision nodes can be replaced by addition operations. 

 If a decision node is in a dead path, the decision node 
will not contribute to test paths, because all the behavior on a 
dead path will be removed in test data and case generation. 

RELATED WORKS 
The goal of software verification is to validate specific 

properties of a program (e.g. there is no loop dependency), 
whereas software testing checks the correctness of a program 
with respect to functional requirements. Current BPEL 
verification works [6] are limited in control part analysis, and 
thus are not suitable for test data preparation, which is 
indispensable for test case generation. Furthermore verification 
is mostly based on model checking to explore the whole state 

space of a program, thus it is prone to state explosion and not 
scalable to BPEL, especially when BPEL becomes more and 
more complex. 

There are some commercial web service testing tools that 
declare support for web service test generation [8]. They can 
generate test cases from WSDL descriptions of the web 
service. This is different with BPEL test generation in that it is 
a kind of black-box testing that analyzes the service interface 
definition, whereas BPEL test generation is a kind of white-box 
testing that analyzes the internal process definition. 

In the area of concurrent program testing, many existing 
research works are based on reach-ability analysis. A common 
method is to construct a reach-ability graph [2] of the program 
under test. The RG is essentially a serialized state transition 
graph of the global behavior of the concurrent processes or 
tasks contained in the program. It represents all the possible 
execution scenarios resulted from nondeterministic run of the 
concurrent program. This method is limited in practice due to 
state space explosion problem. Compared to RG based 
concurrent program testing or verification, our approach will 
not construct a RG and cover all the serialized paths; instead, 
we only cover “basic paths”, which differ with each other by at 
least one activity. A basic path is concurrent and can be 
regarded as a static, compact representation of many serialized 
paths. In this way, the complexity of state explosion is greatly 
reduced. 

There have been many works in test generation for 
traditional procedures or member methods of OO classes. They 
are mostly based on Control Flow Graph. These models are 
insufficient for BPEL test generation, because BPEL has 
unique syntax and semantics. In addition, traditional coverage 
goals for sequential programs are inapplicable to BPEL. 

CONCLUSION 
In this paper, we introduce a BPEL test generation method. 

We define a graph structure to represent BPEL, then search 
concurrent test paths with a matrix-based algorithm. 

Our method is well modularized to support different phases 
of BPEL testing. People can use the test path searching 
capability to enumerate test paths only. This is useful when one 
wants to provide special-purpose test data manually. People 
can use the test data generation capability to generate test data 
automatically for test paths that is either automatically found or 
manually designed for special purpose. People can also use the 
full capability to automatically generate the abstract test case.  

In future, we plan to extend this approach to support 
exception handling and other BPEL advanced features. 
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