
RC24028 (C0608-007) August 16, 2006
Computer Science

IBM Research Report

A Graph-search Based Approach to BPEL4WS
Test Generation

Yuan Yuan, Zhongjie Li, Wei Sun
IBM Research Division

China Research Laboratory
HaoHai Building, No. 7, 5th Street

ShangDi, Beijing 100085
China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Graph-search Based Approach to BPEL4WS Test
Generation

Yuan Yuan, Zhongjie Li, Wei Sun
China Research Lab

IBM
Beijing, P.R.C.

{yyuan, lizhongj, weisun}@cn.ibm.com

Abstract—Business Process Execution Language for Web
Services (BPEL4WS) is a kind of concurrent programming
languages with several special features that raise special
challenges for verification and testing. This paper proposes a
graph-search based approach to BPEL test case generation,
which effectively deals with BPEL concurrency semantics. This
approach defines an extension of CFG (Control Flow Graph) -
BPEL Flow Graph (BFG) - to represent a BPEL program in a
graphical model. Then concurrent test paths can be generated by
traversing the BFG model, and test data for each path can be
generated using a constraint solving method. Finally test paths
and data are combined into complete test cases.

Keywords-BPEL; test generation; test path generation; graph-
search

I.

II.

A.

 INTRODUCTION
SOA (Service Oriented Architecture) is being adopted in

various industries. Business Process Execution Language for
Web Services [1] (BPEL4WS, abbr. BPEL) is a key element of
the SOA protocol stack, and offers a standards-based approach
to build flexible business processes by choreographing multiple
Web Services.

In today’s software development lifecycle, testing remains
largely a manual work whose effectiveness and efficiency
mainly depend on human skills and experience. Among all the
testing related activities, test planning and test case design are
most time-consuming because they usually have little
automation support. It’s no exception in the BPEL case. To test
a BPEL program thoroughly, we need to cover different
execution scenarios. Human test case design is tedious and
difficult, especially for large and complex BPEL processes. So
it is highly desirable to introduce automation support in BPEL
test case design. Automatic test generation is the right
technology to fulfill this requirement by searching execution
paths, generating required test data and combining them into
test cases in a systematic and highly-automated way.

Test generation research for concurrent programs has a long
history. BPEL has constructs that express concurrency and
synchronization, thus can be regarded as a kind of concurrent
program. In the area of testing concurrent programs, many
existing research works are based on reachability analysis. A
common method is to construct a reachability graph (RG) of
the program under test [2]. This method is limited in practice

due to state space explosion problem. To overcome this
deficiency, our approach will not construct a RG and
enumerate all the serialized paths. Instead, we only count
concurrent path that represents a partial order list of BPEL
activities.

Some test generation methods based on path analysis are
also proposed for testing sequential and concurrent [3][4]
programs. These methods firstly select local paths for
individual tasks, then compose global paths with these local
paths. They are applicable to programs consisting of
communication processes or tasks, like those written in Ada or
CSP, but inappropriate for BPEL, which has neither explicit
separation of individual processes nor synchronization via
rendezvous.

Furthermore, BPEL has unique features in both syntax (e.g.
flow with activity synchronization, join condition) and
semantics (e.g. dead-path-elimination) that need special
treatment.

This paper proposes a graph-search based approach to
BPEL test case generation, which effectively deals with BPEL
special features. This approach defines an extension of CFG
(Control Flow Graph) - BPEL Flow Graph (BFG) - to represent
a BPEL program in a graphical model. Then concurrent test
paths can be generated by traversing the BFG model, and test
data for each path can be generated using a constraint solving
method.

This paper is organized as follows. Some BPEL basics and
features will be introduced in the next Section, then the
proposed test generation method is elaborated in Section 3.
Some complexity analysis is shown in Section 4. Section 5
follows with related works. Section 6 concludes the paper with
future work predictions.

BPEL LANGUAGE

BPEL Basics and Features
Like any programming language, BPEL has typical control

structures including sequence, switch, while, etc. In addition,
BPEL uses the flow construct to provide concurrency and
synchronization. Synchronization and concurrency among
activities are provided by means of links. Each link can have a
source activity and a target activity. Furthermore, a transition

condition, which is a Boolean expression, is associated with
each link and is evaluated when the source activity terminates.
As long as the transition condition of a link has not been
evaluated, the value of the link is undefined. Each activity of a
flow has a join condition, which consists of incoming links of
the activity combined by Boolean operators. Only when all the
values of its incoming links are defined and its join condition
evaluates to True an activity is enabled and can start. Otherwise
if the join condition evaluates to False, the activity will not be
executed and this effect will be propagated downstream to
subsequent activities, so-called Dead Path Elimination (DPE).

Fig. 2 is an example of BPEL program describing a loan
approval process. This process begins by receiving a loan
request. For low amounts (less than $20,000) and low-risk
individuals, approval is automatic. For high amounts or high-
risk individuals, each credit request needs to be studied in more
detail. The use of risk assessment and loan approval services is
represented by invoke elements, which are contained within a
flow, and their (potentially concurrent) behavior is staged
according to the dependencies expressed by corresponding link
elements. Note that the transition conditions attached to the
links determine which links get activated, all the join
conditions use default setting. Finally the process responds
with either a “loan approved” message or a “loan rejected”
message. Note that this example is adapted from the original
loan approval process in the BPEL specification [1]. A
transition condition is modified from getVariableData('request',
'amount')<10000 to getVariableData('request', 'amount')<20000
to demonstrate current test path generation method in dealing
with multiple-choice workflow pattern.

Due to the DPE semantics, when a BPEL program is run,
there can be three different states for an activity or link:
executed, un-executed, and dead path, which are shown in Fig.
1.

With flow and link constructs, BPEL can easily support a
workflow pattern named “multiple-choice” [5]. This pattern
specifies that from an activity, there can be multiple outgoing
flows enabled simultaneously, which represents a concurrent
behavior. Which and how many outgoing flows are enabled
depend on the transition conditions of the outgoing links. So if
an activity has n outgoing links, there are at most 2n possible
execution scenarios.

Executed Dead path Executed Un-executed
assign

case2 otherwise……

a!=’ low’ a=’ low’

case1

switch

Start Transform BPEL Generate
concurrent test

Figure 1.

B.

Figure 2.

III. BPEL TEST GENERATION
In this Section, we’ll elaborate the proposed BPEL test

generation method. This method contains four steps as
illustrated in Fig. 3.

Step1: Transform the BPEL program to an intermediary
model - BFG.

This step is critical because BPEL is a highly compact and
expressive language that is hard to analyze. BFG can be seen as
a “partially executed” representation of BPEL and functions in
the same way as CFG does in traditional sequential program
testing. Compared to the BPEL program, BFG has the
following differences to facilitate test path searching. Firstly, it
unravels the folded structures of BPEL (e.g. while loop, dead
path elimination) into unfolded structures that are directly
traversable in graph searching. Secondly, it turns implicit,
disjoint control flows (e.g. exception handling) into explicit,
connected control flows. Thirdly, it reduces the quantity of
control structure types - some control structures are represented
uniformly according to their similar semantics (e.g. switch and
pick both express branching control flow, thus will share the
same notation in BFG). BPEL can be viewed as a graph
composed of nodes (activities) and edges (implicit sequence
concatenations, links), and BFG is also defined as a graph. In
the transformation, each activity or link in BPEL is transformed
to a corresponding node in BFG or a sub-graph composed of a
set of normal nodes, control nodes and edges.

 Three states of BPEL control logic

BPEL Example

 Loan approval process
End

to BFG paths on BFG

Generate test data
for test paths

Combine test
paths and data
into test cases

Figure 3. Process of the proposed test generation method

Step2: Traverse the BFG to generate test paths.

It is easy to find a set of test paths on BFG to satisfy a
specific coverage goal, such as branch coverage and some user-
specified coverage goals. A BPEL test path is a partially-
ordered list of basic activities that are executed during a
specific test run. BPEL activities in a test path are classified
into three types: one is “input-type” (receive, the receiving
direction of 2-way invoke, etc); another is “output-type” (the
sending direction of 2-way invoke, reply, 1-way invoke, etc);
the third is “dataHandling-type” (assignment, etc).

Step3: Filter infeasible test paths, and generate test data for
feasible test paths.

After test paths are found, test data should be generated to
make the test path executable. Not all the test paths found in
Step 2 are feasible, however. A test path is feasible if there
exists at least one set of test data that satisfies all the conditions
(described as Boolean expressions) in this path. We can use
constraint solving (CS) tools [7] to solve the formulas of
inequalities and equalities derived from each test path. If no
solution is found, the path is infeasible and filtered; otherwise
the path is feasible, and a solution is also at hand. Typically the
data constraints and the solution only cover part of the required
data. The rest can be derived using random data generation
tools automatically or by human manually.

Step4: Generate abstract test cases by combining test data
and paths.

To generate a test case, the “dataHandling-type” will be
removed, as it is useless in test case execution, while both
“input-type” and “output-type” logic will remain to be
populated with real test data. Part of the input-type data can be
automatically generated based on the constraint set. However,
output-type logic should be manually prepared in a form of
either exact data values or invariable assertions, which are
commonly called “test oracles”.

Note that the resulted test cases are abstract, in a sense that
they are not directly executable. They must be transformed to a
program written in a specific programming language to be able
to execute in some testing environment, where the behavior of
the program under test is verified, and unexpected behaviors
are reported to the user. Therefore, our abstract test case is a
kind of platform independent model of the tests.

A.

B.
1)

BFG Definition
BFG is proposed as an intermediary model to facilitate the

test generation work. It is an extension of Control Flow Graph
and adds some concurrency related syntax. It contains not only
structural information, which specifies all control flow
information of a BPEL program and enough data flow
information for test data generation, but also semantic
information such as dead paths.

The structural definition of BFG is as follows:

BFG=<N, E, s, F>, where

N is a set of nodes,

E is a set of edges,

s is the start node, and

F is a set of final nodes.

N={ni}, 1<=i<=p, p is the number of BFG nodes, where

n1=s, ni∈{NN, DN, MN, FN, JN} where the meaning of
NN, DN, MN, FN, JN is shown in Table 1.

E={ej}, 1<=j<=q, q is the number of BFG edges, where

ej=<a, b>, a, b∈N, ej∈{TE, FE} where the meaning of TE,
FE is shown in the Table 1.

The extension of BFG to CFG is both on syntax (e.g. FN,
JN) and semantics (e.g. FE/DP) to express concurrency and
dead path elimination, which is explained as follows.

If the condition associated with an edge is evaluated False,
which means a dead path, the False value should be propagated
downstream till a join node. The condition of the outgoing
edges of the join node will be evaluated when all the status of
incoming edges have been determined.

Transform Multiple-choice to Exclusive-choice
Transform multiple-choice to all conditions of

exclusive-choice.
To facilitate test path searching, we transform the multiple-

choice pattern in BPEL to exclusive-choice structure in BFG.
Suppose an activity has n outgoing links, the following
transformation is performed one by one.

 We add one decision node, 2n fork nodes, and n merge
nodes between the considered activity and the target activities
of these links.

 An edge is added between the decision node and each of
the fork nodes, representing all the possible execution scenarios.

 Each merge node will be connected to a target activity,
representing that multiple incoming edges merge here and then
connect to the target activity.

 Between the fork nodes and the merge nodes, edges are
added to reflect the 2n execution scenarios. For each scenario,
we may add two types of edges. If a link is enabled in this
scenario, we add a True edge between the fork node and the
merge node leading to the target activity of the enabled link. If
a link is disabled in this scenario, we add a False edge between
the fork node and the merge node leading to the target activity
of the disabled link. Associated with each scenario there will be
a condition, which is the conjunction of the following two
expressions: transition conditions of the enabled links, the
negation of the transition conditions of the disabled links.

Fig. 5 gives a pictorial representation of this transformation
for the multiple-choice pattern in the loan approval process
example.

TABLE I. DEFINITION AND DENOTATION OF BFG

getVariableData(‘ request
’ , ‘ amount’)>=10000

10000<=getVariableData(‘ re
quest’ , ‘ amount’)<20000

getVariableData(‘ reques
t’ , ‘ amount’)<10000

getVariableData(‘ reques
t’ , ‘ amount’)>=20000

receive

invokeassessor

2)

C.

Figure 4.

Remove invalid scenarios.
In most cases, there are not so many scenarios because most

of the scenario conditions can not hold, for example,
getVariableData(‘request’, ‘amount’)<10000 &&
getVariableData(‘request’, ‘amount’)>=20000. If we can
decide in BFG construction time whether the condition is
satisfy-able or not, the generated scenarios can be reduced
greatly.

We can use some simple approaches, e.g. interval analysis,
to identify the feasible scenarios. For the example in Fig. 2, the
value domain of “amount” can be divided into three intervals:
(0, 10000), [10000, 20000), [20000, INFINITE). Thus there are
only three feasible scenarios, which are shown in BFG
denotation in Fig. 4. For more complex conditions, we can use
the constraint solving method.

Transform BPEL to BFG
There are two kinds of control flow representations in

BPEL: One is explicit control flow defined by links and the
other is implicit one defined in sequence. To facilitate the
unified handling of these two control flows, we first replace all
the “sequence” structures with “flow” structures wherein the
links have TRUE transition conditions. Then we map BPEL to
BFG structures, which include basic activities (receive, reply,
invoke, assign, throw, terminate, wait, empty) and structural
activities (sequence, flow, switch, while, pick, etc). The
following mapping rules are referenced in the transformation.

Rule 1. BPEL basic activities are mapped to BFG nodes.

Rule 2. BPEL structural activities are mapped to BFG
nodes and edges. Depending on activity types, several sub rules
are needed.

Rule 2.1. Switch and pick. Map the <switch>-</switch>
pair to a <DN>-<MN> pair (the definition of <DN><MN> can
be referred to Table 1). The target links of the switch activity
are mapped to edges that connect to the decision node, and
edges are also added to connect the decision node and the
nodes mapped from “case” branches of the switch activity.
Similar mapping applies to the pick activity.

Rule 2.2. While. For loop control flow that may repeat
many times, it is common practice to assume a 0-1 criterion in
test case generation, where only two samples are used. One is
zero repetition, which corresponds to no-execution of the
contained activity, and the other is one repetition, which
corresponds to one execution of the contained activity.
Similarly, the <while>-</while> pair is mapped to a <DN>-
<MN> pair. One outgoing edge of the decision node connects
to the merge node directly, and the other connects to the node
mapped from the contained activity.

Node and edge description Name
Abb. Definition Legend

Normal Node NN The node with only one incoming and only one outgoing edge.

Decision Node DN The node with one incoming edge and multiple exclusive outgoing edges.

Merge Node MN The node with multiple incoming edges and one outgoing edge. Any incoming
edge will enable the outgoing edge.

Fork Node FN The node with one incoming edge and multiple concurrent outgoing edges.

Join Node JN The node with multiple concurrent incoming edges and one outgoing edge. Only
when all the incoming edges have been arrived, can the outgoing edge starts.

True Edge TE Edge with True condition value.

False Edge/Dead
Path

FE/DP Edge with False condition value. Also called dead path (DP).

 Exclusive-choice example in BFG
getVariableData(‘ request
’ , ‘ amount’)<20000

getVariableData(‘ request
’ , ‘ amount’)<10000

getVariableData(‘ request
’ , ‘ amount’)<20000

getVariableData(‘ reques
t’ , ‘ amount’)>10000
getVariableData(‘ reques
t’ , ‘ amount’)>=20000

getVariableData(‘ request
’ , ‘ amount’)<10000

getVariableData(‘ request
’ , ‘ amount’)>=20000

receive

invokeassessor

Figure 5. A general transformation of BPEL multiple-choice in BFG

TABLE II. BFG CONDITION AND RELATION INFORMATION
Conditions and relation

Node
Id Preconditio

ns

Relation
among

preconditions

Post-
conditions

Relation
among post-
conditions

1 NULL E1-2

2 E1-2 E2-3, E2-4,
E2-5 or

3 E2-3 E3-6, $E3-7 and

4 E6-14,
E12-14 and E14-15

Rule 3. Flow. The handling of “flow” is the most complex.
The <flow>-</flow> pair is mapped to a <FN>-<JN> pair.
Besides this mapping, there are also similar mapping for
activities inside a “flow”. For any activity, let m denote the
number of its target links, and n denote the number of its
source links. If m>1, insert a join node between the edges
mapped from the target links and the node mapped from the
considered activity. If n>1, insert a fork node between the node
mapped from the considered activity and the edges mapped
from the source links. Then, we have to process the outgoing
edges of every fork node to transform multiple-choice structure
to exclusive-choice structure, as has been described in Section
3.2. Finally, for an edge with a transition condition that may
evaluate to either True or False, it should be further
transformed to two edges. One is with transition condition of
True, the other is with transition condition of False. Fig. 6
shows the BFG transformed from the loan approval process
example.

Figure 6.

Figure 7.

D. BFG Traversing Method for Test Path Searching
The path searching method on BFG can be based on Depth

First Search (DFS) algorithm. It scans the BFG and processes
each node and edge. There are four kinds of processing for
different node types to find paths based on branch coverage: (1)
for normal node or merge node, it adds the node to the current
path; (2) for decision node, it duplicates the current path to n
paths (n is the number of outgoing edges from the decision
node), and adds the following n nodes to the n paths
respectively; (3) for fork node, it searches n sub-paths (n is the
number of outgoing edges from the fork node) and adds all the
sub-paths to the current path; (4) for join node, it awaits all the
incoming edges to be processed, and then evaluates the join
node based on the join condition.

The path searching algorithm can be implemented in a
matrix transformation method, which contains five steps:

Step1: Mark each node in BFG with a unique number. The
labeled BFG is shown in Fig. 6.

 BFG node labeling

Step2: Record the preconditions and post-conditions of
each node, and the relation among these conditions. For
example, table 2 shows some of the preconditions and post-
conditions and their relation for Fig. 6.

Step3: Determine the start node and the final nodes. The
node whose precondition is null is the start node, while whose
post-condition is null are the final nodes. To find a path on
BFG is to find a path from start node to any of the final nodes.

Step4: Find paths by matrix transformation. The row and
column index of the matrix represents BFG node number, and
the element in matrix[i][j] represents the BFG edge <Ni, Nj>.
An element takes its value from the space of {-1, 0, 1}, where 0
denotes that the edge is not been visited currently, 1 denotes
that a normal edge is visited, and -1 denotes that a dead edge is
visited or that the edge is on a dead path. All elements in the
matrix have an initial value 0. The path searching begins with
processing the outgoing edges of the start node, i.e. the post-
conditions of the start node. The searching process continues
by finding elements with value 1 or -1, for example

Handling of join node and fork node

Figure 8.

E.

Handling of decision node

matrix[2, 3], and recording the second dimension, for example
3, as the node number for next round processing after the said
elements are reset to value 0. In this procedure some rules are
applied when handling different types of nodes. The searching
process stops when meeting the nodes whose post-condition is
null, i.e. meeting the final nodes. The searching process should
follow three rules:

Note we leave the element in matrix empty to represent
value 0.

 When a node to be processed next, we need to examine
its “relation among preconditions”. If the relation is an
expression, the node cannot be selected to process until all the
precondition edges are marked as 1 or -1 in the matrix.
Otherwise the node will be selected for next processing, and all
the precondition edges will be reset to value 0, as shown in Fig.
7a.

 When a node is being processed, we need to examine its
“relation among post-conditions”. If the relation is “and”, all
the post-condition edges will be marked in the matrix. If the
relation is “or”, the current matrix will be duplicated n times
where n is the number of post-condition edges, and each post-
condition edge is marked in a duplicate matrix respectively, as
shown in Fig. 8. Then the searching process is also forked into
n processes.

 If a post-condition edge of the current processing node is
a dead edge, the corresponding element is set to value -1 in the
matrix. In the following transformation, all the edge value on
the dead path will be -1, as shown in Fig. 7b.

Step5: Collect all the test paths. A complete test path on the
BFG is composed by the elements that are ever marked with
value 1 or -1 in the searching process. Every generated test path
can be marked in the BFG, for example a test path shown in
Fig. 9 with bold lines.

Test Data Preparation
After the test paths are found, the next step is to attach test

data to each path, which can be done manually or (semi-
)automatically. A test path may consist of two types of path
segments: those consisting of True edges, and those denoting
dead paths. In test data generation, we only generate data for
the first type of path segments because they contain the
activities that will be really executed.

Figure 9.

F.

 A test path denoted on BFG

In terms of automatic test data generation, there are many
existing methods. For example, a common method is to collect
all the constraints on a test path into a constraint system, which
is then solved to get a solution. Test data generated cover input
messages only, or also cover output messages. In the former
case, the output messages will be provided manually. For the
latter case, the output messages will usually be reviewed and
modified by human. In both cases, there are parts of messages
that are not used in the constraint system. These parts can be
seen as free variables, and thus can be generated using random
distribution methods.

For the test path in Fig. 9, we only need to generate test
data for the path segments marked with bold lines. The
constraint system is:

10000<=getVariableData('request', 'amount')<20000

getVariableData('riskAssessment', 'risk')!='low'

A solution is:

getVariableData('request', 'amount')=10001

getVariableData('riskAssessment', 'risk')='high'

Test Case Generation
When test paths and test data are ready, they can be

combined into test cases automatically. The test cases contain
the test control logic and data that are sufficient for test
execution. Compared to test paths, test cases remove some
irrelevant information, including “dataHandling-type”
(assignment, etc) nodes, assistant nodes (decision, merge, fork,
join, etc), and dead path segments. The key of this
simplification is to get only the information sufficient for test
execution. Here, we give a representation of a test case,
expressed as an xml schema in Fig. 10.

In the schema each test path is described in a TestPath
element, wherein test data are grouped in an attribute. All the
activities on a test path are recorded as sub-elements of

TestPath. Each activity includes an operation and a set of links.
Each operation can have up to two values: input and output,
which should be populated in a test case.

Fig. 11 shows an example of test case expressed in the
exemplary model.

The resulted test cases are abstract - in a sense that they are
not directly executable - and must be transformed to a program

written in a specific programming language to execute in some
testing environment. To get executable test cases, it only need
to add one more step - generate executable test cases to current
approach. We have implemented a module to generate
executable test cases automatically from abstract ones in Java
code and integrated the function to a testing environment.

<test
<act ndPurchaseOrder" times="1">

<ope

atype="datatypes/PurchaseOrder" value="sendPurchaseOrder_input.xml"/>
Parts>

</
e="PrepareRejection" times="1">

</
<act

ername="sendPurchaseOrder" porttype="wsdl:ProcessPortType">
 datatype=" XMLSchema:string" value=" sendPurchaseOrder_output.xml"/>

tion>
</activity>

</testPath>

Path datagroup="datagroup0, datagroup1, …" id="0">
ivity name="Se

ration opername="sendPurchaseOrder" porttype="wsdl:ProcessPortType">
<inputParts>

<part dat
</input

</operation>
activity>

<activity nam
<operation/>
activity>

ivity name="PrepareInvoice" times="1">
<operation op

<return
</opera

Figure 10. ma of the test case model

Figure 11. An example test case of the loan approval process

A sche

IV. COMPLEXITY ANALYSIS

A.

B.

V.

VI.

Evaluation of Node Explosion on BFG
The BPEL to BFG transformation step unravels the folded

structures of BPEL (e.g. loop of while) and introduces many
additional nodes and edges. Taking the loan approval process
as an example, the BPEL graph has 5 nodes and 6 edges while
the transformed result BFG has 18 nodes and 25 edges.

For this transformation method, we can estimate the worst-
case complexity of node explosion in BFG, which depends on
the activities that have more than one outgoing link.

Assume in a given BPEL file, there are m activities that
have more than one outgoing link and each activity has Ai
outgoing links, then the worst-case complexity of nodes
number explosion is:

O(2A1+A2+…+Am)

But in most situations, the worst case will not hold and the
transformed result BFG will not have so many nodes for two
reasons:

 In the worst case, each BPEL activity is assumed to be
transformed to 2Ai execution scenarios. But in most cases, the
2Ai scenarios can be reduced greatly by removing those invalid
ones.

 In the worst case, the nodes number is calculated by
multiplication. But in most cases, the number is calculated by
addition.

Evaluation of Test Paths
When BPEL is transformed to BFG, we can estimate the

number of test paths, which depends on the number of decision
nodes in BFG.

Assume in a BFG there are m decision nodes and each
decision node has Ni outgoing edges, then the worst case
complexity of the test path number is:

O(N1*N2*…*Nm)

Actually, the test path number will be greatly reduced by
two means:

 The calculation by multiplying outgoing flows of
different decision nodes can be replaced by addition operations.

 If a decision node is in a dead path, the decision node
will not contribute to test paths, because all the behavior on a
dead path will be removed in test data and case generation.

RELATED WORKS
The goal of software verification is to validate specific

properties of a program (e.g. there is no loop dependency),
whereas software testing checks the correctness of a program
with respect to functional requirements. Current BPEL
verification works [6] are limited in control part analysis, and
thus are not suitable for test data preparation, which is
indispensable for test case generation. Furthermore verification
is mostly based on model checking to explore the whole state

space of a program, thus it is prone to state explosion and not
scalable to BPEL, especially when BPEL becomes more and
more complex.

There are some commercial web service testing tools that
declare support for web service test generation [8]. They can
generate test cases from WSDL descriptions of the web
service. This is different with BPEL test generation in that it is
a kind of black-box testing that analyzes the service interface
definition, whereas BPEL test generation is a kind of white-box
testing that analyzes the internal process definition.

In the area of concurrent program testing, many existing
research works are based on reach-ability analysis. A common
method is to construct a reach-ability graph [2] of the program
under test. The RG is essentially a serialized state transition
graph of the global behavior of the concurrent processes or
tasks contained in the program. It represents all the possible
execution scenarios resulted from nondeterministic run of the
concurrent program. This method is limited in practice due to
state space explosion problem. Compared to RG based
concurrent program testing or verification, our approach will
not construct a RG and cover all the serialized paths; instead,
we only cover “basic paths”, which differ with each other by at
least one activity. A basic path is concurrent and can be
regarded as a static, compact representation of many serialized
paths. In this way, the complexity of state explosion is greatly
reduced.

There have been many works in test generation for
traditional procedures or member methods of OO classes. They
are mostly based on Control Flow Graph. These models are
insufficient for BPEL test generation, because BPEL has
unique syntax and semantics. In addition, traditional coverage
goals for sequential programs are inapplicable to BPEL.

CONCLUSION
In this paper, we introduce a BPEL test generation method.

We define a graph structure to represent BPEL, then search
concurrent test paths with a matrix-based algorithm.

Our method is well modularized to support different phases
of BPEL testing. People can use the test path searching
capability to enumerate test paths only. This is useful when one
wants to provide special-purpose test data manually. People
can use the test data generation capability to generate test data
automatically for test paths that is either automatically found or
manually designed for special purpose. People can also use the
full capability to automatically generate the abstract test case.

In future, we plan to extend this approach to support
exception handling and other BPEL advanced features.

ACKNOWLEDGMENT
We thank for Bin Du for discussion and criticism on a

earlier draft of this work. We also thank Jianjun Lu for
implementation and verification of part system prototype.

REFERENCES
[1] Business Process Execution Language for Web Service(BPEL4WS).

Available at

http://www.casisopen.org/committees/download.php/2046/BPEL%20V1
-1%20Ma%y%205%202003%20Final.pdf

[2] R. Taylor, D. Levine, and C. Kelly, “Structural testing of concurrent
programs”, IEEE Transactions on Software Engineering, March 1992,
18(3), pp. 206-215.

[3] R. D. Yang and C. G. Chung, “A path analysis approach to concurrent
program testing”, Information and Software Technology, 1992, pp.
34(1): 43-56.

[4] T. Katayama, E. Itoh, and Z. Furukawa, “Test-case generation for
concurrent programs with the testing criteria using interaction
sequences”, Proceedings of the 6th Asian-Pacific Software Engineering
Conference, December 1999, pp. 590-597.

[5] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow patterns”, Distributed and Parallel Databases, 2003, 14(1),
pp. 5-51.

[6] Mariya Koshkina and Franck van Breugel, “Modeling and Verifying
Web Service Orchestration by means of the Concurrency Workbench”,
Proceedings of the Workshop on Testing, Analysis and Verification of
Web Services (TAV-WEB), ACM SIGSOFT Software Engineering
Notes, September 2004, 29(5).

[7] M. Berkelaar, “Lp_solve”, a public domain Mixed Integer Linear
Program solver, available at http://groups.yahoo.com/group/lp_solve/

[8] WebServiceTester™, Optimyz, available at
http://www.optimyz.com/servicetester.html

http://www.casisopen.org/committees/download.php/2046/BPEL V1-1 Ma%y 5 2003 Final.pdf
http://www.casisopen.org/committees/download.php/2046/BPEL V1-1 Ma%y 5 2003 Final.pdf
http://groups.yahoo.com/group/lp_solve/
http://www.optimyz.com/servicetester.html

	Introduction
	BPEL Language
	BPEL Basics and Features
	BPEL Example

	BPEL Test Generation
	BFG Definition
	Transform Multiple-choice to Exclusive-choice
	Transform multiple-choice to all conditions of exclusive-choice.
	Remove invalid scenarios.

	Transform BPEL to BFG
	BFG Traversing Method for Test Path Searching
	Test Data Preparation
	Test Case Generation

	Complexity Analysis
	Evaluation of Node Explosion on BFG
	Evaluation of Test Paths

	Related Works
	Conclusion
	
	
	
	Acknowledgment
	References

